导电聚合物纳米材料的制备及特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,导电聚合物纳米结构由于具有优异的光、电、气敏性能而成为研究的热点。本论文以新型导电聚合物聚(3,4—乙烯二氧噻吩)(PEDOT)为主体材料,从材料的合成出发,采用不同的方法制备了不同形态的PEDOT纳米结构,并用多种方法对制备的纳米结构进行表征,深入研究了PEDOT纳米结构的光、电、气体敏感性等特性,并进一步将导电聚合物纳米结构应用于有机电子器件,改善了器件的性能。其主要内容归纳如下:
     1.采用聚合和掺杂同时进行的反向胶束体系制备了粒径分散小的PEDOT纳米粒子,并用紫外—可见光光谱(UV-Vis)、傅立叶红外光谱(FT-IR)、X射线光电子能谱(XPS)、X射线衍射(XRD)、扫描电子显微镜(SEM)等分析方法对纳米粒子进行了表征。实验结果发现氧化剂用量、超声处理、聚合温度及掺杂程度对PEDOT纳米粒子的形貌、电性能及气敏性能有不同程度的影响;PEDOT纳米粒子在聚合过程中被甲基苯磺酸有效掺杂,当掺杂剂浓度在0.17 M左右时,PEDOT链的取向最为规则,在6.7°、12.7°、25°出现衍射峰;热失重法(TG)分析表明PEDOT纳米粒子的热稳定性好于普通块材,掺杂剂浓度对纳米粒子的热稳定性有一定程度影响,这是由于掺杂剂影响分子链取向而导致纳米粒子热稳定性发生变化;首次研究了PEDOT纳米粒子对HCl气体的敏感性能,发现沉积有纳米粒子的QCM器件对20 ppm气体响应时间为20 S,且具有较好的响应恢复特性,并能够有效探测较低浓度(5 ppm)的HCl气体,气敏特性明显优于普通PEDOT粒子。这是由于纳米粒子具有较大的表面积,为气体分子提供了较好的吸附和脱附条件。
     2.采用单体聚合—溶液浸润—聚合物成管同时进行的方法在氧化铝多孔模板(AAO)中制备了PEDOT纳米管。形貌分析表明合成的PEDOT纳米管管径为400~500 nm,复制了模板孔道的形状和尺寸,孔径的大小和孔道的形状对PEDOT纳米管形状进行调节;推断PEDOT纳米管在孔道中的生长包括两个过程:首先是聚合物溶液浸润整个孔道。其次,聚合过程中生成的阳离子自由基和掺杂态的PEDOT由于带正电荷而在孔道壁产生“钉扎”效应;XRD分析显示在孔道内生成的PEDOT分子链具有一定的取向性,进一步研究表明聚合物的吸附及单体聚合后的吸附在模板壁导致不同的分子链排列,使PEDOT纳米管分子排列有序性受到影响;采用四探针和扫描隧道显微镜(STM)方法研究了纳米管电性能,发现单根PEDOT纳米管的电导率较圆片值大,从5.5 S/cm到17.6 S/cm变化,这可能是由于压制成块后纳米管间的接触电阻大而导致圆片电阻较大:气体敏感性测试发现纳米管对多种挥发性有机气体有不同敏感性能,尤其对挥发性醇类,如甲醇、乙醇表现出比普通块材好得多的敏感性。测试结果表明PEDOT纳米管对1000 ppm甲醇气体的响应时间约为10~20 S,测试可重复性超过15次,说明PEDOT纳米管不仅提供了较大表面积供气体分子吸附,而且管中分子链取向一致,从而体现出较好的敏感性能。
     3.采用LB诱导沉积方法制备了不同层数的聚(3,4—乙烯二氧噻吩)/聚苯乙烯磺酸(PEDOT-PSS)导电复合膜。首次研究了十八胺(ODA)和十八胺/硬脂酸(SA)离子化单分子膜在PEDOT-PSS纳米粒子亚相及ODA/PEDOT-PSS组装体在纯水亚相上的成膜行为。实验结果发现PEDOT-PSS纳米粒子对单分子膜具有包裹作用,形成了稳定的复合单分子膜,在ODA和SA摩尔比2:1、亚相温度23℃、PEDOT-PSS浓度1×10~(-3) M、压膜速率5 mm/min、拉膜速率1 mm/min的条件下薄膜具有较好的成膜性能;二次离子质谱(SIMS)和小角X射线反射(XRR)分析表明ODA/PEDOT-PSS组装体形成的多层复合膜具有较好的层状结构,单层厚度约为23 nm,这与纳米粒子的尺寸相当;设计了不同的测试结构,测量了复合膜的垂直电导率和水平电导率,研究了薄膜的直流电流-电压特性,采用变程跳跃模型(VRH)对结果进行了拟合,结果表明三维变程跳跃模型(3D-VRH)可以较好的解释多层膜中载流子的迁移;首次制备了以PEDOT-PSS复合LB膜作为空穴缓冲层的OLED器件,发现LB膜改善了器件的载流子注入效率,但进一步的研究表明薄膜的结构稳定性还有待提高。
     4.首次采用修饰LB膜法以二十烷酸(AA)LB膜为模板,通过3,4—乙烯二氧噻吩(EDOT)单体在LB膜亲水基团间聚合,制备了AA/PEDOT复合LB膜。UV-Vis、FT-IR和XPS分析表明EDOT在多层膜中有效聚合,生成了PEDOT导电聚合物;XRR和SIMS分析表明薄膜具有较好的层状有序结构,进一步研究发现EDOT在AA多层膜中的聚合破坏了原有LB膜的有序性,这可能与聚合过程对层状结构产生的破坏作用有关:采用四探针仪及半导体测试仪研究了薄膜导电性能,发现AA/PEDOT多层膜的电导率随处理时间的变化产生突变,这与多层膜中导电通道的“渝渗”有关,在有效导电网络连通后电导率发生了突变。测试结果还表明AA/PEDOT膜导电性明显优于PEDOT旋涂膜和ODA-SA/PEDOT-PSS复合膜,这是由于原位制备的PEDOT共轭度较高,且薄膜具有很好的层状有序结构;采用垂直拉膜方式在叉指电极上制备了不同层数的AA/PEDOT膜,测量了薄膜对HCl气体的敏感性能。结果表明膜厚、处理温度、拉膜膜压对AA/PEDOT复合LB膜的气体敏感性能有不同程度的影响。发现在较小气体浓度范围(20~60 ppm),AA/PEDOT多层有序膜对气体表现出非线性响应特性,而在较高浓度范围表现出线性响应特性,其敏感机理可解释为电子在PEDOT共轭系统和氧化性气体间的转移;HCl气体在AA/PEDOT复合LB膜中的动力学过程包括气体的扩散和吸附,采用扩散理论和能带吸附理论对这一过程进行了阐述。
