控水施钙对温室番茄水分、养分生理和果实品质的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
淡水资源短缺是限制农业生产的主要因素,在我国的一些干旱与半干旱地区这一问题尤为突出,如何提高灌溉水利用效率,使每一滴水生产出更多更好的粮食,是保证我国粮食安全和食品质量的有效途径。本论文以温室盆栽番茄(Solanum lycopersicum L.)为试验材料,在开花/初果到果实成熟期实施非充分灌溉(分根区交替灌溉和常规亏缺灌溉,以下用PRD和DI表示)和三个施Ca水平处理(即每千克土壤施用0、100和200毫克钙,以下分别用Ca0、Ca1和Ca2表示),探讨不同施肥与灌溉处理及它们的交互作用如何影响叶片和根系的生长,叶片水分关系特性,干物质重,植株不同器官N、P、C含量,~(15)N、~(13)C自然同位素丰度和植物N、P利用效率;叶片和根系水分状况,气孔导度,木质部汁液脱落酸和离子浓度,果实、叶、茎和根中K、Ca、Mg含量及其在各器官中的分配,果实蒂腐病发生率;果实硬度,果实干物质含量,果汁pH,TSS含量,果汁中还原糖、有机酸以及矿物质含量。具体结果如下:
     (1)研究了三个施Ca水平下,非充分灌溉制度(PRD和DI)对番茄叶水势,作物生长,植株不同器官N、P、C含量,~(15)N、~(13)C自然同位素丰度(~(15)N和~(13)C)及植物N、P利用效率的影响。与DI相比,PRD维持了更好的叶片水分状况。不考虑两种灌溉处理,与Ca0和Ca1比较,Ca2植物的叶渗透势显著更高,但叶片膨压显著更低。在Ca1和Ca2水平下,PRD显著提高了叶片伸长生长。PRD和DI处理的根长和根表面积相同;比较三个施Ca处理,Ca1最大,Ca2其次,Ca0最小。灌溉和施Ca处理不影响作物地上部分的干重,但Ca1和Ca2的根干重显著高于Ca0。植物中的N、P含量不受任何处理影响,只有根中的P含量随着施Ca水平的增加而减少。PRD处理的叶C含量显著高于DI处理,而茎中C含量与这相反。根和果实中的C含量不受灌溉影响,但受施Ca水平显著影响。研究发现,在番茄茎和果实中,PRD比DI植株有稍高的~(15)N。施Ca处理对叶和茎~(15)N没有影响,但显著影响了根和果实中的~(15)N,即Ca1与Ca2处理的~(15)N显著高于Ca0处理。另外,在叶片和果实中~(15)N显著高于茎和根中。在番茄叶片中,与DI处理相比,PRD显著降低了叶片~(13)C;但在果实中,PRD有提高果实~(13)C的趋势。施Ca水平以及灌溉与施Ca水平交互作用对番茄各器官中~(13)C没有影响。值得注意的是叶片中~(13)C比其它器官中~(13)C更低。植物N、P利用效率不受任何处理的影响。本研究结果表明,和DI相比,PRD更好地维持植物水分状况和叶片的伸长生长,但这些影响没有提高植物干重,N、P积累,水分和N、P利用效率。
     (2)研究了三个施Ca水平下,非充分灌溉制度(PRD和DI)对番茄蒂腐病(Blossom-End Rot,简称BER)发生率的影响。结果表明,BER发生率不受施Ca水平影响,但受灌溉处理影响显著。与DI相比,PRD显著降低了BER的发生率,这与PRD处理下较高的果实Ca含量相关。相对于DI植株,PRD处理的植株中木质部脱落酸(AbscisicAcid,简称ABA)浓度更高,气孔导度更低,植株水分状况维持在较高水平,这些都可能导致果实中Ca含量的增加,从而降低了BER的发生。另外,果实中的Mg:Ca比和K:Ca比与BER发生率呈正相关关系,表明除Ca含量外,果实中的Mg:Ca比和K:Ca比对BER的发生也有显著影响。
     (3)研究了三个施Ca水平下,非充分灌溉制度(PRD和DI)处理对番茄果实品质的影响。结果表明,灌溉和施Ca处理对番茄产量、植物用水量、水分利用效率(Water UseEfficiency,简称WUE)、果实数量和果实大小没有显著的影响。然而,与DI处理相比,PRD显著增加了果汁中的总可溶性固形物(Total Soluble Solid,简称TSS)、还原糖(葡萄糖和果糖)、有机酸(柠檬酸和苹果酸)及矿物质(P、K和Mg)含量。尤其是在Ca2下,增加幅度更为明显。而果汁中Ca的含量,既不受灌溉影响,也不受施Ca处理的影响。果实干物质含量与果实硬度之间存在极显著线性正相关关系;与此类似,果实干物质含量和果汁TSS含量也呈极显著线性正相关关系。另外,果汁中的TSS、P、K、Mg含量随着钙肥水平的增加而增加,而果汁中总有机酸含量和总矿物质含量呈正线性相关关系。本研究结果表明,和DI相比,尽管PRD没有显著提高番茄果实产量和水分利用效率,但其显著提高了果实的品质。
Shortage of freshwater resource is a major factor constrainting agricultural production.This is particularly true in some drought-prone regions in China. Therefore, how to uselimited irrigation water resource more efficiently, namely to ‘produce more crops per drop’, isessential for ensuring food security in China. In the present study, tomato plants (Solanumlycopersicum L.) were grown in split-root pots in a climate controlled glasshouse. Fromflowering to fruit maturity stages, the plants were exposed to partial root-zone drying (PRD)and deficit irrigation (DI) in combination with three Ca fertilization rates, viz.,0,100, and200mg Ca kg-1soil (denoted as Ca0, Ca1and Ca2, respectively). The effects of thetreatments on stomatal conductance, plant water relations, leaf and root growth, N, P, Caccumulation and~(15)N and~(13)C natural isotope composition (~(15)N and~(13)C, respectively) inplant organs, plant N and P use efficiencies, incidence of blossom-end rot (BER), K, Ca, andMg contents and partitioning in plant organs, and fruit quality attributes including fruitfirmness, dry matter content, fruit juice pH, total soluable solid (TSS), reducing sugars andorganic acid, as well as mineral contents (P, K, Ca, and Mg) were investigated. The resultsshowed that:
     (1)Compared to DI, PRD tended to better maintain leaf water status. Across the twoirrigation regimes, Ca2plants had higher leaf osmotic potential but lower leaf turgor than didCa0and Ca1plants. Leaf elongation was enhanced by PRD compared to DI in Ca1and Ca2but not in Ca0. Root length and surface area were identical between PRD and DI, and thehighest for Ca1, intermediate for Ca2, and lowest for Ca0. The irrigation and Ca fertilizationtreatments did not affect dry weights of above ground organs; while that for root wassignificantly higher for Ca1and Ca2than for Ca0. N and P contents in plant organs wereunresponsive to the either irrigation or Ca fertilization treatments, only root P contentdecreased with increasing Ca fertilization rate. C content was higher for PRD than for DI inleaf, while the reverse was true in stem. Root and fruit C contents were unaffected byirrigation regime but were significantly affected by Ca fertilization rate. Basically, irrigationregimes did not affect~(15)N in plant organs but with a trend that PRD plants had slightlyhigher~(15)N in the stem and fruits. Across the two irrigation regimes, Ca fertilization rate had no effect on~(15)N in the leaves and stem, but significantly affected it in the roots and fruits,namely root and fruit~(15)N were significantly higher for Ca1and Ca2as compared with Ca0.In leaves,~(13)C was significantly higher for PRD than for DI, whilst the reverse was the casein the fruits. Ca fertilization rate had no effect on~(13)C in plant organs of tomato. In addition,neither irrigation nor Ca fertilization treatments affected N and P use efficiencies of tomatoplants. It was concluded that, compared to DI, PRD better maintained plant water status andleaf elongation growth; however, such effects did not bring about increases of plant drybiomass, N, P and C accumulation, and N and P use efficiencies.
