适配子型压电石英晶体传感器的构建及其与抗体型压电免疫传感器的比较研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     通过建立压电石英晶体振荡频率检测平台,利用适配子作为压电生物传感器的生物识别分子,构建适配子型压电石英晶体生物传感器,并用其对人免疫球蛋白E进行检测,对各项检测参数进行研究,并与抗体型压电免疫生物传感器进行比较。
     方法:
     1.利用精细微加工工艺制作的石英晶体作为换能器,并在此基础上制备生物传感器微阵列,以构建压电石英晶体生物传感器检测平台。
     2 .采用生物素-亲和素法将抗人免疫球蛋白适配子固定于石英晶体表面,用于人免疫球蛋白E的标准血清及临床标本的检测。根据频率变化和IgE浓度之间的关系绘制标准曲线。
     3.探索适配子型压电生物传感器进行实际检测的准确性、最低检测限等检测参数,并对其非特异结合反应、再生条件、保存时间等进行研究。
     4.分别用适配子型压电生物传感器和抗体型压电免疫传感器对IgE标准品和血清标本进行检测,并对两者的检测范围、最低检测限、检测时间、非特异性结合实验、再生实验、保存实验等进行研究,以比较适配子型压电生物传感器和抗体型压电免疫传感器进行实际检测的优越性。
     结果:
     1.所构建的适配子型压电生物传感器的检测范围为2.5-200μg/L,最低检测值为3μg/L,与化学发光法相比相关系数为0.992,具有良好的检测性能。
     2.适配子型压电生物传感器对BSA、HSA、IgG、IgM等干扰蛋白的检测信号显著低于特异性IgE的检测信号(<5%)。
     3.在选用的再生试剂中,EDTA表现了最好的再生效果,适配子芯片经过10次再生后仍可保留80%的生物学活性。
     4.对适配子芯片进行保存实验,在7天内稳定性几乎没有改变,随后稳定性逐渐下降,3周后检测活性约为初始检测的90%。
     5.适配子型压电生物传感器和抗体型免疫传感器均可在15min内完成检测,都具有良好的检测灵敏度、线性范围和特异性,准确性与化学发光法相当,对结果进行回归分析吻合性较好。
     6.适配子型生物传感器的再生和保存性能优于抗体型免疫传感器。
     结论:
     1.所构建的适配子型压电生物传感器和化学发光法进行人血清标本IgE检测的相关系数为0.992。适配子型压电生物传感器可以对复杂生物样本中的IgE进行高灵敏度、高特异性的检测。
     2.适配子型压电生物传感器和抗体型免疫传感器均可在15分钟内完成对IgE的检测,可为患者提供更快速的诊断,同时操作更加简便。与传统的检测方法相比,传感器方法具有无需标记,无需对标本进行预处理的特点。
     3 .适配子型压电生物传感器在最低检测限、结合特异性及准确性方面均优于抗体型免疫传感器。
     4.适配子型压电生物传感器具备优良的再生和保存性能,可进一步降低临床检测应用中的成本。
     5.适配子型压电石英晶体传感器作为一种新型生物传感器,具有快速、灵敏、实时检测、无需标记等优点,因此具有重要的科学意义和广阔的应用前景。
Objectives:
     The aim of this study was to develop a rapid method to measure IgE in human serum by use of a direct aptamer-based biosensor based on a quartz crystal microbalance (QCM). The comparison with the antibody-based QCM immunosensor was also explored.
     Methods:
     1. We designed and fabricated aptamer-based piezoelectric quartz crystal microbalance biosensor. Self-oscillating TTL circuit and self-made optimized PESA version 4.0 software applied to record and analyze frequency changes.
     2. An avidin monolayer prepared by the covalently method was applied to immobilize biotinylated single-stranded DNA aptamers specific for IgE on the gold surface of the quartz crystal. The frequency shifts (FS) of the QCM were measured and related to IgE concentrations. The dose-curve was drawn according to the relationship betweenΔF and IgE concentrations.
     3. The sensitivity, detection limit, nonspecific response and regeneration ability of piezoelectric QCM aptamer biosensor were observed. At last, clinical samples were detected in order to explore the possibility about the detection of clinical samples. The aptamer piezoelectric biosensor used no labeled reagent and no pretreatment of samples.
     4. The sensitivity, detection limit, nonspecific response and regeneration ability of the QCM aptamer biosensor also compared with the antibody-based QCM immunosensor.
     Results:
     1. A linear relationship existed between the FS (Hz) and the IgE concentrations from
     2.5 to 200μg/L in buffer and human serum. The correlation coefficient between QCM method and chemiluminescence method was 0.992 for determination of IgE in 50 clinical human serum samples.
     2. The cross-reactivity of the aptamer was seen to be less than 5% for all the interference proteins.
     3. The aptamer receptors tolerated repeated affine layer regeneration after ligand binding and recycling of the biosensor with little loss of sensitivity. Using 30 mmol/L EDTA as regeneration reagent gave the best result. More than 80% of the original response was maintained after 10 assays.
     4. The stability of the aptamer biosensor was almost fully maintained at the first 7 days and then started to decline. When stored for 3 weeks, the FS were all >90% of those on the response at the first day.
     5. The aptamer biosensor and QCM immunosensor were able to detect IgE with high specificity and sensitivity in 15 min. The results of them were compared with chemiluminescence method, the correlation coefficients were good.
     6. The regeneration ability and long-term stability of QCM aptamer biosensor were better than that of piezoelectric QCM immunosensor.