In recent years,conducting polymer nanostructure has been attracted more attentions due to their excellent optic,electric and gas sensitivity performances.Based on a new type of conducting polymer poly(3,4-ethylenedioxythiophene)(PEDOT),this paper focused on the preparation and characterization of PEDOT nanostructure with different method.The deep and detailed investigation on optical,electrical and gas sensitivity of PEDOT nanostructure was carried out.Furthermore,the application of PEDOT nanostructure to improve orangic electric device performance was also included.The main results are as follows:
     1.Based on reversed micelle method,small-sized PEDOT nanoparticles was prepared and different methods were utilized to characterize this nanoparticles,such as ultraviolet/visible(UV-Vis) spectroscopy,Fourier-transform infrared(FT-IR) spectrum,X-ray photoelectron spectroscopy(XPS),scanning electron microscopy (SEM) and so on.The results showed that the amount of oxidizer,ultrasonic treatment,polymerizing temperature and doping degree has different influence on morphology,electrical ability and gas sensitivity of PEDOT nanoparticles.The bragg peak of nanoparticles at 6.7°、12.7°、25°was observed by XRD and this well orientation of molecular chain was due to the effective doping of toluene-p-sulfonic acid,which also resulted in an enhancement of thermal stability of nanoparticles than conventional PEDOT.A firstly investigation of gas sensitivity of PEDOT nanoparticles to HCl gas was carried out,and it has been found that the response time of PEDOT nanoparticles deposited QCM to 20 ppm HCl gas was about 20 S and well reproducible sensitivity of QCM device was achieved.Furthermore,the nanoparticles exhibited well detecting ability to lower gas concentration(5 ppm) than conventional one and we ascribed this phenomenon to a larger surface area of nanoparticles,which provid good condition for the adsorption and desorption of analyte gas.
     2.PEDOT nanotube was fabricated by a template synthesis method.The diameter of this nanotube was about 400~500 nm,which was accordance to the size of porous AAO template,which indicated that size and shape of the obtained PEDOT nanotube can be adjusted by the template.It was presumed that two processes happen successively during the formation of nanotube.The first step was the soaking of polymerizing solution into porous template,and the second step was the adsorption of free charged cationic group and doped PEDOT onto the negative charged template surface.A XRD investigation showed well orientation of PEDOT chain in tube was formed during the synthesis process and it was also found that different arranging of molecular chain reduce the ordered structure of PEDOT nanotube.The single nanotube exhibited a conductivity about 5.5~17.6 S/cm,which was higher than a nanotube pellet due to the high contact resistance between adjacent nanotube.This nanotube showed different sensitivity to varied volatilization gas,and especially showed fast response to the methanol and ethanol than conventional bulk material.The response time of PEDOT nanotube to 1000 ppm methanol was 10~20 S and the reproducing time of tests was more than 15, which due to the larger surface area and better orientation of PEDOT molecular chain in nanotube.