     (2)In comparison with DI treatment, PRD significantly reduced BER incidence in tomatofruits. A greater xylem sap ABA concentration, a lower stomatal conductance, and higherplant water status in the PRD in relation to the DI plants might have contributed to theenhanced fruit Ca uptake, which could have reduced BER development in tomato fruits. Inaddition, besides fruit Ca content, the ratios of Mg to Ca and K to Ca in the fruits wereinvolved in inducing BER in tomatoes. Therefore, under conditions of limited freshwaterresources, application of PRD irrigation could be a promising approach for saving water andfor preventing BER development in tomatoes.
     (3) Both irrigation and Ca-fertilization treatments had no significant effect on fruit yield,plant water use, and water use efficiency (WUE), fruit number and fruit size. However, PRDregime significantly increased the TSS, sugars (glucose and fructose), organic acids (citric andmalate acids), minerals including P, K, and Mg contents in the fruit juice as compared withthe DI treatment, particularly at high Ca-fertilization rate (i.e., Ca2), the increase was morepronounced. Whereas Ca content in tomato juice was neither affected by irrigation norCa-fertilization treatments. Across the two irrigation regimes, Ca-fertilization significantlyincreased TSS, P, K, and Mg contents in the fruit juice being that the contents of thoseconstitutes were enhanced with increasing Ca fertilization rate. Collectively, our resultsindicated that even though PRD did not over perform DI in terms of improving fruit yield andWUE, the irrigation treatment significantly increased several fruit quality attributes, resultingin better flavour fruits than the DI practice.
引文
杜太生,康绍忠,夏桂敏,杨秀英.2005.滴灌条件下不同根区交替湿润对葡萄生长和水分利用的影响.农业工程学报,21(11):43~48
    杜太生,康绍忠,张建华.2011.交替灌溉的节水调质机理及同位素技术在作物水分利用研究中的应用.植物生理学报,47(9):823~830
    冯浩,赵西宁,吴普特.2009.我国节水农业发展现状、潜力及其前景. Collection of2009InternationalForum on Water Resources and Sustainable Development.1
    冯浩,吴普特,李百凤,赵西宁.2005.缺水对未来我国粮食安全的影响及对策分析.农业工程科技创新与建设现代农业-2005年中国农业工程学会学术年会论文集第二分册.19~22
    郭艳波.2008a.温室膜下滴灌条件下番茄控水灌溉指标试验研究.[硕士学位论文].陕西杨凌:中国科学院水利部水土保持研究所
    郭艳波,冯浩,吴普特.2008b.水分亏缺对番茄生理特性及水分生产效率的影响.灌溉排水学报,27(3):52~55
    郭艳波,冯浩,吴普特.2009.西北地区不同土壤水分处理对温室大棚番茄产量和耗水的影响.自然资源学报,24(1):50~57
    韩坤,张继涛,上官宇先,师日鹏,马巧荣,徐猛,王林权.2010.交替灌溉施肥对夏玉米土壤N2O排放的影响.中国环境科学学会学术年会论文集.3933~3940
    胡田田,康绍忠,李志军,张富仓.2009.局部湿润方式下玉米对不同根区氮素的吸收与分配.植物营养与肥料学报,15(1):105~113
    雷杨莉,王林权,薛亮,李志军,尚浩博.2009.交替灌溉施肥对夏玉米土壤氨挥发的影响.农业工程学报,25(4):41~46
    李百凤.2007a.番茄适宜土壤水分下限指标试验研究.[硕士学位论文].陕西杨凌:中国科学院水利部水土保持研究所
    李百凤,冯浩,吴普特,范兴科.2007b.土壤水分下限对番茄光合速率、品质及产量的影响.中国农学通报,23(5):471~476
    李百凤,冯浩,吴普特,范兴科.2007c.作物非充分灌溉适宜土壤水分下限指标研究进展.干旱地区农业研究,25(3):227~231
    李百凤,冯浩,吴普特,范兴科.2008.苗期干旱胁迫及复水对番茄形态发育及产量的影响.灌溉排水学报,27(2):63~65
    胡田田,康绍忠,原丽娜,张富仓,李志军.2008.根区湿润方式对玉米根系生长发育的影响.生态学报,28(12):6180~6188
    刘永贤,李伏生,农梦玲,韦建玉,汪加林.2007.不同生育时期分根区交替灌溉对烤烟生长和氮钾含量的影响.灌溉排水学报,26(6):102~105
    刘贤赵,宿庆,孙海燕.2010.根系分区交替灌溉不同交替周期对苹果树生长、产量及品质的影响.生态学报,30(18):4881~4888
    穆兴民,王飞,冯浩,张睿,鲁向晖,高鹏.2010.西南地区严重旱灾的人为因素初探.水土保持通报,30(2):1~4
    农梦玲,李伏生,刘水.2010.根区局部灌溉和氮、钾水平对玉米干物质积累和水肥利用的影响.植物营养与肥料学报,16(6):1539~1545
    漆栋良,胡田田,李瑞,程冬玲,赵世翔,李思恩.2013.局部灌水条件下玉米根系的时空分布研究.西北农林科技大学学报,41(3):1~7
    山仑.2011.科学应对农业干旱.干旱地区农业研究,29(2):1~5
    山仑,吴普特,康绍忠,冯浩,张岁岐.2011.黄淮海地区农业节水对策及实施半旱地农业可行性研究.中国工程科学,13(4):37~42
    王振昌.2012.分根区交替灌溉制种玉米节水机理及其气孔导度模型研究.[博士学位论文].陕西杨凌:西北农林科技大学
    吴普特,冯浩,牛文全,高建恩,蒋定生,汪有科,范兴科,戚鹏.2003.中国用水结构发展态势与节水对策分析.农业工程学报,19(1):1~6
    吴普特,冯浩.2005.中国节水农业发展战略初探.农业工程学报,21(6):152~157
    吴普特,冯浩,赵西宁,牛文全.2006.现代节水农业理念与技术探索.灌溉排水学报,25(4):1~6
    夏广清,杨金.2005.钙镁肥不同用量对番茄植株和果实矿质元素吸收的影响.北方园艺,2:44~45
    张永平,王志敏,吴永成,张霞.2006.不同供水条件下小麦不同绿色器官的气孔特性研究.作物学报,32:70~75
    Abdal M, Suleiman M.2005. Blossom end rot occurrence in calcareous soil of Kuwait. Acta Hortic,695:63~65
    Adams P, Ho L C.1993. Effects of environment on the uptake and distribution of calcium in tomato and onthe incidence of blossom-end rot. Plant Soil,154:127~132
    Adams P, Holder R.1992. Effects of humidity, Ca and salinity on the accumulation of dry matter and Ca bythe leaves and fruit of tomato (Lycopersicon esculentum). J Hortic Sci,67:137~142
    Antolin M C, Santesteban H, Santa Maria E, Aguirreolea J, Sánchez-Díaz M.2008. Involvement of abscisicacid and polyamines in berry ripening of Vitis vinífera (L.) subjected to water deficit irrigation. Aust JGrape Wine Res,14:123~133
    Asch F.2000. Determination of abscisic acid by indirect enzyme linked immuno sorbent assay (ELISA).Technical report. Vol1. Taastrup, Denmark: Laboratory for Agrohydrology and Bioclimatology,Department of Agricultural Sciences, The Royal Veterinary and Agricultural University:1~21
    Atkinson N J, Dew T P, Orfila C, Urwin P E.2011. Influence of combined biotic and abiotic stress onnutritional quality parameters in tomato (Solanum lycopersicum). J Agric Food Chem,59:9673~9682
    Bahrun A, Jensen C R, Asch F, Mogensen V O.2002. Drought-induced changes in xylem pH, ioniccomposition, and ABA concentration act as early signals in field-grown maize (Zea mays L.). J ExpBot,53:251~263
    Bar-Tal A, Pressman E.1996. Root restriction and potassium and calcium solution concentrations affectdry-matter production, cation uptake, and blossom-end rot in greenhouse tomato. J Amer Soc Hort Sci,121:649~655
    Belda R M, Ho L C.1993. Salinity effects on the network of vascular bundles during tomato fruitdevelopment. J Hort Sci,68:557~564
    Birch H F.1958. The effect of soil drying on humus decomposition and nitrogen. Plant Soil,10:9~31
    Blackman P G, Davies W J.1985. Root-to-shoot communication in maize plants of the effects of soil drying.J Exp Bot,36:39~48
    Centritto M, Wahbi S, Serraj R, Chaves M M.2005. Effects of partial rootzone drying (PRD) on adult olivetree (Oleaeuropaea) in field conditions under arid climate: II. Photosynthetic responses. Agri EcosysEnviron,106:303~311
    Clarkson D T, Carvajal M, Henzler T, Waterhouse R N, Smyth A J, Cooke D T, Steudle E.2000. Roothydraulic conductance: diurnal aquaporin expression and the effects of nutrient stress. J Exp Bot,51:61~70
    Cramer M D, Hawkins H J, Verboom G A.2009. The importance of nutritional regulation of plant waterflux. Oecologia,161:15~24
    Cui M, Caldwell M M.1997. A large ephemeral release of nitrogen upon wetting of dry soil andcorresponding root responses in the field. Plant Soil,191:291~299
    Davies J N, Hobson G E.1981. The constituents of tomato fruit–the influence of environment, nutrition,and genotype. Crit Rev Food Sci Nutr,15:205~280
    Davies W J, Zhang J, Yang J, Dodd I C.2011. Novel crop science to improve yield and resource useefficiency in water-limited agriculture. J Agric Sci,149:123~131
    Davies W J, Bacon M A, Thompson D S, Sobeih W and Rodriguez L G.2000. Regulation of leaf and fruitgrowth in plants growing in drying soil: Exploitation of the plants’ chemical signaling system andhydraulic architecture to increase the efficiency of water use in agriculture. J Exp Bot,51:1617~1626
    Davies W J, Mansfield T A, Hetherington A M.1990. Sensing of soil water status and the regulation ofplant growth and development. Plant Cell Environ,13:709~719
    Davies W J, Zhang J.1991. Root signals and the regulation of growth and development of plants in dryingsoil. Ann Rew Plant Physiol Plant Mol Biol,42:55~76
    Davies W J, Hartung W.2004. Has extrapolation from biochemistry to crop functioning worked to sustainplant production under water scarcity? In: Proceedings of the4th International Crop Science Congress.Vol1. Brisbane, Australia: http://www.cropscience.org.au/icsc2004/:1~14
    Davies W J, Wilkinson S, Loveys B R.2002. Stomatal control by chemical signalling and the exploitationof this mechanism to increase water use efficiency in agriculture. New Phytol,153:449~460
    de Souza C R, Maroco J P, dos Santos T P, Rodrigues L M, Lopes C M, Pereira J S, Chaves M M.2003.Partial rootzone drying: regulation of stomatalaperature and carbon assimilation in field-growngrapevines (Vitisvinifera cv. Moscatel). Funct Plant Biol,30:653~662
    DeKock PC, Inkson R H E, Hall A.1982. Blossom-end rot of tomato as influenced by truss size. J PlantNutri,5:57~62
    Dodd I C, Egea G, Davies W J.2008. ABA signalling when soil moisture is heterogeneous: decreasedphotoperiod sap flow from drying roots limits ABA export to the shoots. Plant, Cell and Environ,31:1263~1274
    Dodd I C.2007. Soil moisture heterogeneity during deficit irrigation alters root-to-shoot signalling ofabscisic acid. Funct Plant Biol,34:439~448
    Dodd I C.2009. Rhizposphere manipulations to maximize ‘crop per drop’ during deficit irrigation. J ExpBot,60:2454~2459
    Dorais M, Papadopoulos A P, Gosselin A.2001. Greenhouse tomato fruit quality. Hort Rev,26:239~319
    Dorji K, Behboudiana M H, Zegbe-Dom′nguez J A.2005. Water relations, growth, yield, and fruit qualityof hot pepper under deficit irrigation and partial rootzone drying. Sci Hortic,104:137~145
    Dry P, Loveys B.1999. Grapevine shoot growth and stomatal conductance are reduced when part of theroot system is dried. Vitis,38:151~156
    Du T, Kang S, Sun J, Zhang X, Zhang J.2010. An improved water use efficiency of cereals under temporaland spatial deficit irrigation in north China. Agric Water Manage,97:66~74
    Du T, Kang S, Zhang J, Li F, Hu T.2006. Yield and physiological responses of cotton to partial root-zoneirrigation in the oasis field of northwest China. Agric Water Manage,84:41~52
    Du T, Kang S, Zhang J, Li F.2008. Water use and yield responses of cotton to alternate partial root-zonedrip irrigation in the arid area of north-west China. Irrig Sci,26:147~159
    Emanuelsson J.1984. Root growth and calcium uptake in relation to calcium concentration. Plant Soil,78:325~334
    English M J, Raja S N.1996. Perspective of deficit irrigation. Agric Water Manage,32:1~14
    Farquhar G D, Ehleringer J R, Hubick K T.1989. Carbon isotope discrimination and photosynthesis. AnnRew Plant Physiol Plant Mol Biol,40:503~537
    Farquhar G D, O’Leary M H, Berry J A.1982. On the relationship between carbon isotope discriminationand the intercellular carbon dioxide concentration in leaves. Aust J Plant Physiol,9:121~137
    Franco J A, Perez-Saura P J, Fernandez J A, Parra M, Garcia A L.1999. Effect of two irrigation rates onyield, incidence of blossom-end rot, mineral content and free amino acid levels in tomato cultivatedunder drip irrigation using saline water. J Hortic Sci Biotech,74:430~435
    Gorska A, Ye Q, Holbrook M, Zwieniecki M A.2008. Nitrate control of root hydraulic properties in plants:translating local information to whole plant response. Plant Physiol,148:1159~1167
    Gould W A.1983. Composition of tomatoes. In Tomato Production, Processing and Quality Evaluation. Vol1.Westport, CT: AVI Publishing Co:344~358
    Guichard S, Gary C, Leonardi C, Bertin N.2005. Analysis of growth and water relations of tomato fruit inrelation to air vapour pressure deficit and plant fruit load. J Plant Growth Regul,24:201~213
    Hanson J B.1984. The functions of calcium in plant nutrition. In: Advances in plant nutrition. Vol1. NewYork: Praeger:149~208
    Hao X, Papadopoulos A P.2004. Effects of Calcium and Magnesium on plant growth, biomass partitioning,and fruit yield of winter greenhouse tomato. Hort Sci,39:512~515
    Ho L C, Belda R, Brown M, Andrews J, Adams P.1993. Uptake and transport of calcium and the possiblecauses of blossom-end rot in tomato. J Exp Bot,44:509~518
    Ho L C, White P J.2005. A cellular hypothesis for the induction of blossom-end rot in tomato fruit. Ann Bot,95:571~581
    Ho L C.1999. The physiological basis for improving tomato fruit quality. Acta Hort,487:33~40
    Ho L C.1996. The mechanism of assimilate partitioning and carbohydrate compartmentation in fruit inrelation to the quality and yield of tomato. J Exp Bot,47:1239~1243
    Hobson G, Bedford L.1989. The composition of cherry tomatoes and its relation to consumer acceptability.J Hort Sci,64:321~329
    Hose E, Steudle E, Hartung W.2000. Abscisic acid and hydraulic conductivity of maize roots: a root cell-and pressure probe study. Planta,211:874~882
    Howard D D, Adams F.1965. Calcium requirements for penetration of subsoils by primary cotton roots.Soil Sci Soc Amer Proc,29:558~562
    Hu T, Kang S, Li F, Zhang J.2011. Effects of partial root-zone irrigation on hydraulic conductivity in thesoil-root system of maize plants. J Exp Bot,62:4163~4172
    Jackson W A.1967. Physiological effects of soil acidity. In: Soil acidity and liming. Agron. Ser. No.12. Vol1. Madison, Wis: Amer. Soc. Agron:43~124
    Jensen C R, Battilani A, Plauborg F, Psarras G, Chartzoulakis K, Janowiak F, Stikic R, Jovanovic Z, Li G,Qi X, Liu F, Jacobsen S E, Andersen M N.2010. Deficit irrigation based on drought tolerance and rootsignalling in potatoes and tomatoes. Agric Water Manage,98:403~413
    Jones R A, Scott S J.1984. Genetic potential to improve tomato flavour in commercial F1hybrids. J AmerSoc Hort Sci,109:318~321
    Kang S, Hu X, Du T, Zhang J, Jerie P.2002b. Transpiration coefficient and ratio of transpiration toevapotranspiration of pear tree (Pyrus communis L.) under alternative partial root-zone dryingconditions. Hydrol Process,17:1165~1176
    Kang S, Hu X, Goodwin I, Jerie P.2002a. Soil water distribution, water use, and yield response to partial rootzone drying under a shallow groundwater table condition in a pear orchard. Sci Hortic,92:277~291
    Kang S, Hu X, Jerie P, Zhang J.2003. The effects of partial rootzone drying on root, trunk sap flow andwater balance in an irrigated pear (Pyrus communis L.) orchard. J Hydrol,280:192~206
    Kang S, Liang Z, Hu W, Zhang J.1998. Water use efficiency of controlled alternate irrigation onroot-divided maize plants. Agric Water Manage,38:69~76
    Kang S, Liang Z, Pan Y, Shi P, Zhang J.2000. Alternate furrow irrigation for maize production in an aridarea. Agric Water Manage,45:267~274
    Kang S, Zhang J.2004. Controlled alternate partial root-zone irrigation: its physiological consequences andimpact on water use efficiency. J Exp Bot,55:2437~2446
    Karlberg L, Ben-Gal A, Jansson P E, Shani U.2006. Modelling transpiration and growth in salinity-stressedtomato under different climatic conditions. Ecol Model,190:15~40
    Keiser J R, Mullen R E.1993. Caicium and relative humidity effects on soybean seed nutrition and seedquality. Crop Sci,33:1345~1349
    Kirkby E A, Pilbeam DJ.1984. Calcium as a plant nutrient. Plant Cell Environ,7:397~405
    Klepper B.1991. Root–shoot relationships. In: Plant roots: The hidden half. New York: Marcel Dekker:265~286
    Kohl D H, Shearer G B, Commoner B.1973. Variation of15N in corn and soil following application ofFertilizer Nitrogen. Soil Sci Soc Amer Proc,37:888~892
    Krida C, Topcu S, Kaman H, Ulger A C, Yazici A, Cetin M, Derici M R.2005. Grain yield response andN-fertiliser recovery of maize under deficit irrigation. Field Crop Res,93:132~141
    Leib B G, Caspari H W, Redulla C A, Andrews P K, Jabro J J.2006. Partial rootzone drying and deficitirrigation of ‘Fuji’ apples in a semi-arid climate. Irrig Sci,24:85~99
    Li Y, Stanghellini C, Challa H.2001. Effect of electrical conductivity and transpiration on production ofgreenhouse tomato (Lycopersicon esculentum L.). Sci Hortic,88:11~29
    Li F, Yu J, Nong M, Kang S Z, Zhang J H.2010. Partial root-zone irrigation enhanced soil enzymeactivities and water use of maize under different ratios of inorganic to organic nitrogen fertilizers.Agric Water Manage,97:231~239
    Liu F, Andersen M N, Jensen C R.2003b. Loss of pod set caused by drought stress is associated with waterstatus and ABA content of reproductive structures in soybean. Funct Plant Biol,30:271~280
    Liu F, Shahnazari A, Jacobsen S E, Jensen C R, Janowiak F, Waligórski P, Andersen M N.2008a. Effects ofdeficit irrigation and partial root-zone drying on soil and plant water status, stomatal conductance,plant growth and water use efficiency in tomato during early fruiting stage. Acta Hort,792:413~420
    Liu F, Stützel H.2004. Biomass partitioning, specific leaf area and water use efficiency of vegetableamaranth (Amaranthus spp.) in response to drought stress. Sci Hortic,102:15~27
    Liu F, Andersen M N, Jensen C R.2009. Capability of the ‘Ball-Berry’ model for predicting stomatalconductance and water use efficiency of potato leaves under different irrigation regimes. Sci Hortic,122:346~354
    Liu F, Hansen S, Jensen C R.2004. Simulation of the effects of withholding irrigation on nitrate and wateruptake in field grown maize during high-N demanding growth stages using DAISY. In: Proceedings ofthe VIII ESA Congress–European Agriculture in a Global Context. Copenhagen: SamfundsliteratureGrafik:291~292
    Liu F, Jensen C R, Andersen M N.2003a. Hydraulic and chemical signals in the control of leaf expansionand stomatal conductance in soybean exposed to drought stress. Funct Plant Biol,30:65~73
    Liu F, Jensen C R, Andersen M N.2005c. A review of drought adaptation in crop plants: changes invegetative and reproductive physiology induced by ABA based chemical signals. Aust J Agric Res,56:1245~1252
    Liu F, Jensen C R, Shahanzari A, Andersen M N, Jacobsen S E.2005a. ABA regulated stomatal control andphotosynthetic water use efficiency of potato (Solanum tuberosum L.) during progressive soil drying.Plant Sci,168:831~836
    Liu F, Shahnazari A, Andersen M N, Jacobsen S E, Jensen C R.2006. Physiological responses of potato(Solanum tuberosum L.) to partial root zone drying: ABA signalling, leaf gas exchange, and water useefficiency. J Exp Bot,57:3727~3735
    Liu F, Song R, Zhang X, Shahnazari A, Andersen M N, Plauborg F, Jacobsen S E, Jensen C R.2008c.Measurement and modelling of ABA signalling in potato (Solanum tuberosum L.) during partialroot-zone drying. Environ Exp Bot,63:385~391
    Liu J, Han L, Chen F, Bao J, Zhang F, Mi G.2008b. Microarray analysis reveals early responsive genespossibly involved in localized nitrate stimulation of lateral root development in maize (Zea mays L.).Plant Sci,175:272~282
    Loveys B R, Dry P R, Stoll M, McCarthy M G.2000. Using plant physiology to improve the water useefficiency of horticultural crops. Acta Hortic,537:187~199
    Loveys B R.1984. Diurnal changes in water relations and abscisic acid in field grown Vitis viniferacultivars III. The influence of xylem-drived abscisic acid on leaf gas exchange. New Phytol,98:563~573
    Loveys B R, Stoll M, Davies W J.2004. Physiological approaches to enhance water use efficiency inagriculture: exploiting plant signaling in novel irrigation practice. In: Bacon MA. Water Use Efficiencyin Plant Biology. Oxford: Blackwell Publishing:113~142
    Magan J J, Gallardo M, Thompson R B, Lorenzo P.2008. Effects of salinity on fruit yield and quality oftomato grown in soil-less culture in green house in Mediterranean climatic conditions. Agric WaterManage,95:1041~1055
    Marschner H.1995. Mineral nutrition of higher plants. London: Academic Press:285~299
    McLaughlin S B, Wimmer R.1999. Calcium physiology and terrestrial ecosystem processes. New Phytol,142:373~417
    Mingo D M, Theobald J C, Bacon M A, Davies W J, Dodd I C.2004. Biomass allocation in tomato(Lycopersicon esculentum) plants grown under partial rootzone drying: Enhancement of root growth.Funct Plant Biol,31:971~978
    Mitchell J P, Shennan C, Grattan S R, May D M.1991. Tomato fruit yields and quality under water deficitand salinity. J Amer Soc Hort Sci,116:215~221
    Mizrahi Y, Taleisnik E, Kagan-Zur V, Zohar Y, Offenbach R, Matan E, Golan R.1988. A saline irrigationregime for improving tomato fruit quality without reducing yield. J Amer Soc Hort Sci,113:202~205
    Nakajima H, Behboudian M H, Greven M, Zegbe-Domínguez JA.2004. Mineral contents of grape, olive,apple, and tomato under reduced irrigation. J Plant Nutr Soil Sci,167:91~92
    Nedjimi B, Daoud Y.2009. Ameliorative effect of CaCl2on growth, membrane permeability and nutrientuptake in Atriplexhalimus subsp. Schweinfurthii grown at high (NaCl) salinity. Desalination,249:163~166
    Nonami H, Fukuyama T, Yamamoto M, Yang L, Hashimoto Y.1995. Blossom-end rot of tomato plants maynot be directly caused by calcium deficiency. Acta Hortic,396:107~114
    Paiva E A S, Sampaio R A, Prieo Martinez H.1998. Composition and quality of tomato fruit cultivated innutrient solutions containing different calcium concentrations. J Plant Nutri,21:2653~2661
    Parent B, Hachez C, Redondo E, Simonneau T, Chaumont F, Tardieu F.2009. Drought and abscisic acideffects on aquaporin content translate into changes in hydraulic conductivity and leaf growth rate: Atrans-scale approach. Plant Physiol,149:2000~2012
    Petró-Turza M.1986-1987. Flavor of tomato and tomato products. Food Rev Intern,2:309~351
    Picchioni G A, Valenzuela-Vazquez M, Armenta-Sanchez S.2001. Calcium-activated root growth andmineral nutrient accumulation of Lupinus havardii: Ecophysiological and horticultural significance. JAmer Soc Hort Sci,126:631~637
    Poni S, Tagliavini M, Neri D, Toselli M.1992. Influence of root pruning and water stress on growth andphysiological factors of potted apple, grape, peach and pear trees. Sci Hortic,52:223~236
    Poovaiah B W, Reddy A S N.1991. Calcium and root development. In: Plant roots: The hidden half. NewYork: Marcel Dekker:205~227
    Quarrie S A, Jones H G.1977. Effects of abscisic acid and water stress on development and morphology ofwheat. J Exp Bot,28:192~203
    Quintero J M, Fournier J M, Benlloch M.1999. Water transport in sunflower root system: effects of ABA,Ca2+status and HgCl2. J Exp Bot,50:1607~1612
    Reid J B, Winfield D, Sorensen I, Kale A J.1996. Water deficit, root demography, and the cause of internalblackening in field-grown tomatoes (Lycopersicon esculentum Mill.). Ann Appl Biol,129:137~149
    Ruan Y L, Jin Y, Yang Y J, Li G J, Boyer J S.2010. Sugar input, metabolism, and signalling mediated byinvertase: Role in development, yield potential, and response to drought and heat. Mol Plant,3:942~955
    Ruan Y L, Patrick J W.1995. The cellular pathway of postphloem sugar-transport in developmental tomatofruit. Planta,196:434~444
    Sade N, Vinocur B J, Diber A, Shatil A, Ronen G, Nissan H, Wallach R, Karchi H, Moshelion M.2009.Improving plant stress tolerance and yield production: is the tonoplast aquaporin SITIP2;2a key toisohydric to anisohydric conversion? New Phytol,181:651~661
    Saure M C.2001. Blossom-end rot of tomato (Lycopersicon esculentum Mill.)–a calcium-or astress-related disorder? Sci Hortic,90:193~208
    Schachtman D P, Goodger J Q D.2008. Chemical root to shoot signaling under drought. Trends Plant Sci,13:281~287
    Schmitz-Eiberger M, Haefs R, Noga G.2002. Calcium deficiency—influence on the antioxidative defensesystem in tomato plants. J Plant Physiol,159:733~742
    Shahnazari A, Ahmadi S H, Laerke P E, Liu F, Plauborg F, Jacobsen S E, Jensen C R, Andersen M N.2008.Nitrogen dynamics in the soil-plant system under deficit and partial root-zone drying irrigationstrategies in potatoes. Euro J Agron,28:65~73
    Sharp R E.2002. Interaction with ethylene: changing views on the role of abscisic acid in root and shootgrowth responses to water stress. Plant Cell Environ,25:211~222
    Shearer G B, Legg J O.1975. Variation in the natural abundance of15N of wheat plants in relation tofertilizer nitrogen applications. Soil Sci Soc Am J,39:896~901
    Skinner R H, Hanson J D, Benjamin J G.1998. Root distribution following spatial separation of water andnitrogen supply in furrow irrigated corn. Plant Soil,199:187~194
    Sobeih W Y, Dodd I C, Bacon M A, Grierson D, Davies W J.2004. Long-distancesignals regulatingstomatal conductance and leaf growth in tomato (Lycopersicon esculentum) plants subjected to partialroot-zone drying. J Exp Bot,55:2353~2363
    Spence R D, Wu H, Sharpe P J H, Clark K G.1986. Water stress effects on guard cell anatomy and themechanical advantage of the epidermal cells. Plant Cell Environ,9:197~202
    Spreer W, Nagle M, Neidhart S, Carle R, Ongprasert S, Müller J.2007. Effect of regulated deficit irrigationand partial rootzone drying on the quality of mango fruits (Mangifera indica L. cv.‘Chok Anan’).Agric Water Manage,88:173~180
    Stevens M A, Kader A A, Albright-Holton M, Algazi M.1977. Genotypic variation for flavour andcomposition in fresh market tomatoes. J Amer Soc Hortic Sci,102:680~689
    Stevens M A.1986. Inheritance of tomato fruit quality components. Plant Breeding Rev,4:273~311
    Stoll M, Loveys B, Dry P.2000. Hormonal changes induced by partial rootzone drying of irrigatedgrapevine. J Exp Bot,51:1627~1634
    Sun Y, Feng H, Liu F.2013a. Comparative effects of partial root-zone drying and deficit irrigation on fruitquality attributes in tomatoes (Solanum lycopersicum L.) under varied calcium rates. Submitted toAgric Water Manage
    Sun Y, Feng H, Liu F.2013b. Comparative effect of partial root-zone drying and deficit irrigation on1incidence of blossom-end rot in tomato under varied calcium rates. J Exp Bot,64:2107~2216
    Sun Y, Yan F, Liu F.2013c. Drying/rewetting cycles of the soil under alternate partial root-zone dryingirrigation reduce carbon and nitrogen retention in the soil-plant systems of potato. Submitted to AgricWater Manage
    Tadesse T, Nichols M A, Hewett E W, Fisher K J.2001. Relative humidity around the fruit influences themineral composition and incidence of blossom-end rot in sweet pepper. J Hortic Sci Biotech,76:9~16
    Tahi H, Wahbi S, Wakrim R, Aganchich B, Serraj R, Centritto M.2007. Water relations, photosynthesis,growth and water-use efficiency in tomato plants subjected to PRD and DI. Plant Biosyst,141:265~274
    Taylor M D, Locascio S J, Alligood M R.2004. Blossom-end rot incidence of tomato as affected byirrigation quantity, calcium source, and reduced potassium. Hort Sci,39:1110~1115
    Thakur B R, Singh R K, Nelson P E.1996. Quality attributes of processed tomato products: a review. FoodRev Int,12:375~401
    Thompson A J, Andrews J, Mulholland B J, McKee J M T, Hilton H W, Horridge J S, Farquhar J D,Smeeton R C, Smillie I R A, Black C R, Taylor I B.2007. Overproduction of abscisic acid in tomatoincreases transpiration efficiency and rot hydraulic conductivity and influences leaf expansion. PlantPhysiol,143:1905~1917
    Tonetto de Freitas, Shackel K A, Mitcham E J.2011. Abscisic acid triggers whole-plant and fruit-specificmechanisms to increase fruit calcium uptake and prevent blossom end rot development in tomato fruit.J Exp Bot,62:2645~2656
    Trouverie J, Th′evenot C, Rocher J P, Sotta B, Prioul J L.2003. The role of abscisic acid in the response ofa specific vacuolar invertase to water stress in the adult maize leaf. J Exp Bot,54:2177~2186
    Tung S A, Smeeton R, White C A, Black C R, Taylor I B, Hilton H W, Thompson A J.2008.Over-expression of LeNCED1in tomato (Solanum lycopersicum L.) with the rbcS3C promoter allowsrecovery of lines that accumulate very high levels of abscisic acid and exhibit severe phenotypes.Plant Cell Environ,31:968~981
    Valé M, Mary B, Justes E.2007. Irrigation practices may affect denitrificationmore than nitrogenmineralization in warm climatic conditions. Biol Fertil Soils,43:641~651
    Vandeleur R, Niemietz C, Tilbrook J, Tyerman S D.2005. Roles of aquaporins in root responses toirrigation. Plant Soil,274:141~161
    Wada T, Ikeda H, Ikeda M, Furukawa H.1996. Effects of foliar application of calcium solutions on theincidence of blossom-end rot of tomato fruit. J Jpn Soc Hortic Sci,65:553~558
    Wang Y, Liu F, Jensen C R.2012d. Comparative effects of deficit irrigation and alternate partial root-zoneirrigation on xylem pH, ABA and ionic concentrations in tomatoes. J Exp Bot,63:1907~1917
    Wang Y, Liu F, Andersen M N, Jensen C R.2010a. Improved plant nitrogen nutrition contributes to higherwater use efficiency in tomatoes under alternate partial root-zone irrigation. Funct Plant Biol,37:175~182
    Wang Y, Liu F, de Neergaard A, Jensen L S, Luxh i J, Jensen C R.2010b. Alternate partial root-zoneirrigation induced dry/wet cycles of soils stimulate N mineralization and improve N nutrition intomatoes. Plant Soil,337:167~177
    Wang Z, Kang S, Jensen C R, Liu F.2012b. Alternate partial root-zone irrigation reduces bundle-sheath cellleakage to CO2and enhances photosynthetic capacity in maize leaves. J Exp Bot,63:1145~1153
    Wang Z, Liu F, Kang S, Jensen C R.2012a. Alternate partial root-zone drying irrigation improves nitrogennutrition in maize (Zea mays L.) leaves. Environ Exp Bot,75:36~40
    Wang, H., Liu, F., Andersen, M.N., Jensen, C.R.,2009. Comparative effects of partial root-zone drying anddeficit irrigation on nitrogen uptake in potatoes (Solanum tuberosum L.). Irrig Sci,27:443~448
    Wang J, Kang S, Li F, Zhang F, Li Z, Zhang J.2008. Effects of alternate partial rootzone irrigation on soilmicroorganism and maize growth. Plant Soil,302:45~52
    Wang Y, Frei M.2011. Stressed food–The impact of abiotic environmental stresses on crop quality. AgricEcosys Environ,141:271~286
    Wang Y, Liu F, Andersen M N, Jensen C R.2010c. Carbon retention in the soil–plant system underdifferent irrigation regimes. Agric Water Manage,98:419~424
    Wang Y, Liu F, Jensen C R.2012c. Comparative effects of partial root-zone irrigation and deficit irrigationon phosphorus uptake in tomato plants. J Hortic Sci Biotech,87:600~604
    Weldearegay D F, Yan F, Jiang D, Liu F.2012. Independent and combined effects of soil warming anddrought stress during anthesis on seed set and grain yield in two spring wheat varieties. J Agron CropSci,198:245~253
    Westgate M E, Passioura J B, Munns R.1996. Water status and ABA content of floral organs indrought-stressed wheat. Aust J Plant Physiol,23:763~772
    Wilkinson S, Bacon M A, Davies W J.2007. Nitrate signalling to stomata and growing leaves: interactionswith soil drying, ABA, and xylem sap pH in maize. J Exp Bot,58:193~227
    Xu H, Qin F, Du F, Xu Q, Wang R, Shah R P, Zhao A, Li F.2009. Application of xerophytophysiology inplant production–Partial root drying improves tomato crops. J Food Agric Environ,7:981~988
    Xu Z, Zhou G.2008. Responses of leaf stomatal density to water status and its relationship withphotosynthesis in a grass. J Exp Bot,59:3317~3325
    Yang J, Zhang J, Ye Y, Wang Z, Zhu Q, Liu L.2004. Involvement of abscisic acid and ethylene in theresponses of rice grains to water stress during filling. Plant Cell Environ,27:1055~1064
    Yang L, Qu H, Zhang Y, Li F.2012. Effects of partial root-zone irrigation on physiology, fruit yield andquality and water use efficiency of tomato under different calcium levels. Agric Water Manage,104:89~94
    Yan F, Sun Y, Song F, Liu F.2012. Differential responses of stomatal morphology of potato leaves to partialroot-zone drying and deficit irrigation under varied nitrogen rates. Sci Hortic,145:76~83
    Zegbe J A, Behboudian M H, Clothier B E.2004. Partial rootzone drying is a feasible option for irrigatingprocessing tomatoes. Agric Water Manage,68:195~206
    Zegbe J A, Behboudian M H, Clothier B E.2006. Responses of ‘Petopride’ processing tomato to partialrootzone drying at different phonological stages. Irrig Sci,24:203~210
    Zegbe J A, Behboudian M H, Clothier B E.2007. Responses of tomato to partial rootzone drying anddeficit irrigaiton. Rev Fitotec Mex,30:125~131
    Zegbe-Domínguez J A, Behboudian M H, Lang A, Clothier B E.2003. Deficit irrigation and partialrootzone drying maintain fruit dry mass and enhance fruit quality in ‘Petopride’ processing tomato(Lycopersicon esculentum, Mill.). Sci Hortic,98:505~510
    Zhang H, Chen T, Wang Z, Yang J, Zhang J.2010. Involvement of cytokinins in the grain filling of riceunder alternate wetting and drying irrigation. J Exp Bot,61:3719~3733
    Zhang H, Li H, Yuan L, Wang Z, Yang J, Zhang J.2012. Post-anthesis alternate wetting and moderate soildrying enhances activities of key enzymes in sucrose-to-starch conversion in inferior spikelets of rice.J Exp Bot,63:215~227
    Zhang H, Xue Y, Wang Z, Yang J, Zhang J.2009. An alternate wetting and moderate soil drying regimeimproves root and shoot growth in rice. Crop Sci,49:2246~2260

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700