     Conclusions:
     1. The correlation coefficient between QCM aptamer biosensor and chemiluminescence was 0.992 for determination of IgE in the clinical human serum samples. The results showed that the aptamers was able to detect IgE with high sensitivity and selectivity, even in a complex biological sample such as serum.
     2. The QCM aptamer biosensor and QCM immunosensor capable of detecting IgE within 15 minutes, provides patients with a faster diagnosis due to a shorter detection time, and the use of relatively easy-to-use devices. Moreover, the biosensor method has shown its advantages over other conventional methods due to its label-free property. The direct biosensor system measured IgE without the need of a labeled reagent and pretreatment of samples.
     3. The precision, detection limit, specificity and accuracy of the aptamer biosensor were better than that of immunosensor.
     4. The reusability and long-term stability of the aptamer biosensor were well, which can reduce the cost of detection.
     5. The QCM biosensor can measure IgE and offer advantages of high specificity, reusability, low detection limit, no label or sample pretreatment, and shorter detection time. The aptamer QCM biosensor was suitable for sensitive and specific protein detection, representing an innovative tool for future proteomics.
引文
1. Renee LB, Eric JJ, Jeffrey JR. Piezoelectric quartz crystal biosensors. Talanta, 1998;46(6):1223-1236.
    2. Babacan S, Pivarinik P, Letcher S, Gand AG. Evaluation of antibody immobilization methods for piezoelectric biosensor application. Biosensors and Bioelectronics, 2000;15:615-621.
    3. Sauerbrey GZ. Use of quartz crystal vibrator for weighting thin films on a microbalance. Z Phys 1959;155:206-22.
    4. Yoshimoto M, Tokimura S, Shigenobu K, Kurosawa S, Naito M. Properties of the overtone mode of the quartz crystal microbalance in a low-viscosity liquid. Analytica Chimica Acta, 2004; 510:15-19.
    5. Park IS, Kim WY, Kim N. Operational characteristics of an antibody-immobilized QCM system detecting Salmonella spp. Biosensors and Bioelectronics, 2000;15(3-4):167-172.
    6. Si SH, Li X, Fung YS, Zhu DR. Rapid detection of Salmonella enteritidis by piezoelectric immunosensor. Microchemical Journal, 2001;68:21-27.
    7. Fung YS, Wong YY. Self-assembled monolayers as the coating in a quartz piezoelectric crystal immunosensor to detect Salmonella in aqueous solution. Analytical Chemistry, 2001;73(21):5302-5309.
    8. Su XL, Li YB. A self-assembled monolayer-based piezoelectric immunosensor for rapid detection of Escherichia coli O157:H7. Biosensors and Bioelectronics, 2004;19(6):563-574.
    9. Susmel S, O'Sullivan CK, Guilbault GG. Human cytomegalovirus detection by a quartz crystal microbalance immunosensor. Enzyme and Microbial Technology, 2000;27(9):639-645.
    10. Su X, Chew FT, Li SFY. Self-assembled monolayer-based piezoelectric crystal immunosensor for the quantification of total human immunoglobulin E. Analytical Biochemistry, 1999;273(1):66-72.
    11. Lu HC, Chen HM. A reusable and specific protein A-coated piezoelectric biosensor for flow injection immunoassay. Biotechnology Progress, 2000;16(1):116-124.
    12.蔡新霞,崔大付,韩泾鸿,尹奎植,小岛英理,相译益男.一种快速响应的压电晶体生物亲和传感器.《仪表技术和传感器》,1997;811-14.
    13.樊敏,崔大付,朱敏慧,余涛.一种广泛适用的IgG敏感膜压电免疫传感器.《仪表技术和传感器》,2000;8:6-8.
    14. Yang L, Xiao Y, Rui Z, Shangguan DH, Bo Z, Liu G. Real time kinetic analysis of the interaction between immunoglobulin G and histidine using quartz crystal microbalance biosensor in solution. Biosensors and Bioelectronics, 2003;18:1419-1427.
    15. Mirsky VM, Riepl M, Wolfbeis OS. Capacitive monitoring of protein immobilization and antigen-antibody reactions on monomolecular alkylthiol films on gold electrodes. Biosensors and Bioelectronics, 1997;12(9-10):977-989.
    16. Nicolini C, Erokhin V, Facci P, Guerzoni S, Paschkevitsch ARP. Quartz balance DNA sensor. Biosensors and Bioelectronics, 1997;12(7):613-618.
    17. Elbaum D, Nair SK, Patchan MW, Thompson RB. Structure-based design of a sulfonamide probe for fluorescence anisotropy detection of zinc with a carbonic anhydrase-based biosensor. Biosensors and Bioelectronics, 1997; 12(3): vi-vii
    18. Okahata Y, Kawase M, Niikura K, Ohtake F, Furusawa H, Ebara Y. Kinetic measurements of DNA hybridization on an oligonucleotide-immobilized 27-MHz quartz crystal microbalance. Analytical Chemistry, 1998; 70(7):1288-1296.
    19. Yamaguchi S, Shimomura T, Tatsuma T, Oyama N. Adsorption, immobilization, and hybridization of DNA studied by the use of quartz crystal oscillators. Analytical Chemistry, 1993; 65(14):1925-1927.
    20. Campbell NF, Evans JA, Fawcett NC. Detection of poly U hybridization using azido modified poly A coated piezoelectric crystals. Biochemical and Biophysical Research Communications, 1993; 196(2):858-863.
    21. Pei RJ, Hu JM, Hu Y, Zeng Y. Studies of the Piezoelectric Immunosensor for the detection of fibrin using protein A oriented immobilization of antibody. Chemical Journal of Chinese Universities, 1998; 19(3): 363-367.
    22. Wang H, Li D, Wu ZY, Shen GL, Yu RQ. A reusable piezo-immunosensor with amplified sensitivity for ceruloplasmin based on plasma-polymerized film. Talanta, 2004; 62(1): 199-206.
    23. Yao C, Zhu T, Tang J, Wu R, Chen Q, Chen M, Zhang B, Huang J, Fu W. Hybridizationof hepatitis B virus by QCM peptide nucleic acid biosensor. Biosensors and Bioelectronics, 2008; 23 (1):879-885.
    24. Zhang B, Mao QG, Zhang X, Jiang T, Chen M, Yu F, Fu W. A novel piezoelectric quartz micro-array immunosensor based on self-assembled monolayer for determination of human chorionic gonadotropin. Biosensors and Bioelectronics, 2004; 19(7): 711-720.
    25. Luo Y, Chen M, Wen Q, Zhao M, Zhang B, Li X, Wang F, Huang Q, Yao C, Jiang T, Cai G, Fu W. Rapid and simultaneous quantification of 4 urinary proteins by piezoelectric quartz crystal microbalance immunosensor array. Clinical Chemistry, 2006; 52:2273-80.
    26. Ellington AD, Szostak JW. In vitro selection of RNA molecules that bind specific ligands. Nature, 1990;346:818-22.
    27. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science, 1990;249:505-10.
    28. Stadtherr K, Wolf H, Lindner P. An aptamer-based protein biochip. Analytical Chemistry, 2005;77:3437-43.
    29. Wang W, Chen C, Qian M, Zhao X. Aptamer biosensor for protein detection based on guanine-quenching. Sensors and Actuators B: Chemical, 2008; 129(1): 211-217.
    30. Tombelli S, Minunni M, Luzi E, Mascini M. Aptamer-based biosensors for the detection of HIV-1 Tat protein . Bioelectrochemistry, 2005, 67: 135-141.
    31. Kirby R, Cho EJ, Gehrke B, Bayer T, Park YS, Neikirk DP, McDevitt JT, Ellington AD. Aptamer-based sensor arrays for the detection and quantitation of proteins. Anal Chem 2004;76:4066-75.
    32.孔宪涛.免疫球蛋白异常的基础和临床[M].上海:上海科学技术文献出版社,2003.149-203.
    33. Elsom J, Lethem MI, Rees GD, Hunter AC. Novel quartz crystal microbalance based biosensor for detection of oral epithelial cell–microparticle interaction in real-time. Biosensors and Bioelectronics, 2008; 23(8):1259-11265.
    34. Wen JD, Gray DM. The Ff gene 5 single-stranded DNA-binding protein binds to the transiently folded form of an intramolecular G-quadruplex. Biochemistry. 2002, 41(38):11438-11448.
    35. Wiegand TW, Williams PB, Dreskin SC, Jouvin MH, Kinet JP, Tasset D. High-affinityoligonucleotide ligands to human IgE inhibit binding to Fc epsilon receptorⅠ. Journal of Immunology, 1996;157:221-30.
    36. Peng CF, Chen YW, Chen W, Xu CL, Kim JM, Jin ZY. Development of a sensitive heterologous ELISA method for analysis of acetylgestagen residues in animal fat. Food Chemistry, 2008; 109(3):647-653.
    37. Chou S-F, Hsu W-L, Hwang J-M, Chen C-Y. Determination of {alpha}-fetoprotein in human serum by a quartz crystal microbalance-based immunosensor. Clinical Chemistry, 2002;48:913-8.
    38. Huang GS, Wang M-T, Hong M-Y. A versatile QCM matrix system for online and high-throughput biosensing. Analyst, 2006;131:382-7.
    39. Skládal P, Riccardi CS, Yamanaka H, Costa PI. Piezoelectric biosensors for real-time monitoring of hybridization and detection of hepatitis C virus. Journal of Virological Methods, 2004; 117(2):145-151.
    40. Lee JH, Hwang KS, Park J, Yoon KH, Yoon DS, Kim TS. Immunoassay of prostate-specific antigen (PSA) using resonant frequency shift of piezoelectric nanomechanical microcantilever. Biosensors and Bioelectronics, 2005; 20(10):2157-2162.
    41. Iwata R, Satoh R, Iwasaki Y, Akiyoshi K. Covalent immobilization of antibody fragments on well-defined polymer brushes via site-directed method. Colloids and Surfaces B: Biointerfaces, 2008; 62(2):288-298.
    42. Minunni M, Tombelli S, Gullotto A, Luzi E, Mascini M. Development of biosensors with aptamers as bio-recognition element: the case of HIV-1 Tat protein. Biosensors and Bioelectronics, 2004;20: 1149-56.
    43. Li Y, Qi H, Peng Y, Yang J, Zhang C. Electrogenerated chemiluminescence aptamer-based biosensor for the determination of cocaine. Electrochemistry Communications, 2007;9(10): 2571-2575.
    44. Liao W, Cui T X. Reagentless aptamer based impedance biosensor for monitoring a neuro-inflammatory cytokine PDGF. Biosensors and Bioelectronics, 2007; 23(2):218-224.