     3.A Langmuir-Blodgett(LB) inducing method was firstly used to prepare single layer and multilayer conducting composite PEDOT-PSS film.The film-forming ability of ionization ODA and ODA-SA monolayer spread on PEDOT-PSS nanoparticles subphase and the behavior of ODA/PEDOT-PSS assembly particles on pure water were firstly investigated.The results indicate that nanoparaticles in suphase pack the ionization monolayer and stable complex Langmuir film was formed at air/water interface.It has been found that the best film-forming conditions for composite film were as follows:molar ration of ODA to SA was 2:1,suphase temperature was 23 centigrade,concentration of PEDOT-PSS in subphse was about 1×10~(-3) M, compressing speed and deposition speed were 5 mm/min and 1 mm/min respectively. The SIMS and XRR investigation showed that this film exhibited well ordered layer structure.Distinct interface was formed between ODA and PEDOT-PSS layer and single layer thickness of PEDOT-PSS was about 23 nm,which was well accordance to the size of PEDOT-PSS nanoparticles.Different structures were designed to test the conductive ability of these composite films and a varible range hopping(VRH) model was used to explain the film conductive mechanism.The results indicated that a 3D-VRH model explained well of transferring of charge carrier in multilayer film.Furthermore,these conducting polymeric LB film were utilized to as the hole transfer layer in OLED device,and an efficiency enhancement of carrier injection was observed,which was ascribe to the ordered structure of these film.However,a further investigation showed that this PEDOT-PSS film had inferior structure ability.
     4.An arachidic acid(AA)/PEDOT multilayer LB film was firstly prepared through a modified LB film method.UV-Vis,FT-IR,XPS,XRR and SIMS investigation indicated that polymerization of EDOT monomer occurred in nanospace between hydrophilic groups of AA molecular and well ordered PEDOT multilayer film is formed.The reduced ordered structure happened during polymerization of EDOT, which may be caused by a deformation of ordered AA LB film.A four-probe method and semiconductor testing system were used to investigate conductive performance of LB film.Abrupt change of conductivity during the polymerization of EDOT in LB film was observed and this phenomenon may result from an instant connection of conducting channel.It also has been found that AA/PEDOT film exhitbited better conductive ability than ODA-SA/PEDOT-PSS film and spin-coating PEDOT/PSS film,which due to the higherπstructure of PEDOT structure and ordered film structure.The gas sensitivity of PEDOT LB film deposited interdigital electrode to HCl was tested.The results showed that film thickness,treating temperature,deposition speed had different influence on film gas sensitivity.The AA/PEDOT film deposited device exhibited nonlinear behavior to HCl gas at lower concentration(20~60 ppm) and linear response behavior at higher gas concentration was observed.The gas sensitivity mechanism of PEDOT multilayer film can be explained by the charge transfer betweenπsystem of PEDOT and oxidization HCl system,A pervasion theory and energy band theory were utilized to explain the process of adsorption and desorption between HCl molecule and LB film.
引文
[1]A.G.MacDiarmid,Synthetic Metals:A Novel Role for Organic Polymers,Angew.Chem.Int.Ed.2001,40:2581-2590
    [2]Handbook of Conducting Polymers,Vol 1&2(Ed.:T.A.Skotheim),Marcel Dekker,New York,1986
    [3]李永舫,导电聚合物,化学进展,2002,3:207-211
    [4]A.G.MacDiarmid,Electrical conductivity in doped polyacetylene,Phy.Rev.Lett.,1977,39,1098-1101
    [5]李永舫,导电聚合物的电化学性质,复旦大学学报,2004,6:468-481
    [6]R.A.de Barros,C.R.Martins,W.M.de Azevedo,Writing with conducting polymer,Synthetic Metals,2005,155:35-38
    [7]A.J.Heeger,Semiconducting and metallic polymers:The fourth generation of polymeric materials,Angewandte Chemie International Edition,2001,40:2591-2611
    [8]H.Shirakawa,The discovery of polyacetylene film:The dawning of an era of conducting polymers,Angewandte Chemic International Edition,2001,40:2574-2580
    [9]N.F.Mort,On the transition to metallic conduction in semiconductors,Canadian Journal of Physics,1956,34:1356-1368
    [10]H.kanno,Y.Hamada,H.Takahashi,Development of OLED with high stability and luminance efficiency by co-doping methods for full color displays,IEEE Journal of Selected Topics in Quantum Electronics,2004,10:30-36
    [11]P.W.M.Blom,A.J.M.Berntsen,C.T.H.F.Liedenbaum,H.F.M.Schoo,Y.Cronen,P.V.Weijer,Efficiency and stability of polymer light-emitting diodes,Journal of Materials Science:Materials in Electronics,2000,11:105-109
    [12]J.H.Burroughs,Light-emitting diodes based on conjugated polymers,Letters to Nature,1990,347:539-541
    [13]G.Yu,J.Wang,J.Mcelvain,A.J.Heeger,Large-area,full-color image sensor made with semiconducting polymers,Advanced Materials,1998,10:1431-1434
    [14]薛怀国,沈之荃,张一烽,李永舫,导电聚合物传感器的研究进展,化学通报,200l,7:402-406
    [15]A.Sturha,S.T.Mehoo,High performance gas sensor based on multilayer films,Sensors and Actuators B,2001,32:18-22.
    [16]J.Bobacka,A.Ivaska,A.Lewenstam,Potentiometric ion sensors based on conducting polymers,2003,15:366-374
    [17]童基均,陈裕泉,共轭导电聚合物及其在传感器中的应用,传感技术学报,2003,3:335-340
    [18]罗利军,谭学才,邹小勇,蔡沛祥,导电聚合物传感器的研究进展,分析测试学报,2005,4:122-127
    [19]S.Moiler,C.Perlov,W.Jackson,C.Taussig,S.R.Forrest,Electrochromic conductive polymer fuses for hybrid organic/inorganic semiconductor memories,Journal of Applied Physics,2003,94:7811-7819
    [20]D.Nillson,T.Kugler,P.Svensson,M.Berggern,An all-organic sensor-transistor based on a novel electrochemical transducer concept printed electrochemical sensor on paper,Sensors and Actuators,B:Chemical,2002,86:193-197
    [21]J.E.MarK,Physical Properties of Polymers Handbook,chapter 23.3.6,p.324.New York:Springer-Verlag,2001
    [22]S.Moiler,C.Perlov,W.Jackson,C.Taussig,S.R.Forrst,A polymer/semiconductor write-once read-many-times memory,Letters to Nature,2003,426:166-169
    [23]C.J.Drury,C.M.J.Mutsaers,C.M.Hart,M.Matters,D.M.DE Leeuw,Low-cost all polymer integrated circuits,Applied Physics Letters,1998,73:108-110
    [24]孟晓荣,胡新婷,邢远清,张敏,噻吩类导电高聚物的研究进展,应用化工,2006,3:549-553
    [25]胡玥,刘彦军,导电高分子聚噻吩及其衍生物的研究进展,材料导报,2006,1:64-68
    [26]L.Groenendaal,G.Zotti,P.-H.Aubert,S.M.Waybright,J.R.Reynolds,Eletrochemistry of poly(3,4-alkylenedioxythiophene) derivatives,Advanced Materials,2003,15:855-879
    [27]徐景坤,蒲守智,申亮,肖强,聚(3,4-二氧乙基噻吩)在有机光电子领域的应用进展,化学研究,2005,1:94-98
    [28]C.W.Kwon,G.Campet,B.B.Kale,Structure of thin films ofpoly(3,4-ethylenedioxythiophen e),Active and Passive Electronic Components,2003,26:81-86
    [29]C.Aleman,E.Armelin,J.I.Iribarren,F.Liesa,M.Laso,J.Casanovas,Structural and eleetronie propertiesof 3,4-ehtylenedisulfanylfurane and thiophene oligomers:A theoretical investigation,2005,149:151-156
    [30]M.Skompska,J.Miecakowski,R.Holze,J.Heinze,In situ conductance studies of p- and n- doping of poly(3,4-dialkoxythiophenes),Journal of Electoannalytical chemistry,2005,577:9-17
    [31]R.Kiebooms,A.Aleshin,K.Hutchison,F.Wudl,A.Heeger,Doped poly(3,4-ethylenedioxythi ophene) films:thermal,electromagnetical and morphological analysis,Synthetic Metals,1999,101:436-437
    [32]X.Crispin,S.Marciniak,W.Osikowica,G.Zotti,A.W.Denier Van Der Gon,F.Louwet,M.Fahlman,L.Groenendall,F.D.Schryver,W.R.Salaneck,Conductivity,morphology,interfacial che mistry and stability ofpoly(3,4-ehtylenedioxythiophene)-Poly(styrenesulfonate):A photoelectron spectroscopy study,Journal of Polymer Science:Part B:Polymer Physics,2003,41:2561-2583
    [33]G.Agalya,C.Lv,X.Wang,M.Koyama,M.Kubo,A.Miyamoto,Theoretical study on the electronic and molecular properties of ground and excited states of ethelenedioxythiophene and styrenesulphonic acid,Applied Surface Science,2005,244:195-198
    [34]王升文,邓建成,易捷,周广,3,4-乙撑二氧噻吩(EDT)及其聚合物(PEDT)的合成与应用,化工中间体,2006,3:16-19
    [35]汪斌华,邓永红,戈钧,周啸,王晓工,杨邦朝,3,4-乙撑二氧噻吩的原位化学氧化受限聚合动力学研究,功能材料,2005,11:1776-1778
    [36]M.C.Morvant,In situ conductivity studies ofpoly(3,4-ethylenedioxythiophene),Synthetic Me tals,1998,92:57-61
    [37]BAYER,H.C.STARCK,Baytron inherently conductive polymer products.Available online under http://www.hcstarck-echemicals.com.
    [38]T.Johansson,L.A.A.Pettersson,O.Inganan,Conductivity of de-doped poly(3,4-ethylenediox ythiophene,Synthetic Metals,2002,129:269-274
    [39]恽正中,固体中的电输运,电子科技大学博士生课程讲义,2004年
    [40]K.E.Aasmundtveit,E.J.Samuelsen,L.A.A.Pettersson,O.Inagns,T.Johansson,R.Fdidenhans,Structure of thin films of poly(3,4-ethylenedioxythiophene),Synthetic Metals,1999,101:561-564
    [41]赵成大,导电聚合物中的孤子态,分子科学学报,2005,6:38-42
    [42]张金中,王中林,自组装纳米结构,化学工业出版社,2005
    [43]胡文平,导电聚合物自组装纳米器件,物理,2006,18:807-810
    [44]李荣金,李洪祥,胡文平,刘云圻,功能聚合物:从薄膜器件到纳米器件,物理,2006,6:476-486
    [45]A.Malinauskas,Chemical depositon of conducting polymers,Polymer,2001,42:3957-3972
    [46]Y.Leroux,E.Eang,C.Fave,G.trippe,J.C.Lacroix,Conducting polymer/gold nanoparticle hybrid materials:A step toward electroactive plasmonic devices,Electrochemistry Communications,2007,9:1258-1262
    [47]方鲲,李守平,崔陇兰,毛卫民,吴其晔,导电聚合物纳米复合乳胶微球材料研究进展,材料导报,2003,4:45-54
    [48]李海青,闫卫东,聚合物孔材料的合成与应用,高分子通报,2005,1:25-30
    [49]J.L.Duvail,P.Retho,C.Godon,C.Marhic,G.Louarn,Physical properties of conducting polymernanofibers,Synthetic Metals,2003,135:329-330
    [50]齐英群,王铁军,胡秀杰,陈萍,真空条件下自组装PEDOT/PSS-ZnO纳米线,科学通报,2005,14:1442-1444
    [51]D.W.Welsh,A.Kumar,M.C.Morvant,J.R.Reynolds,Fast electrochromic polymers based on new poly(3,4-alkylenedioxythiophene) derivatives,Synthetic Metals,1999,102:967-968
    [52]Y.J.Yang,Y.D.Jiang,J.H.Xu,J.S.Yu,Conducting polymeric nanaoparticles synthesized in reverse micelles and their gas sensitivity based on quartz crystal microbalance,Polymer,2007,48:4459-4465
    [53]李艳,张明侠,赵斌,张世民,阳明书,纳米反应器的研究进展,高分子通报,2002,1:204-213
    [54]S.-S Jeon,S.-H.Han,Y.H.Jin,S.S.Im,Polycarbonate-based conductive film prepared by coating DBSA-doped PEDOT/sorbital,Synthetic Metals,2005,148:287-291
    [55]T.Y.Kim,C.M.Park,J.E.Kim,K.S.Suh,Electronic,chemical and structural change induced by organic solvents in tosylate-doped poly(3,4-ehtylenedioxythiophene)(PEDOT-OTs),Synthetic Metals,2005,149:169-174
    [56]A.Ramanavicius,Polypyrrole-coated glucose oxidase nanoparticles for biosensor design,Sensors and Actuators B,2005,111:532-539
    [57]M.Kryszewski,Nanostructured conducting polymer composites-superparamagnetic particles in conducting polymers,Synthetic Metals,1998,94:99-104
    [58]K.-C.Ho,W.-M.Yeh,T.-S Tung,J.-Y.Liao,Amperometric detection of morphone based on poly(3,4-ehtylenedioxythiophene) immobilized molecularly imprinted polymer particles prepared by precipitation polymerization,Analytiea Chimica Acta,2005,542:90-96
    [59]Y.Lei,H.Oohata,S.-I.Kuroda,S.Sasaki,T.Yamamoto,Highly electrically conductive poly(3,4-ehtylenedioxythiophene) prepared via high-concentration emulsion polymerization,Synthtic Metals,2005,149:211-217
    [60]J.W.Choi,M.G.Han,S.Y.Kim,S.G.Oh,S.S.Im,poly(3,4-ehtylenedioxythiophene) nanoparticles prepared in aqueous DBSA solutions, Synthctic Metals, 2004, 141: 293-299
    
    [61] J. M. Pringle, O. Ngamna, J. Chen, G. G. Wallace, M. Forsyth, D. R. Macfarlane, Conducting polymer nanoparticles synthesized in an ionic liquid by chemical polymerization, Synthetic Metals, 2006,156: 979-983
    
    [62] Z. Zhang, F. Wang, F. Chen, G Shi, Preparation of polythiophene coated gold nanoparticles, Materials Letters, 2006, 60: 1039-1042
    
    [63] X. Zhang, J. -S Lee, G S. Lee, D. -K. Cha, M. J. Kim, D. J. Yang, S. K. Manobar, Chemical synthesis of PEDOT nanotubes, Macromolecules, 2006, 39: 470-472
    
    [64] J. Jang, M. Chang, H. Yoon, Chemial sensor based on highly conductive poly(3,4-ehtylenedioxy thiophene) nanorods, Adv. Mater., 2005, 17: 1616-1620
    
    [65] M. G Han, S. H. Foulger, 1-Dinmentional structures of poly(3,4-ehtylenedioxythiophene) (PEDOT): a chemical route to tubes, rods, thimbles, and belts, Chem. Commun., 2005, 1: 1-4
    
    [66] H. Yoon, M. Chang, J. Jang, Formation of 1D poly(3,4-ehtylenedioxythiophene) nanomaterials in reverse microemulsions and their application to chemical sensors, Adv. Func. Mater., 2007, 17: 431-436
    
    [67] M. R. Abidian, D. -H. Kim, D. C. Martin, Conducting-polymer nanotubes for controlled drug release, Adv. Mater., 2006,18: 405-409
    
    [68] F. Zhang, T. Nyberg, O. Inganas, Conducting polymer nanowires and nanodots made with soft lithography, Nano letters, 2002,2: 1373-1377
    
    [73] P. D. Yang, Wires on Water, Nature, 2003,425: 243-244
    
    [69] J. Joo, S. -K. Park, D. -S Seo, S. -J. Lee, H. -S. Kim, K. -S. Ryu, T. -J. Lee, S. -H. Seo, C. -J. Lee, Formation of nanoislands on conducting poly(3,4-ehtylenedioxythiophene) films by high-energy-ion irradiation: applications as field emitters and cappcitor electrodes, Adv. Func. Mater., 2005, 15: 1465-1470
    
    [70] R. Xiao, S. Cho. R. Liu, S. B. Lee, Controlled electrochemical synthesis of conductive polymer nanotubes structures, J. Am. Chem. Soc, 2007,129: 4483-4489
    
    [71] Y. P. Dan, Y. Y. Cao, T. E. Mallouk, A. T. Johnson, S. Evoy, Dielectrophoretically assembled polymer nanowires for gas sensing, Sensors and Actuators B, 2007, 125: 55-59
    
    [72] D. HohnhOolz, A. G. Macdiarmid, Line patterning of conducting polymers: new horizons for inexpensive, disposable electronic devices, Synthetic Metals, 2001,21: 1327-1328
    
    [73] B. B. Tieke, 1D polymer nanostructure for electronic applications, Adv. