激光等离子体冲击波传输及空泡动力学特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文从理论和实验方面研究了高功率激光与物质相互作用过程中激光等离子体冲击波的产生、传输特性以及激光空泡动力学特性、空蚀机理,并对有关特征参数进行了实验测试和数值计算研究。
     利用自行设计的基于光纤耦合的双光束测试系统研究了激光致使空气中靶材表面产生的等离子体冲击波,实现了在一个激光脉冲内对激光等离子体冲击波瞬时速度的直接测量,避免因激光器稳定性或者激光等离子体冲击波可重复性而引起的测量误差,提高了实验精度。
     在对激光等离子体冲击波在不同介质中传输特性的研究方面,将“压缩波追赶与稀疏波卸载理论”引入冲击波发展及衰减过程的研究;从质量和动量守恒方程出发,解析研究了强激光等离子体冲击波的产生、发展和衰减机理。进而采用自行研制的光纤传感器跟踪探测等离子体冲击波的形成及发展过程,从实验验证了该理论模型的正确性。
     采用PZT水听器探测了波长为532nm和1064nm激光与水下金属靶材作用时产生的激光等离子体声波,并对实验获得的数据进行了时频分析。结果表明:该等离子体声波强度随激光能量的增大而增大;频率范围在0-150KHz,在频率为25KHz附近有一峰值;且频率范围和峰值位置基本不随作用激光能量以及靶材料的改变而改变。
     从基本的空泡动力学理论出发,推导了空泡各特征参量之间的关系,进而对空泡动力学模型进行了修正;采用有限差分法对空泡脉动进行数值模拟,得到了空泡脉动特性随液体粘性、空泡含气量、表面张力以及可压缩性的变化规律;实验上采用光偏转测试装置探测了激光空泡脉动以及空泡溃灭的细节过程,进而分析了液体粘性和作用激光能量对空泡脉动周期、泡半径及泡能等特征参数的影响。
     在系统地研究固壁面附近空泡溃灭过程的基础上,提出并研究了射流阈值、空泡在第一次和第二次脉动过程衰减蚀除机理以及空泡溃灭周期延长因子等问题。
     本文研究结果既可避免激光等离子体冲击波和空化带来的危害,也为合理利用激光等离子体冲击波和空化现象提供理论和实验依据,可供激光加工、激光医疗、水下激光加工和相关流体力学的研究参考。
The laser-induced plasma shock wave evolution, cavitation bubble dynamics and thecavitation destruction mechanisms during the high-power laser and material interaction aresystemically investigated. Meanwhile, the characteristic parameters are measuredexperimentally and calculated numerically.
     By the self-developed dual-beam diagnostic technique based on fiber-coupling beamdeflection principle, the velocity of the shock wave can be determined in a laser pulseavoiding the error induced by the laser stability or the laser-induced shock waverepeatability.
     A theoretical model is proposed to describe the mechanism of laser-induced plasmashock wave evolution in different media. To verify the validity of the theoretical model,optical beam deflection technique is employed to track the plasma shock wave evolutionprocess. Good agreement has been established between theoretical and experimentalresults. It is shown that the laser-induced plasma shock wave undergoes three processes:formation, increase and decay process; the increase and decay of the laser-induced plasmashock wave are the result of the overlap of compression wave and rarefaction wave,respectively. In addition, the velocity and pressure distribution of the laser-induced plasmashock wave as a function of distance is presented.
     By means of a PZT hydrophone, the acoustic waves induced by a Q-switched Nd: YAGlaser with wavelength 1064nm and 532nm are detected. Based on Wavelet Packet Analysisand Smoothed Pseudo Wigner-Ville Distribution (SPWVD), the experiment data istime-frequency analyzed. The experimental results indicate that the amplitude of thelaser-induced acoustic waves increases with the laser energy; the frequency coverage isfrom 0 to 150 KHz, and in the meantime there is a peak located at about 25 KHz. Inaddition, the spectrum and the peak of frequency are basically stable in spite of the changeof laser energy and target texture.
     Based on the cavitation bubble dynamic theory, the relationships between eachcharacteristic parameter are deduced and then an amended cavitation bubble dynamicmodel is provided. Employing the finite difference calculus, the cavitation bubble pulsatingperformance with the change of liquid viscosity, gas content, surface tension and condensability is obtained. In the experiment research, the detailed processes of capitationbubble oscillation property and bubble collapse are gained by the fiber-optical detectionsensor. Furthermore, the influence of the liquid viscosity and laser energy on the bubblepulsation period, bubble radii and energy are analyzed.
     Based on the systematical investigation of cavitation bubble collapse near the solidboundary, the liquid-jet formation threshold is proposed. Meanwhile, the cavitation erosivemechanisms during the first two collapses and the prolongation factor of the collapse timeversus the non-dimensional parameter are discussed and established.
     The results described in this work avoid the harm induced by the laser-induced plasmashock wave and cavitation; what is better, these results provide the theoretical andexperimental reference to rational use of laser-induced plasma shock wave and cavitation,laser processing, laser lithotripsy, laser ophthalmology, and corresponding hydromechanics,etc.
引文
1. Basov N G. Fusion reaction realized by tritium and deuteron [A: Proc 3rd Quantum Electron Conf rC]. Paris 1963:1373-1377
    2.谭维翰.我国近十年来激光与等离子体相互作用的研究.中国激光.1984(11):3-9
    3.赵伊君.强激光与金属的相互作用.全国第二届物理力学会议论文.1986(11)成都
    4. Niemz M H. Laser-Tissue Interactions: Fundamentals and Applications. 1st ed. Germany: Springer-Verlag, 1996
    5. Shaw A. Studies on bubble dynamics. Shock Waves, 1997(7): 33-42
    6. Shaw S J, Schiffers W P, Gentry T P. The interaction of a laser-generated cavity with a solid boundary. J. Acoust. Soc. Am., 2000(107): 3065-3072
    7. Taylor G I. the formation of a blast waves by a very intense explosion, Ⅱ. the atomic explosion of 1945, Ⅱ. Proceedings of the Royal Society, London 1950:A201, 175-186
    8. Sakurai A. Basic developments in fluids dynamics. 1st ed. New York: Academic Press, 1965: 309-375
    9. Von Neumann J. The point source solution. Von Neumann, John. The point source solution. In: Taub, A. H. (ed.). The Collected. Works of John von Neumann, Vol Ⅵ. New York, NY: Pergamon. 1963: 219-237
    10.谢多夫.力学中的相似方法与量纲理论.北京:科学出版社,1982
    11. Bach G G, Lee J H. An analytical solution for blast waves. AIAA. 1970, 8(2): 271-275
    12. Oshima K. Quasisimilar solution of blast waves. Aeronautical Research Institute University of Tokyo Report, 386, 1964
    13. Donald L. Jones. Intermediate Strength Blast Wave. Physics of Fluids, 1968(11): 1664-1667
    14.是长春.相对论流体力学.北京:科学出版社,1992,202
    15.卞保民,陈建平,杨玲,倪晓武,陆建.空气中激光等离子体冲击波的传输特性研究.物理学报,2000(49):445-448
    16.卞保民,杨玲,陈笑,倪晓武.激光等离子体及点爆炸空气冲击波波前运动方程的研究.物理学报.2002,51(4):809-813
    17. Chen X, Bian B M, Shen Z H, Lu J, and Ni X W. Equations of laser-induced plasma shock wave motion in air. Microwave and Optical Technology Letters, 2003(38):75-79
    18. Brode H L. Numerical solutions fro spherical blast waves. J. Appl. Phys., 1955(26): 766-775
    19.马民勋,顾援,王勇刚,激光驱动冲击波的增长与衰减的一维特征线解法.高压物理学报,1988(1):81-86
    20.闫大鹏,苗鹏程,张键,王海林,贺安之,“从流场干涉图定量计算冲击波传播速度和压力”,爆炸与冲击,1993(13):219-224
    21.强希文,张建泉,李邦国,刘峰,朱润合.高功率脉冲激光产生的激波在靶材中的传播.红外与激光工程,2000(29):41-46
    22.王薇,张杰,V. K.Senecha.冲击波在铝靶中传播的数值模拟研究.物理学报,2001(50):741-744
    23. Freeman R A. Variable energy blast waves. British J. Appl. Phys. (J. Appl. Phys. D), ser. 2, 1968(1): 1697-1710
    24. Dabora E K. Variable energy blast waves. AIAA J. 1972(10): 1384-1386
    25. Director M N, Dabora E K. Predictions of variable energy blast waves. AIAA J. 15, 1977
    26. Barenblatt G I, GuirGuis R H, Kamel M M, Kuhl A L, Oppenheim A K, Zel'dovich, Ya B. Self-similar explosion waves of variable energy at front. J. Fluid Mech. 1980(99): 841-858
    27. Bundy M L. A nonsimilar solution for blast waves driven by an asymptotic piston expansion. 1983: ADA130012
    28.李鸿志,高树滋.带膛口装置的膛口流场与冲击波形成机理.华东工学院学报.1979,2
    29.刘晓利.变能量冲击波的研究.南京理工大学硕士论文,1987
    30. Li Z H, Zhang D M, Yu B M, Guan. Characteristics of plasma shock waves generated in the pulsed laser ablation process. Chin. Phys. Letc.(中国物理快报:英文版).2002(192):1841-1843
    31. Raizer Yu P. Heating of a Gas by a Powerful Light Pulse. Soviet Physics JETP, 1965(21): 1009-1017
    32. Raizer Yu P. Heating of a gas under the action of a high-energy light pulse. Zho lksp Teor. Fiz., 1965(48): 1508-1509
    33. Maher W E, Hall R B, Johnson R R. Experimental study of igition and propagation of laser-supported detonation waves. J. Appl. Phys., 1974(45): 2138-2145
    34. Beverly R E, Walters C T. Measurement of CO_2-laser-induced shock pressures above and below LSD-wave thresholds. J. Appl. Phys., 1976(47): 3485-3495
    35. Lowder J E, Pettingill L C. Measurement of CO_2-laser-generated impulse and pressure. Appl. Phys. Lett., 1974(24): 204-220
    36. Kim D, Ye M, Grigoropoulos C P. Plused laser-induced ablation of absorbing liquids and acoustic-transient generation. Applied Physics A: Materials Science & Processing, 2004(67): 169-181
    37. Woodroffe J A, Hsia J, Ballantyne A. Thermal and impulse coupling to an aluminum surface by a pulsed KrF laser. Appl. Phys. Lett. 1980(36): 14-15
    38.顾援,倪元龙,王勇刚.激光驱动高压冲击波的实验观察.物理学报,1988(37):1690-1693
    39.洪昕,王声波,郭大浩,王劫,吴鸿兴,戴宇生,夏小平,谢艳宁.激光冲击波在铝靶中衰减特性研究.量子电子学报,1998(15):474-478
    40. Salzmann D, Gilath I, Arad B. Experimental measurement of the conditions for the planarity of laser-driven shock waves. Appl. Phys. Lett., 1988(52): 1128-1129
    41. O' Keefe J D, Skeen C H. Laser-induced stress-wave and impulse augmentation. Appl. Phys. Lett., 1972(21): 464-466
    42. Radsden S A, Savic P. A radiative detonation model for the development of a laser-induced spark in air. Nature, 1964(203): 1217-1219
    43. Yang L C. Stress waves generated in thin metallic films by a Q-switched ruby laser. J. Applied Phys., 1974(45): 2601-2608
    44.傅思祖,黄秀光,吴江,王瑞荣,马民勋,何钜华,叶君健,顾援.斜入射激光驱动的冲击波在样品中传播特性的实验研究.物理学报,2003(52):1877-1881
    45. Zeng X Z, Mao X L, Mao S S, Wen S B, Greif R, Russo R E. Laser-induced shock wave propagation from ablation in a cavity. Appl. Phys. Lett. 2006(88): 061502
    46. Capel van P J S, Dijkhuis J I. Optical generation and detection of shock waves in sapphire at room temperature. Appl. Phys. Lett. 2006(88): 151910
    47. Harith M A, Palleschi V, Salvetti A, Singh D P, Tropiano G, Vaselli M. Experimental studies on shock wave propagation in laser produced plasmas using double wavelength holography. Opt. Comm., 1989(71): 76-80
    48. Petkovsek R, Mozina J, Mocnik G. Optodynamic characterization of the shock waves after laser-induced breakdown in water. Opt. Express, 2005(13): 4107-4112
    49. Koenig M, Benuzzi-Mounaix A, Philippe F, Faral B, Batani D, Hall T A, Grandjouan N, Nazarov W, Chieze J P, Teyssier R. Laser driven shock wave acceleration experiments using plastic foams. Appl. Phys. Lett., 1999(75): 3026-3028
    50. Lim H, Kim D. Optical diagnostics for particle-cleaning process utilizing laser-induced shock wave. Appl. Phys. A: Mater. Sci. Process A 2004(79): 965-968
    51. Cottet F, Romain J P. Formation and decay of laser-generated shock waves. Phys. Rev. A, 1982(25): 576-579
    52. Harith M A, Palleschl V, Salvetti A, Singh D P, Vaseili M. Dynamics of laser-driven shock waves in water. J. Appl. Phys., 1989(66): 5194-5197
    53. Chumakov A M, Petrenko A M, Bosak N A. Dynamics of a shock wave in laser-induced surface air breakdown. Journal of Engineering Physics and Thermophysics, 2002(75): 725-731
    54. Steiner H, Gretler W. The propagation of spherical and cylindrical shock waves in real gases. Phys. Fluids, 1994(6): 2154-2164
    55. Fujimoto J G, Lin W Z, Ippen E P, Puliafito C A, Steinert R E Time-resloved studies ofNd: YAG laser-induced breakdown. Invest. Ophthalmol. Vis. Sci., 1985(26): 1771-1777
    56. Stephen A. Shielding effectiveness of femtosecond laser-induced plasmas in ultrapure water. SPIE, 1993(1882): 1321-1324
    57. Vogel A, Noack J. Energy balance of optical breakdown in water at nanosecond to femtosecond time scales. Appl. Phys. B, 1999(68): 271-280
    58. Schoeffmann H, Schmidt-Kloiber H, Reichel E. Time-resolved investigations of laser-idnuced shock waves in water by use of polyvinylidenefluoride hydrophones. J. Appl. Phys., 1988(63): 46-51
    59. Vogel A, Lauterborn W, Timm R. Optical and acoustic investigations of the dynamics of laser-produced cavitation bubbles near a solid boundary. J. Fluid Mech. 1989(206): 299-338
    60.卞保民,陈笑,夏铭,杨玲,沈中华.液体中激光等离子体冲击波波前传播特性研究及测试.物理学报.2004(53):508-513
    61. Diaci J, Mozina J. Investigation of blast waves generated by laser induced damage processes. Optics Communications, 1992(90): 73-78
    62. Guo H P, Lou Q H, Chen S C, Cheung N H, Wang Z Y, Lin P K. Beam-deflection study of shock wave formation and propagation in gas ambient during uv laser ablation of solid material. Opt. Comm., 1993(98): 220-224
    63. Jeong S H, Greif R, Russo R E. Propagation of the shock wave generated from excimer laser heating of aluminum targets in comparison with ideal blast wave theory. Applied Surface Science. 1998(127-129): 1029-1034
    64. Doukas A G, Zweig A D, Frisoli J K, Birngruber R, Deutsch T F. Non-invasive determination of shock wave pressure generated by optical breakdown. Applied Physics B, 1991 (53): 237-245
    65. Chen J P, Ni X W, Lu J, Bian B M, Wang Y W. Laser-induced plasma shock wave and cavity on metal surface underwater. Microwave and Optical Technology Letter. 2000(25): 307-311
    66. Hinsch K, Brinkmeyer E. Investigation of very short cavitation shock waves by coherent optical method. Proc. SPIE. 1976(97): 166-171
    67. Gidon S, Behar G. Instantaneous velocity field measurements: application to shock wave studies. Applied Optics, 1986(25): 1429-1433
    68. Ni X W, Lu J, He A Z. Interferometeric diagnosis of laser-produced plasma on an aluminum target. Micro. & Opt. Tech. Lett., 1997(14): 271-274
    69. Schiffers W P, Shaw S J, Emmony D C. Acoustical and optical tracking of the collapse of a laser-generated cavitation bubble near a solid boundary. Ultrasonics, 1998(36): 559-563
    70. Shaw S J, Schiffers W P, Emmony D C. Experimental observations of the stress experienced by a solid surface when a laser-created bubble oscillates in its vicinity. J. Acoust. Soc. Am., 2001 (110): 1822-1827
    71. Gatti M, Palleschi V, Salvetti A, Singh D P, Vaselli M. Spherical shock waves in laser produced plasmas in gas. Optics Communications, 1988(69): 141-146
    72. Lackner M, Charareh S, Winter F, Iskra K F, Rtidisser D, Neger T. Investigation of the early stages in laser-induced ignition by Schlieren photography and laser-induced fluorescence spectroscopy. Opt. Express, 2004(12): 4546-4557
    73. Noack J, Vogel A. Single-shot spatially resolved characterization of laser-induced shock waves in water. Applied Optics. 1998(37): 4092-4099
    74. Giulietti A, Vaselli M, Giammanco F. Shadowgraphic detection of spherical implosive shock fronts produced by laser pulses. Optics Communications, 1980(33): 257-261
    75. Fairand B P, Wilcox B A, Gallagher W J, Williams D N. Laser shock-induced microstructural and mechanical property changes in 7075 aluminum. J. Applied Physics, 1972(43): 3893-3895
    76. Fairand B P, Clauer A H.Use of laser generated shocks to improve the properties of metals and alloys. SPIE, 1976(86): 112-119
    77.杜金波,李秀华.激光感应冲击波碎石.激光与红外,1993(23):24-28
    78. Lee J M, Watkins K G. Removal of small particles on silicon wafer by laser-induced airbome plasma shock waves. J. Appl. Phys., 2001(89): 6496-6500
    79. Lee S H, Park J G, Lee J M, Cho S H, Cho H K. Laser Shock Removal of Nanoparticles from Si Capping Layer of Extreme Ultraviolet Lithography Masks, Surf. Coat. Technol., 2003(169-170): 178-182
    80. Kim T, Lee J M, Cho S H, Kim T H. Acoustic emission monitoring during laser shock cleaning of silicon wafers. Optics and Lasers in Engineering, 2005(43): 1010-1020
    81.毕廷,龚自正.冲击波物理在地球和行星科学研究中的应用,地球科学进展,1997(12):399-402
    82. Ahrens T J. Application of shock compression science to earth and planetary physics. In: S. C. Schmidt ed. Proc 1995 APS Topical Conf. On shock compression of Condensed Matter, Published by American Institute of Physics, New York: Woodbury, 1996, 1-4
    83. Historie de I' Academie royale des sciences et belles letters, T. 10, Berlin, 1756
    84. Wargan W B. Cavitation effects on marine devices. Trans. Of the ASME, 91(5), 1969
    85. A C. Pyce A A. Kae, 1972
    86.中国大百科全书,力学卷,“空化”条,中国大百科全书出版社,1985
    87. Shaw S J, Jin Y H, Schiffers W P, Emmony D C. The interaction of a single laser-generated cavity in water with a solid surface. J. Acoust. Soc. Am., 1996(99): 2811-2824
    
    88. Besant WH. Hydrostatics and Hydrodynamics. Deighton, Bell, London, 1859, 158-170
    
    89. Rayleigh Lord. On the pressure developed in liquid during the collapse of a spherical cavity. Philos. Mag. 1917(34): 94-98
    
    90. Plesset M S. The dynamics of cavitation bubbles. J. Appl. Mech., 1949(16): 227-290
    
    91. Herring C. Theory of the pulsation of the gas bubble produced by an underwater explosion. Columbia University. NDRC, C-4-srl0-010, 1941
    
    92. Leon Trilling. The collapse and rebound of a gas bubble. J. Appl. Phys., 1952(23): 14-17
    
    93. Gilmore F R. The growth and collapse of a spherical bubble in a viscous compression liquid. Hydro Lab Calif Inet Tech Report, 1952: 26-41
    
    94. Mellen R H. An experimental study of the collapse of a spherical cavity in water. USL Res. Rep.279, U.S. Naval Underwater Sound Lab. New London, 1956
    
    95. Flynn H G. Collapse of a transient cavity in a compressible liquid part1, an approximate solution. Harvard Acoustic Res. Lab. TM-38, 1957
    
    96. Benjamin T B. Pressure waves from collapsing cavities. Proc. Second Symp. On Naval Hydrodyn, Washington D.C. ONR/ACR-38, 1958
    
    97. Noltingk B K, Neppiras E A. Cavitation produced by ultrasonics. Proc. Phys. Soc. London B 1950(63): 674-685
    
    98. Hicklign R, Plesset M S. Collapse and rebound of a spherical bubble in water. Phys. Fluids, 1964(7): 7-14
    
    99. Prosperetti A, Lezzi A. Bubble dynamics in a compressible liquid, Part 1, First-order theory . J. Fluid Mech., 1986(168): 457-478
    
    100. Prosperetti A, Lezzi A. Bubble dynamics in a compressible liquid, Part 1, Second-order theory. J. Fluid Mech., 1987(185): 289-321
    
    101. Hunter C. On the collapse of an empty cavity in water. J. Fluid Mech., 1960(8): 241-245
    
    102. Tomita Y, Shima A. On the behavior of a spherical bubble and the impulse pressure in a viscous compressive liquid. Bulletin of the JSME, 1981(20-149): 1453-1460
    
    103.Lastwan G J, Wentzell R A. Equations of radial motion of a cavitating spherical bubble in an inviscid compressive liquid with variable speed of sound. Acustica, 1981(49): 120-123
    
    104. Chong H C, Chen L H. Growth of gas bubble in a viscous fluid. Phys. Fluids, 1986(29): 3530-3536
    
    105. Poritsky H. The collapse or growth a spherical bubble or cavity in a viscous fluid. Proc, First Nat. Cong, in Appl. Mech., 1952: 813-821
    
    106. Ivany T D, Hammit F G. Cavitation bubble collapse in viscous, compressible liquids-numerical analysis. Trans. ASME, 87, Ser. D, Jr. Basic Engineering, 1965:977-985
    107. Plesset M S, Prosperetti A. Bubble dynamics and cavitation. Ann. Rev. Fluid Mech., 1977(9): 145-185
    108. Boguslavskii Y Y, Loffe A I, Naugol'nykh K A. Sound radiation by a cavitation zone. Sov. Phy.-Acoustics, 1970(16): 17-20
    109. Yasui K. Effects Thermal Conduction on Bubble Dynamic near the Somolumince Threshold. J. Acoust. Soc. Am., 1995(98): 2772-2782
    110. Sochard S, Wilhelm A M, Delmas H. Modelling of free radicals production in a collapsing gas-vapour bubble. Ultrasonics, 1997(4): 77-84
    111. Akhatov I, Lindau O, Topolnikov A, Mettin R, Vakhitova N, Lauterborn W. Collapse and rebound of a laser-induced cavitation bubble. Phys. Fluids, 2001(13): 2805-2819
    112.赵健,汪鸿振,朱物华.可压缩性流体中球形泡壁运动的研究.上海交通大学学报,1989(23):91-94
    113. Minnaert M. On musical air-bubble and the sound of running water. Philosophical Magazine, 1933(16): 235-248
    114. Plesset M S, Hisch D Y. Theory of gas bubble dynamics in oscillating pressure fields. The Physics of Fluids, 1960(3): 882-890
    115. Prosperetti A. Thermal effects and damping mechanisms in the forced radial oscillating of gas bubbles in liquids. J.A.S.A., 61(1), 1977
    116. Devin C. Survey of thermal radiation and viscous damping of pulsating air bubbles in water. J. A.S. A., 1959(31): 1654-1667
    117. Neppiras E A, Finch R D. Acoustic cavitation in Helium, Nitrogen, and water at 10KHz. J.A.S. A., 1972(52): 335-343
    118. Akulichev V A. Acoustic cavitation cryogenic liquids. Soy. Phys. Acoust., 1974(20): 94-95
    119. Shestakov V D, Tkachev L G. Influence of ultrasound on the dynamics ofa napor bubble in liquid hydrogen. Soy. Phys. Acoust., 1973(19): 169-172
    120. Shestakov V D, Tkachev L G. Self-Similarity in the vapor bubble dynamics. Int. J. Heat mass Transfer, 1975(18): 685-687
    121. Finch R D, Neppiras E A. Vapor bubble dynamics, J. A. S. A., 1973(53): 1402-1410
    122. Wang T. Recitied heat transfer. J. A. S. A., 1974(56): 1131-1143
    123. Noltingk B K, Neppiras E A. Cavitation produced by ultrasonics: Theoretical conditions for the onset of cavitation, Proc. Phys. Soc. London B Sect. B64, 1951:1032-1038
    124. Lauterborn W. Numerical investigation of nonlinear oscillations of gas bubbles in liquids. J. A. S. A., 1976(59): 283-293
    125. Feng Z C, Leal L G. Nonlinear bubble dynamics. Annul Rev. Fluid Mech., 1997(29): 201-243
    126. Crum L A, Prosperetti A. Nonlinear oscillations of gas bubbles in liquids: an interpretations of some experimental results. J. A. S.A., 1983(73): 121-127
    127. Prosperetti A. The equation of bubble dynamics in a compressible liquid. Phys. Fluids, 1987(30): 3626-3628
    128. Prosperetti A, Crum L A, Commander K W. Nonlinear bubble dynamics. J. A. S. A., 1988(83): 502-514
    129. Kang L S, Leal L G. Numerical solution of axisymmetric, unsteady free-boundary problems at finite Reynolds number Ⅱ: Deformation of a bubble in a biaxial straining flow. Phys. Fluids A1, 1987:649-660
    130. Wijngaarden Van L. On the collective collapse of large number of gas bubbles in water. Proceedings of 11th international congress of applied mechanics, Germany, 1964:854-861
    131. Arakeri V H, Shanmuganatha V. On the evidence for the effect of bubble interference on caviation noise. J. Fluid Mech., 1985(159): 131-150
    132. Shima A. The nature frequencies of two spherical bubble oscillating in water. Trans. ASME, J. Basic Eng., 1971 (93): 426-432
    133. Morch K A. On the collapse of cavity clusters in flow cavitation. Cavitation and Inhomogeneities in Underwater Acoustics, edited by W. Lanterborn, Springer, New York, 4, 1980: 95-100
    134. Morch K A. Energy considerations in the collapse of cavity clusters. Applied Sci. Res., 1982(38): 313-321
    135. Fujikawa S, Takahira H. Theoretical study on the interaction between two spherical bubbles and radiated pressure waves in a liquid. Acustica, 1986(61): 188-199
    136.梁柱,戴勇峰,程良骏.双球泡在固液两相流中的溃灭研究.水动力学研究与进展,4,1997
    137. Omta R. Oscillations of a cloud of bubbles of small and not so small amplitude. J. A. S. A., 1987(82): 1018-1033
    138. d'Agostino L, Brennen C E. Linear dynamics of spherical bubble clouds. J. Fluid Mech., 1989(199): 155-176
    139. Smereka P, Banerjee S. The dynamics of periodically driven bubble clouds physics of fluids, 1988(31): 3519-3531
    140. Kumar S, Brennen C E. Nonlinear effects in the dynamics of clouds of bubbles. J. A. S. A., 1991(89): 707-714
    141. Kumar S, Brennen C E. Some nonlinear interactive effects in bubbly cavitation clouds. J. Fluid Mech., 1993(253): 565-591
    142. Takahira H, Akmatsu T, Fujikama S. Dynamics of a cluster of bubbles in a liquid. JSME, Int. J. Series B, 1994(37): 297-305
    
    143. Hiroyuki Takahira. Thermal effects of internal gas on the oscillating of a cluster of bubbles. JSME, Int. J. Series B, 1977(40): 230-239
    
    144. Esche R. Untersuchungen zur ultrachallabsorption in tierischen geweben und kunsttoffen. Acustica, 1952(2): 71-74
    
    145. Hall P, Seminara G. Nonlinear oscillating of non-spherical cavitation bubbles in acoustic fields. J. Fluid Mech., 1980(101): 423-449
    
    146. Lauterborn W, Suchla E. Bifurcation superstructure in a model of acoustic turbulence. Phys. Rev. Lett., 1984(53): 2304-2307
    
    147. Parlitz V, Englisch V, Scheffczyk C, Lauterborn W. Bifurcation structure of bubble oscillators. J. A. S.A., 1990(88): 1061-1077
    
    148. Feng Z C, Leal L G. Bifurcation and chaos in shape and volume oscillation of a periodically driven bubble with two-to one internal resonance. J. Fluid Mech., 1994(266): 209-242
    
    149. Birnir B, Smereka P. Existence theory and invariant manifolds of bubble clouds. Comm. Pur. Appl. Math., 1994(43): 209-242
    
    150. Wang Y C, Bremen C E. Shock wave development on the collapse of a colud of bubbles. ASME Cavitation and Multiphase flow Forum, O. Furuya, and J. Katz Eds., FED 1994(194): 15-19
    
    151. Reisman G E, Wang Y C, Brennen C E. Observations of shock waves in cloud cavitatin. J. Fluid Mech., 1998(355): 255-283
    
    152. Wang Y C, Brennen C E. Numerical computation of shock waves in a spherical cloud of cavitation bubbles. Trans. ASME J. Fluid Eng., 1999(121): 872-880
    
    153. Voinov O V, Voinov V V. Numerical method calculating non-stationary motions of an ideal incompressible fluid with free surfaces. Sov. Phys. Dokl. 1975(20): 179-180
    
    154. Prosperetti A. Bubble dynamics: a review and some recent results. Appl. Sci. Res. 1982(38): 145-164
    
    155. Blake J R, Taib B B, Doherty G. Transient cavities near boundaries. Part I . Rigid boundary. J. Fluid Mech. 1986(170): 479-497
    
    156. Rogers J C W, Szymczak W G, Berger A E, Solomon J M. Numerical solution of hydrodynamic free boundary problems. IntlSeric. Numer. Maths. 1990(95): 241-266
    
    157. Szymczak W G, Rogers J C W, Solomon J M, Berger A E. A numerical algorithm for hydrodynamic free boundary problems. J. Fluid Mech., 1993(169): 535-564
    
    158. Lundgren T S, Mansour N N. Vortex ring bubbles. J. Fluid Mech., 1991(224): 177-190
    
    159. Best J. The formation of tororidal bubbles upon the collapse of transient cavities. J. Fluid Mech., 1993(225): 79-107
    160. Zhang D H. On the non-spherical collapse and rebound of a cavitation bubble. J. Fluid Mech., 1994(266): 181-200
    161. Zhen Y. A note on nonlinear radiation from a gas bubble in liquids. J. Acoust. Soc. Am. 1997(101): 809-812
    162.蔡悦斌.无粘性流体中瞬态泡的成长及溃灭.上海交通大学硕士论文,1995
    163.蔡悦斌,鲁传敬,何友声.瞬态空化泡的成长与溃灭.水动力学研究与进展,1995(10):653-660
    164.鲁传敬,Proseretti A.缓变主流中三维气泡的非线性振动.力学学报.1996(28):270-280
    165.戚定满,鲁传敬.空泡噪声的数值研究.水动力学研究与进展A.2001,16(1):9-17
    166. Kling C L, Hammitt F G. A photographic study of spark-induced cavitation bubble collapse. J. Basic Eng., 1972:825-833
    167. Lauterbom W. High-speed photography of laser-induced breakdown in liquids. Appl. Phys. Left., 1972(21): 27-29
    168. Shima A, Takayama K, Tomita Y. Mechanisms of the Bubble collapse near a solid Wall and the induced Impact Pressure Generation. Rep. Inst, High Speed Mech., Tohoku Univ., vol.48, 1984
    169. Vogel A, Lauterborn W. Time-resolved particle image velocimetry used in the investigation of cavitation bubble dynamics. Appl. Optics., 1988(27): 1869-1876
    170. Tomita Y, Shima A. Mechanisms of impulsive pressure generation and damage pit formation by bubble collapse. J. Fluid. Mech., 1986(169): 535-564
    171. Ward B, Emmony D C. Direct observation of the pressure developed in a liquid during cavitation-bubble collapse. Appl. Phys. Lett., 1991(59): 2228-2230
    172. Vogel A, Busch S, Parlitz U, Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water. J. Acoust. Soc. Am., 1996(100): 148-165
    173. Vogel A, Lauterborn W. Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries. J. Acoust. Soc. Am., 1988(84): 719-731
    174. Philipp A, Lauterborn W. Cavitation erosion by single-laser produced bubbles. J. Fluid Mech., 1998(361): 75-116
    175. Barber B P, Putterman S J. Light scattering measurements of the repetitive supersonic implosion of a sonoluminescing bubble. Phys. Rev. Lett., 1993(69): 3839-3842
    176. Weninger K R, Barber B P, Putterman S J. Pulsed Mie scattering measurements of the collapse of a sonoluminescing bubble. Phys. Rev. Lett., 1997(78): 1799-1802
    177. Harrison M. An Experimental Study of Single Bubble Cavitation Noise. Journal of the Acoustical Society of America, 1952(28): 776-782
    178. Guth W. Kinematographische Aufnahmen von Wasserdampfblasen. Acustica, 1954(4): 445-455
    179. Fitzpatrick H M, Strasberg M. Hydrodynamic sources of sound. Proc. First ONR Symp. On Naval Hydrodynamics, 1956:241-280
    
    180. Mellen R H. Ultrasonic spectrum of cavitation noise in water. J. A. S. A., 1954(26): 356-360
    
    181. Hinsch K, Brinkmeyer E. Investigation of very short cavitation shock waves by coherent optical methods. SPIE, 1994(97): 116-117
    
    182. Ebeling K J, Verhalten Kugelformiger Zum. Laserezeugter, Kavitatino Sblasen in wasser. Acustica, 1978:511-517
    
    183.Naude C F, Ellis A T. On the mechanisms of cavitation damage by nonhemispherical cavities collapsing in contact with a solid boundary. J. Basic Engng, Trans. ASMED, 1961(83): 648-656
    
    184. Sanada N I, Takayama K. Interaction of an air bubble with a shock wave generated by a micro-explosion in water. Proceeding of the International Symp on Cavitation Edited by H. Murai, Japan, 1986: 67-72
    
    185. Jorgensen D W. Noise from cavitating submerged jets. J. Acoust. Soc. Am., 1961(33): 1334-1338
    
    186. Ceccio S L, Brennen C E. Observation of the dynamics and acoustics of traveling bubble cavitation. J. Fluid Mech., 1991(233): 633-660
    
    187. Blake W E, Wolpert M J, Geib F E. Cavitation noise and inception as influenced by boundary-layer development on a hydrofoil. J. Fluid Mech.,1977( 80): 617-640
    
    188. Nienaltowska E. Noise emission of cavitating hydrofoils. Cavitation and Multiphase flow forum, 1984:30-33
    
    189. Frankin R E, McMillan J. Noise generation in cavitating flows: The Submerged Jet. JSME, J. Fluids Eng., 1984(106): 336-341
    
    190. Erdmann H, Hermann D, Norsback M, Quinkert R, Sudholf H. Investigation of the production of noise by the propeller particularly with regard to the combined acoustic problem-work segments II and III, Battle Institute. E. V. Frankfurt Am. Main, 30, 1969
    
    191. Longuet-Higgins M S. Monopole emission of sound by asymmetric bubble oscillations, Part I : Normal modes. J. Fluid Mech., 1989(201): 525-541
    
    192. Strasbery M. Gas bubble as sources of sound in liquids. J. A. S. A., 1956(28): 20-26
    193.D'Agostino L, Brennen C E. Acoustical absorption and scattering cross sections of spherical bubble clouds. J. A. S. A., 1988(84): 2126-2133
    
    194. Prosperetti A, Lu N Q, Kim H S. Active and Passive acoustic behavior of bubble clouds at the ocean's surface. J. A. S. A., 1993(93): 3117-3127
    
    195. Carey W M, Fitzgerald J W, Monahan E C, Wang Q. Measurements of the sound produced by a tipping through with fresh and salt water. J. A. S. A., 1993(93): 3178-3192
    
    196. Kolaini Ali R, Roy Ronald A, Garder David L. Low-frequency acoustic emission in fresh and a salt water. J. A. S. A., 1994(96): 1766-1772]
    197. Kornfeld M, Suvarov L. On the destructive action of cavitation. J. App. Phys., 1944(15): 495-506 198.Rattray M. Perturbation effects on cavitation bubble dynamics. Ph. D. thesis, Cali. Inst. of Tech. Pesadena Calif. 1951
    199. Benjamin T B, Ellis A T. The collapse of cavitation bubbles and the pressures thereby produced against solid boundaries. Phil. Tran. A., 1966(260): 221-240
    200. Gibson D C. Cavitation adjacent to plane boundaries. Proc. Aust. Conf. Hydraul. Fluid Mech. 3~(rd) 210-214 Sydney: Inst. Eng
    201. Plesset M S, Chapman R B. Collapse of an initial spherical vapor cavity in the neighborhood of a solid boundary. J. Fluid Mech., 1971(47): 283-290
    202. Mitchell T M, Hammitt F G. Asymmetric cavitation bubble collapse. J. Fluids Engng, Trans. ASME. 1973(95): 29-37
    203. Shima A, Sato Y. The collapse of a spherical bubble near a solid wall. J. Mec, 1981(20): 253-271
    204. Hsieh D Y. On the dynamics of nonspherical bubbles. J. Basic Eng., 1972(942):655-665
    205. Bevir M K, Fielding P J. Numerical solution of incompressible bubble collapse with jetting in moving boundary problems in heat flow and diffusion. J. Fluids Mech., 1974(251): 79-107
    206. Nakajima K, Shima A. Analysis of the behavior of a bubble in a viscous incompressible liquid by finite element method. Archive of Applied Mechanics(Ingenieur Archiv), 1977(46): 21-34
    207. Shima A. The behavior of a spherical bubble in the vicinity of a solid wall. J Basic Eng., 1968(90): 75-89
    208. Hsieh D Y. Variation method and dynamic of non-spherical bubbles and liquid drops. Firut-Amplitude Wave Effects in Fluids, Proceedings of the 1973 Symposium, Copenhagen, 1974
    209. Bevor M K, Fielding P J. Numerical solution of incompressible bubble collapse with jetting in moving boundary problems in heat flow and diffusion, Clarendon Press, 1974
    210. Lauterborn W, Kavitation durch laserlicht, Acustica, 1974a(31): 51-78
    211. Lauterborn W. General and basic aspects of cavitation.In Proc 1973 Symp Finit-Amplitude Wave Effects in Fluids, Copenhagen (ed. L.Bjφmφ), 1974b: 195-202
    212. Lauterbom W, Bolle H. Experimental investigations of cavitation-bubble in the neighborhood of a solid boundary, J Fluid Mech., 1975(72): 391-399
    213. Ellis A T, Starrett J E. A Study of cavitation bubble dynamics and resultant- pressures on adjacent solid boundaries. Proc 2nd Int Conf on Cavitation, Edinburgh, 1983(68): 1-6, IMechE Publications
    214. Dear J P, Field J E. A study of the collapse of arrays of cavities. J. Fluid Mech., 1988(190): 409-425
    215.Kocera A, Blake J R. Computional modelling of cavitaion bubbles near boundaries in computational techniques and applications. CATC-83 Ced Noycc, J & Hetcher, North-Holland, 1988 C: 391-400
    216. Hammitt F G. Cavitation and Multiphase flow phenomena. McGraw-Hill International Book Company, 1980
    217. Tong R P, Schiffers W R Shaw S J, Blake J R, Emmony D C. The role of 'splash' in the collapse of a laser-generated cavity near a rigid boundary. J. Fluid Mech., 1999(380): 339-361
    218. Brujan E A, Keen G S, Vogel A, Blake J R. The final stage of the collapse of a cavitation bubble close to a rigid boundary. Phys. of Fluids, 2002(14): 85-92
    219. Lindau O, Lauterborn W. Cinematographic observation of the collapse and rebound of laser-produced cavitation bubble near a wall. J. Fluid Mech., 2003(479): 327-348
    220.段志勇.激光冲击波及激光冲击处理技术的研究.中国科学技术大学硕士学位论文,2000
    221.鲍姆.X.A.等著.爆炸物理学.科学出版社,1963
    222.泽尔道维奇.莱依捷尔.激波和高温流体动力学现象物理学.科学出版社,1980
    223.李维新.一维不定常流与冲击波.国防工业出版社,2003
    224.钱祖文.非线性声学.科学出版社,1992
    225.张守中,汪令雨,苗瑞生编.爆炸与冲击动力学.兵器工业出版社,1993
    226.陆建,倪晓武,贺安之.激光与材料相互作用物理学.第1版.北京:机械工业出版社,1996
    227. Bar-Ziv E, Sgulim S, Kafri O, Keren E. Temperature mapping in flames by Morie deflectometry. Appl. Opt., 1983(22): 698-705
    228. Lu H S, Zeng X W. Hydromechanics and Blast Mechanics.National university of defense Technology press, 1999, 122
    229. Cooper P W. Explosives Engineering. VCH Publisher IR. 1996, 189
    230. Attenborough K, Qin Q. Aspects of laser-generated acoustic shock waves in air, Lasers for Science Facility Programme-Physics. Central Laser Facility Annual Report 2002/2003, 159-161
    231. Koren G. Observation of shock waves and cooling waves in the laser ablation ofkapton films in air. Appl. Phys. Lett., 1987(51): 569-571
    232.傅思祖,顾援等.超高压状态方程中激光驱动冲击波稳定性.物理学报.1995(44):1108-1112
    233. Berthe L, Fabbro R. Shock wave from a water-confined laser-generated plasma. J. Appl. Phys., 1997(82): 2826-2832
    234. Caruso A. Laser-generated weak shock wave propagation dynamics in the solids. SPIE, 2001(4424): 508-511
    235.卞保民,侯枫,陈建平.激光等离子体空气冲击波波前参量的测定及研究.中国激光,2001(28):154-158
    236.李翼祺,马素贞.爆炸力学.北京:科学出版社,1992,67-73
    237. Trainor R J, Lee Y T, Analytic models for design of laser-generated shock-wave experiments, Phys. Fluids, 1982, 25(10): 1898-1907
    238.袁钢,周光泉,唐志平.高压脉冲激光的传播及衰减.爆炸与冲击,1992(12):307-312]
    239. Paul Harris, Henri Noel Presles, Reflectivity of a 5.8 kbar shock front in water. The Journal of Chemical Physics, 1981(74): 6864-6866
    240.于全芝,李玉同,张杰.超短超强激光与液体的相互作用研究.物理,2003(32):585-589
    241. Cohen L. Time-Frequency Distribution-A Review. Proc. IEEE, 1989(77): 941-981
    242. William C Knight, Roger G Pridham, Steven M Kay. Digital Signal Processing for Sonar. Proceeding of IEEE, 1981 (69): 1451-1506
    243. Chang S H, Liu J C, Chiu C W. Applying time-frequency distribution function Of mobile active sensor. Journal of Marine Science and Technology, 2001(9): 161-166
    244.胡昌华,周涛,夏启兵.基于MATLAB的系统分析与设计—时频分析.西安电子科技大学出版社,2001
    245.张海平,何世平.伪魏格纳分布和连续小拨变换在变速箱故障诊断中的应用.解放军理工大学学报,2001(2):77-81
    246.崔锦泰著.程正兴译.小波分析导论.西安交通大学出版社,1995
    247. Hinsch K, Brinkmeyer E. Investigation of Very Short Cavitation Shock Waves by Coherent Optical Methods. SPIE 1994(97): 116-171
    248.黄继汤.空化与空蚀的原理及应用.第一版.北京:清华大学出版社,1991
    249. Ohl C D, Kurz T, Geislier R, Lindau O. Bubble dynamics, shock wave and sonoluminesence. Phil.Trans.R.Soc.Lond.A, 1999(357): 269-294
    250. Chen X, Xu R Q, Shen Z H, Lu J, Ni X W. Experimental investigation of the impact to nearby solid boundary during laser-generated bubble collapse. Chinese physics, 2004(13): 505-509
    251.戚定满,鲁传敬,何友声.单空泡溃灭辐射噪声的实验研究.声学学报,1988(25):532-536
    252. Godwin R P, Chapyak E J, Noack J, Vogel A. Aspherical bubble dynamics and oscillation times. SPIE, 1999(3601): 225-236
    253. Popinet S, Zaleski S. Bubble collapse near a solid boundary: a numerical study of the influence of viscosity. J. Fluid Mech., 2002(464): 137-163
    254. Brujan E A, Nahen K, Schmidt P, Vogel A. Dynamics of laser-induced cavitation bubbles near an elastic boundary. J. Fluid Mech., 2001 (433): 251-281
    255. Xu R Q, Chen X, Shen Z H, Lu J, Ni X W. A fiber-optical diagnostic technique for mechanical detection of the laser-metal interaction underwater. Phys. Fluid, 2004(16): 1-4
    256. Vogel A, Lauterborn W. Acoustic transient generation by laser-produced cavitation bubbles near solid boundaries. J. Acoust. Soc. Am., 1988(84): 719-732
    257.徐荣青,陈笑,陈建平,沈中华,陆建,倪晓武.激光烧蚀水下金属产生冲击波和空泡效应的研究.光学学报,2004(24):1643-1648
    258. Vogel A, Noack J. Shock wave energy and acoustic energy dissipation after laser-induced breakdown. SPIE, 1998(3254): 180-189
    259.张秀丽.空蚀损伤过程中电偶作用机制的设想及验证.北京科技大学博士论文,2000
    260.Knapp R T, Daily J W, Hammitt F G Cavitation, Mc-Graw Hill Book Co.,1970中译本“空化与空蚀”,水利水电科学研究院译.水利出版社,1981
    261. Plesset M S, Chapman R B. Collapse of a Vapor Cavity in the Neighborhood of a Solidwall, Calif. Inst ofTech. Div. of Engr. and Appl. Sci., Rep. 85-48, 1969
    262. Mitchell T M, Hammitt F G. Collapse of a spherical bubble in a pressure gradient, ASME, Cavitation form, 1970
    263. Bruton J H. Cavitation damage. Proc. Third Inter. Congre. On Rain Erosion, Me. Ersburg, Germany, 1970
    264. Kodama T, Tomita Y. Cavitation bubble behavior and bubble-shock wave interaction near a gelation surface as a study of in vivo bubble dynamics. Appl. Phys. B, 2000(70): 139-149

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700