    45. Lerga TM, O'Sullivan CK. Rapid determination of total hardness in water using fluorescent molecular aptamer beacon. Analytica Chimica Acta, 2008; 610(1):105-111.
    46. Feng K, Sun C, Kang Y, Chen J, Jiang JH, Shen GL, Yu RQ. Label-free electrochemical detection of nanomolar adenosine based on target-induced aptamer displacement. Electrochemistry Communications, 2008;10(4):531-535.
    47. Wang W, Chen C, Qian M, Zhao XS. Aptamer biosensor for protein detection using gold nanoparticles. Analytical Biochemistry, 2008;373(2):213-219.
    48. Wochner A, Menger M, Orgel D, Cech B, Rimmele M, Erdmann V A, Gl?kler J. A DNA aptamer with high affinity and specificity for therapeutic anthracyclines. Analytical Biochemistry, 2008;373(1):34-42.
    49. Song S, Wang L, Li J, Fan C, Zhao J. Aptamer-based biosensors. TrAC Trends in Analytical Chemistry, 2008;27(2):108-117.
    1. Tuerk C, Gold L. Systematic evolution of ligands by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science 1990;249: 505–10.
    2. Ellington AD, Szostak J. In vitro selection of RNA molecules that bind specific ligands. Nature 1990;346: 818–22.
    3. Charlton J, Sennello J, Smith D. In vivo imaging of inflammation using an aptamer inhibitor of human neutrophil elastase. Chem Biol 1997;4: 809–16.
    4. Kohler G, Milstein C. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 1975;256: 496–7.
    5. Tuerk C, Eddy S, Parma D, Gold L. Autogenous translational operator recognized by bacteriophage T4 DNA polymerase. J Mol Biol 1990;213: 749–61.
    6. Jellinek D, Green LS, Bell C, Lynott CK, Gill N, Vargeese C, et al. Potent 29-amino-29deoxypyrimidine RNA inhibitors of basic fibroblast growth factor. Biochemistry 1995;34: 11363–72.
    7. Tasset DM, Kubik MF, Steiner W. Oligonucleotide inhibitors of human thrombin that bind distinct epitopes. J Mol Biol 1997; 272: 688–98.
    8. Jenison RD, Jennings SD, Walker DW, Bargatze RF, Parma D. Oligonucleotide inhibitors of P-selectin-dependent neutrophilplatelet adhesion. Antisense Nucleic Acid Drug Dev 1998;8:265–79.
    9. Kubik MF, Stephens AW, Schneider D, Marlar RA, Tasset D. High-affinity RNA ligands to human a-thrombin. Nucleic Acids Res 1994;22:2619–26.
    10. Lin Y, Padmapriya A, Morden KM, Jayasena SD. Peptide conju-gation to an in vitro-selected DNA ligand improves enzyme inhibition. Proc Natl Acad Sci U S A 1995;92: 11044–8.
    11. Cox JC, Rudolph P, Ellington AD. Automated RNA selection. Biotechnol Prog 1998;14:845–50.
    12. Jenison RD, Gill SC, Pardi A, Polisky B. High-resolution molecular discrimination by RNA. Science 1994;263: 1425–9.
    13. Haller AA, Sarnow P. In vitro selection of a 7-methyl-guanosine binding RNA that inhibits translation of capped mRNA molecules. Proc Natl Acad Sci U S A 1997;94:8521–6.
    14. Sassanfar M, Szostak JW. An RNA motif that binds ATP. Nature 1993;364: 550–3.
    15. Mannironi C, Nardo AD, Fruscoloni P, Tocchini-Valentini GP. In vitro selection of dopamine RNA ligands. Biochemistry 1997:36: 9726–34.
    16. Geiger A, Burgstaller P, von der Eltz H, Roeder A, Famulok M. RNA aptamers that bind L-arginine with sub-micromolar dissociation constants and high enantioselectivity. Nucleic Acids Res 1996; 24:1029–36.
    17. Uhlmann E, Peyman A. Antisense oligonucleotides: a new therapeutic principle. Chem Rev 1990;90: 543–84.
    18. Agrawal S. Antisense oligonucleotides: towards clinical trials. Trends Biotechnol 1996;14: 376–87.
    19. Stein CA. Exploiting the potential of antisense: beyond phosphorothioate oligodeoxynucleotides. Chem Biol 1996;3: 319–23.
    20. Stein CA. Phosphorothioate antisense: question of specificity. Trends Biotechnol 1996;14: 147–9.
    21. Hobbs J, Sternbach H, Sprinzl M, Eckstein F. Polynucleotides containing 29-amino-29-deoxyribose and 29-axido-29-deoxyribose. Biochemistry 1973;12: 5138–45.
    22. Pieken WA, Olsen DB, Benseler F, Aurup H, Eckstein F. Kinetic characterization of ribonuclease-resistant 29-modified hammerhead ribozymes. Science 1991;253: 314–7.
    23. Heidenreich O, Eckstein F. Hammerhead ribozyme-mediated cleavage of the long terminal repeat RNA of human immunodeficiency virus type 1. J Biol Chem 1992;267: 1904–9.
    24. Lin Y, Qiu Q, Gill SC, Jayasena SD. Modified RNA sequence pools for in vitro selection. Nucleic Acids Res 1994;22: 5229–34.
    25. Wiegand TW, Williams PB, Dreskin SC, Jouvin M-H, Kinet J-P, Tasset D. High-affinity oligonucleotide ligands to human IgE inhibit binding to Fce receptor I. J Immunol 1996;157:231–8.
    26. Pagratis NC, Bell C, Chang Y-F, Jennings S, Fitzwater T, Jellinek D, et al. Potent
    29-amino-, and 29-fluoro-29-deoxyribonucleotide RNA inhibitors of keratinocyte growth factor. Nat Biotechnol 1997;15:68–73.
    27. Davis KA, Lin Y, Abrams B, Jayasena SD. Staining of cell surface human CD4 with 29-F-pyrimidine-containing RNA aptamers for flow cytometry. Nucleic Acids Res 1998;26: 3915–24.
    28. Piccirilli JA, Krauch T, Moroney SE, Benner SA. Enzymatic incorporation of a new base pair into DNA and RNA extends the genetic alphabet. Nature 1990;343: 33–7.
    29. Bain DJ, Switzer C, Chamberlin AR, Benner SA. Ribosomemediated incorporation of a non-standard amino acid into a peptide through expansion of the genetic code. Nature 1992; 356: 537–9.
    30. Tor Y, Dervan PB. Site-specific enzymatic incorporation of an unnatural base, N6-(6-aminohexyl)isoguanosine, into RNA. J Am Chem Soc 1993;115: 4461–7.
    31. Schweitzer BA, Kool ET. Hydrophobic, non-hydrogen-bonding bases and base pairs in DNA. J Am Chem Soc 1995;117:1863–72.
    32. Guckian KM, Krugh TR, Kool ET. Efficient replication between non-hydrogen-bonded nucleotide shape analogues. Nat Struct Biol 1998;5:950–9.
    33. Latham JA, Johnson R, Toole JJ. The application of a modified nucleotide in aptamer selection: novel thrombin aptamers containing containing 5-(1-pentynyl)-29-deoxyuridine. Nucleic Acids Res 1994; 22:2817–22.
    34. Bock LC, Griffin LC, Latham JA, Vermaas EH, Toole JJ. Selection of single-stranded DNA molecules that bind and inhibit human thrombin. Nature 1992;355: 564–6.
    35. Liu J, Sodeoka M, Lane WS, Verdine GL. Evidence for a non-ahelical DNA-binding motif in the Rel homology region. Proc Natl Acad Sci U S A 1994;91:908–12.
    36. Blatter EE, Ebright YW, Ebright RH. Identification of an amino acid-base contact in the GCN4-DNA complex by bromouracilmediated photocrosslinking. Nature 1992;359: 650–2.
    37. Hicke BJ, Willis MC, Koch TH, Cech TR. Telomeric protein-DNA point contacts identified by photo-cross-linking using 5-bromodeoxyuridine. Biochemistry 1994;33: 3364–73.
    38. Willis MC, Hicke BJ, Uhlenbeck OC, Cech TR, Koch TH. Photocrosslinking of 5-iodouracil-substituted RNA and DNA to proteins. Science 1993;262: 1255–7.
    39. Meisenheimer KM, Meisenheimer PL, Willis MC, Koch TH. High yield photocrosslinking of a 5-iodocytidine (IC) substituted RNA to its associated protein.Nucleic Acids Res 1996;24: 981–2.
    40. Jensen KB, Atkinson BL, Willis MC, Koch TH, Gold L. Using in vitro selection to direct the covalent attachment of human immunodeficiency virus type 1 Rev protein to high-affinity RNA ligands. Proc Natl Acad Sci U S A 1995;92: 12220–4.
    41. Willis MC, LeCuyer KA, Meisenheimer KM, Uhlenbeck OC, Koch TH. An RNA-protein contact determined by 5-bromouridine substitution, photocrosslinking and sequencing. Nucleic Acids Res 1994;22: 4947–52.
    42. Eaton BE, Gold L, Hicke BJ, Janjic N, Jucker FM, Sebesta DP, et al. Post-SELEX combinatorial optimization of aptamers. Bioorg Med Chem 1997;5: 1087–96.
    43. Gold L, Allen P, Binkley J, Brown D, Schneider D, Yasset D, et al. RNA: the shape of things to come. In: Gesteland R, Atkins J, eds. The RNA world. Plainview, NY: Cold Spring Harbor Laboratory Press, 1993:497–509.
    44. Gold L, Polisky B, Uhlenbeck O, Yarus M. Diversity of oligonucleotide functions. Annu Rev Biochem 1995;64: 763–97.
    45. Jayasena SD. Aptamers: An emerging class of molecules that rival antibodies in diagnostics. Anal Chem 1999;45: 1628-1650.
    46. Griffin LC, Toole JJ, Leung LLK. The discovery and characterization of a novel nucleotide-based thrombin inhibitor. Gene 1993; 37: 25–31.
    47. Hicke BJ, Watson SR, Koenig A, Lynott CK, Bargatze RF, Chang Y-F, et al. DNA aptamers block L-selectin function in vivo. J Clin Investig 1996;98: 2688–92.
    48. Bartel DP, Szostak JW. Isolation of new ribozymes from a large pool of random sequences. Science 1993;261:1411–8.
    49. Lorsch JR, Szostak JW. In vitro evolution of new ribozymes with polynucleotide kinase activity. Science 1994;371: 31–6.
    50. Lohse PA, Szostak JW. Ribozyme-catalysed amino-acid transfer reactions. Nature 1996;381: 442–4.
    51. Wilson C, Szostak JW. In vitro evolution of a self-alkylating ribozyme. Nature 1995;374: 777–82.
    52. Drolet DW, Moon-McDermott L, Romig TS. An enzyme-linked oligonucleotide assay. Nat Biotechnol 1996;14: 1021–5.
    53. Lochrie MA, Waugh S, Pratt DG Jr, Clever J, Parslow TG, Polisky B. In vitro selectionof RNAs that bind to the human immunodeficiency virus type-1 gag polyprotein. Nucleic Acids Res 1997; 25:2902–10.
    54. Rowsell S, Stonehouse NJ, Convery MA, Adams CJ, Ellington AD, Hirao I, et al. Crystal structure of a series of RNA aptamers complexed to the same protein target. Nat Struct Biol 1998;5: 970–5.
    55. Jaeger J, Restle T, Steitz TA. The structure of HIV-1 reverse transcriptase complexed with RNA pseudoknot inhibitor. EMBO J 1998;17: 4535–42.
    56. Patel DJ, Suri AK, Jiang F, Jiang L, Fan P, Kumar RA, et al. Structure, recognition and adaptive binding in RNA aptamer complexes. J Mol Biol 1997;272: 645–64.
    57. Zimmermann GR, Jenison RD, Wick CL, Simorre J-P, Pardi A. Interlocking structural motifs mediate molecular discrimination by a theophylline RNA. Nat Struct Biol 1997;4: 644–9.
    58. Yang Y, Kochoyan M, Burgstaller P, Westhof E, Famulok M. Structural basis of ligand discrimination by two related RNA aptamers resolved by NMR spectroscopy. Science 1996;272: 1343–7.
    59. Jiang F, Kumar RA, Jones RA, Patel DJ. Structural basis of RNA folding and recognition in an AMP-RNA aptamer complex. Nature 1996;382: 183–6.
    60. Self CH, Dessi JL, Winger LA. High-performance assays of small molecules: enhanced sensitivity, rapidity, and convenience demonstrated with a noncompetitive immunometric anti-immune complex assay system for digoxin. Clin Chem 1994;40: 2035–41.
    61. Lewis JG, Manley L, Whitlow JC, Elder PA. Production of a monoclonal antibody to cortisol: application to a direct enzymelinked immunosorbent assay of plasma. Steroids 1992;57: 82–5.
    62. Hud E, Cohen MP. Evaluation and performance characteristics of a novel ELISA using monoclonal antibody to glycated albumin. Clin Chim Acta 1989;185: 157–64.
    63. Hill CS, Wolfert RL. The preparation of monoclonal antibodies which react preferentially with human bone alkaline phosphatase and not liver alkaline phosphatase. Clin Chim Acta 1989;186: 315–29.
    64. Pettersson K, Ding Y-Q, Huhtaniemi I. Monoclonal antibody based discrepancies between two-site immunometric tests for lutropin. Clin Chem 1991;37: 1745–8.
    65. Pettersson KSI, Soderholm JR-M. Individual differences in lutropin immunoreactivity revealed by monoclonal antibodies. Clin Chem 1991;37: 333–40.
    66. Bidart J-M, Bellet D. Human chorionic gonadotropin: molecular forms, detection and clinical implications. Trends Med 1993;4: 285–90.
    67. Rathnam P. Structure-function relationships of pituitary hormones HFSH, HLH, and HTSH. In: Abraham GE, ed. Radioassay systems in clinical endocrinology. New York: Marcel Dekker, 1981:21–34.
    68. Wilson C, Szostak JW. Isolation of a fluorophore-specific DNA aptamer with weak redox activity. Chem Biol 1998;5: 609–17.
    69. Davis KA, Abrams B, Lin Y, Jayasena SD. Use of a high affinity DNA ligand in flow cytometry. Nucleic Acids Res 1996;24:702-6.
    70. Davis KA, Lin Y, Abrams B, Jayasena SD. Staining of cell surface human CD4 with 2'-F-pyrimidine-containing RNA aptamers for flow cytometry. Nucleic Acids Res 1998;26: 3915-24.
    71. Ringquist S, Parma D. Anti-L-Selectin oligonucleotide ligands recognize CD62L-positive Leukocytes: binding affinity and specificity of univalent and bivalent ligands. Cytometry 1998;33: 394–405.
    72. Tom-Moy M, Baer RL, Spira-Solomon D, Doherty TP. Atrazine measurements using surface transverse wave devices. Anal Chem 1995;67:1510–6.
    73. Fodor SPA, Read JL, Pirrung MC, Stryer L, Lu AT, Solas D. Site-directed spatially addressable parallel chemical synthesis. Science 1991;251:767–73.
    74. Guo Z, Guilfoyle RA, Thiel AJ, Wang R, Smith LM. Direct fluorescence analysis of genetic polymorphisms by hybridization with oligonucleotide arrays on glass supports. Nucleic Acids Res 1994;22:5456–65.
    75. Drmanac S, Kita D, Labat I, Hauser B, Schmidt C, Burczak JD, et al. Accurate sequencing by hybridization for diagnostics and individual genomics. Nat Biotechnol 1998;16:54–8.
    76. Timofeev EN, Kochetkova SV, Mirzabekov AD, Florentiev VL. Regioselective immobilization of short oligonucleotides to acrylic copolymer gels. Nucleic Acids Res 1996;24:3142–8.
    77. Herne TM, Tarlov MJ. Characterization of DNA probes immobilized on gold surfaces.J Am Chem Soc 1997;119:8916–20.
    78. Kleinjung F, Klussmann S, Erdmann VA, Scheller FW, Furste JP, Bier FF. High-affinity RNA as a recognition element in a biosensor. Anal Chem 1998;70:328–31.
    79. Potyrailo RA, Conrad RC, Ellington AD, Hieftje GM. Adapting selected nucleic acid ligands (aptamers) to biosensors. Anal Chem 1998;70:3419–25.
    80. Holmlin RE, Dandliker PJ, Barton JK. Charge transfer through the DNA base stack. Angew Chem 1997;36:2714–30.
    81. Kelly SO, Barton JK. Electron transfer between bases in double helical DNA. Science 1999;283:375–81.
    82. Minunni M, Tombelli S, Gullotto A, Luzi E, Mascini M. Development of biosensors with aptamers as bio-recognition element: the case of HIV-1 Tat protein. Biosens Bioelectron 2004;20: 1149-56.
    83. Liss M, Petersen B, Wolf H, Prohaska E. An aptamer-based quartz crystal protein biosensor. Anal Chem 2002;74:4488-95.
    84. Stadtherr K, Wolf H, Lindner P. An aptamer-based protein biochip. Anal Chem 2005;77:3437-43.
    85. Kirby R, Cho EJ, Gehrke B, Bayer T, Park YS, Neikirk DP, et al. Aptamer-based sensor arrays for the detection and quantitation of proteins. Anal Chem 2004;76:4066-75.
    86. Wilson DH, Groskopf W, Hsu S, Caplan D, Langner T, Bauman M, et al. Rapid, automated assay for progesterone on the Abbott AxSYMTM analyzer. Clin Chem 1998;44:86–91.
    87. Cho J, Hamasaki K, Rando R. The binding site of a specific aminoglycoside binding RNA molecule. Biochemistry 1998;37: 4985–92.
    88. Potyrailo RA, Conrad RC, Ellington AD, Hieftje GM. Adapting selected nucleic acid ligands (aptamers) to biosensors. Anal Chem 1998;70:3419-25.
    89. Lauhon CT, Szostak JW. RNA aptamers that bind flavin and nicotinamide redox cofactors. J Am Chem Soc 1995;117: 1246–57.
    90. Gokulrangan G, Unruh JR, Holub DF, Ingram B, Johnson CK, Wilson GS. DNA aptamer-based bioanalysis of IgE by fluorescence anisotropy. Anal Chem 2005;77:1963-70.
    91. Piatek AS, Tyagi S, Pol AC, Telenti A, Miller LP, Kramer FR, et al. Molecular beaconsequence analysis for detecting drug resistance in Mycobacterium tuberculosis. Nat Biotechnol 1998;16: 359–63.
    92. Tyagi S, Bratu DP, Kramer FR. Multicolor molecular beacons for allele discrimination. Nat Biotechnol 1998;16:49–53.
    93. German I, Buchanan DD, Kennedy RT. Aptamers as ligands in affinity probe capillary electrophoresis. Anal Chem 1998;70: 4540–5.
    94. Deng Q, German I, Buchanan D, Kennedy RT. Retention and separation of adenosine and analogues by affinity chromatography with an aptamer stationary phase. Anal Chem 2001;73:5415-21.
    95. O’Connell D, Koenig A, Jennings S, Hicke B, Han H-L, Fitzwater T, et al. Calcium-dependent oligonucleotide antagonists specific for L-selectin. Proc Natl Acad Sci U S A 1996;93:5883–7.
    96. Kim HS, Smithies O. Recombinant fragment assay for gene targetting based on the polymerase chain reaction. Nucleic Acids Res 1988;16: 8887–903.
    97. Larzul D, Chevrier D, Guesdon JL. A non-radioactive diagnostic test for the detection of HBV DNA sequences in serum at the single molecule level. Mol Cell Probes 1989;3: 45–57.
    98. Herbert B, Bergeron J, Potworowski EF, Tijssen P. Increased PCR sensitivity by using paraffin wax as a reaction mix overlay. Mol Cell Probes 1993;7:249–52.
    99. Horton RM, Hoppe BL, Conti-Tronconi BM. Ampligrease:“hot start”PCR using petroleum jelly. Biotechniques 1994;16: 42–3.
    100. Kellogg DE, Rabalkin I, Chen S, Mukhamedova N, Vlasik T, Siebert PD, et al. Taq Start antibody:“hot start”PCR facilitated by a neutralizing monoclonal antibody directed against Taq polymerase. Biotechniques 1994;16: 1134–7.
    101. Birch DE, Kolmodlin L, Wong J, Zangenberg GA, Zocccoli MA. Simplified hot start PCR. Nature 1996;381: 445–6.
    102. Dang C, Jayasena SD. Oligonucleotide inhibitors of Taq DNA polymerase facilitate detection of low copy number targets by PCR. J Mol Biol 1996; 64: 268–78.
    103. Myers TW, Gelfand DH. Reverse transcription and DNA amplification by a Thermus thermophilus DNA polymerase. Biochemistry 1991;30: 7661–6.
    104. Tada M, Omata M, Kawai S, Saisho H, Ohto M, Saiki RK, et al. Detection of ras genemutations in pancreatic juice and peripheral blood of patients with pancreatic adenocarcinoma. Cancer Res 1993;53: 2472–4.
    105. Sobral BW, Honeycutt RJ. High output genetic mapping of polyploids using PCR generated markers. Theor Appl Genet 1993;86: 105–12.
    106. Lin Y, Jayasena SD. Inhibition of multiple thermostable DNA polymerases by a heterodimeric aptamer. J Mol Biol 1997;271: 100–11.
    107. Cao Y, Suresh MR. Bispecific antibodies as novel bioconjugates. Bioconjug Chem 1998;9:635–44.
    108. Miller PS, Bham P, Kan L-S. Synthesis and interaction of oligodeoxyribonucleotides containing 29-amino-29-deoxyuridine. Nucleosides Nucleotides 1993;12: 785–92.
    109. Lin Y, Nieuwlandt D, Magallanez A, Feistner B, Jayasena SD. High-affinity and specific recognition of human thyroid stimulating hormone (hTSH) by in vitro selected 29-amino-modified RNA. Nucleic Acids Res 1996;24: 3407–14.
    110. Gold L, Jayasena SD, Nieuwlandt D, Davis K, inventors. High affinity oligonucleotide ligands to chorionic gonadotropin hormone and related glycoprotein hormones. US patent 5,837,456, 1998.
    111. Bottger V, Micheel B, Scharte G, Kaiser G, Wolf G, Schmechta H. Monoclonal antibodies to human chorionic gonadotropin (HCG) and their use in two-site binding enzyme immunoassays. Hybridoma 1993;12: 81–91.
    112. DeRisi JL, Iyer VR, Brown PO. Exploring the metabolic and genetic control of gene expression on a genomic scale. Science 1997;278: 680–6.
    113. Dove A. Proteomics: translating genomics into products? Nat Biotechnol 1999;17: 233–6.
    1. X. Su, F. T. Chew, and S. F. Y. Li, Biosens. Bioelectron. 15, 629 (2000).
    2. X. L. Su and Y. B. Li, Biosens. Bioelectron. 19, 563 (2004).
    3. P. Skladal, R. C. dos Santos, H. Yamanaka, and P. I. da Costa, J. Virol. Methods 117, 145 (2004).
    4. X. Su, F. T. Chew, and S. F. Y. Li, Anal. Biochem. 273, 66 (1999).
    5. M. Minunni, S. Tombelli, E. Mariotti, and M. Mascini, Fresenius. J. Anal. Chem. 369, 589 (2001).
    6. K. A. Marx, Biomacromolecules 4, 1099 (2003).
    7. J. H. Lee, K. S. Hwang, J. Park, K. H. Yoon, D. S. Yoon, and T. S. Kim, Biosens. Bioelectron. 20, 2157 (2005).
    8. S. Babacan, P. Pivarnik, S. Letcher, and A. G. Rand, Biosens. Bioelectron. 15, 615 (2000).
    9. J. Yuan, Y. Tan, L. Nie, and S. Yao, Anal. Chim. Acta 454, 65 (2002).
    10. E. N. Kalmykova, E. V. Melikhova, S. A. Eremin, and T. N. Ermolaeva, Antibiot. Khimioter. 49, 8 (2004).
    11. B. Zhang, Q. Mao, X. Zhang, T. Jiang, M. Chen, F. Yu, and W. Fu, Biosens. Bioelectron. 19, 711 (2004).
    12. H. Wang, H. Zeng, Z. Liu, Y. Yang, T. Deng, G. L. Shen, and R. Q. Yu, Anal. Chem. 76, 2203 (2004).
    13. H. C. Lin and W. C. Tsai, Biosens. Bioelectron. 18, 1479 (2003).
    14. E. V. Olsen, S. T. Pathirana, A. M. Samoylov, J. M. Barbaree, B. A. Chin, W. C. Neely, and V. Vodyanoy, J. Microbiol. Methods 53, 273 (2003).
    15. Y. Y. Wong, S. P. Ng, M. H. Ng, S. H. Si, S. Z. Yao, and Y. S. Fung, Biosens. Bioelectron. 17, 676 (2002).
    16. S. H. Si, X. Li, Y. S. Fung, and D. R. Zhu, Microchem. J. 68, 21 (2001).
    17. H. Jan, H. Maria, and S. Petr, Biosens. Bioelectron. 16, 253 (2001).
    18. S. Park, W. Y. Kim, and N. Kim, Biosens. Bioelectron. 15, 167 (2000).
    19. S. Susmel, C. K. O'Sullivan, and G. G. Guilbault, Enzyme Microb. Technol. 27, 639 (2000).
    20. J. Hu, L. Liu, D. Bengt, X. Zhou, and L. Wang, Anal. Chim. Acta 423, 215 (2000).
    21. B. W. Chang, Y. M. Hsu, and H. C. Chang, Sens. Actuators B: Chem. 65, 105 (2000).
    22. M. Chen, M. H. Liu, L. Yu, G. Cai, Q. Chen, R. Wu, F. Wang, B. Zhang, T. Jiang, and W. Fu, J. Nanosci. Nanotechnol. 5, 1266 (2005).
    23. S. Tombelli, M. Minunni, and M. Mascini, Methods 37, 48 (2005).
    24. H. C. Lu, H. M. Chen, Y. S. Lin, and J.W. Lin, Biotechnol. Prog. 16, 116 (2000).
    25. K. S. Carmon, R. E. Baltus, and L. A. Luck, Anal. Biochem. 345, 277 (2005).
    26. Y. Liu, X. Yu, R. Zhao, D. H. Shangguan, Z. Bo, and G. Liu, Biosens. Bioelectron. 18, 1419 (2003).
    27. Z. Gao, F. Chao, Z. Chao, and G. Li, Sens. Actuators B: Chem. 66, 193 (2000).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700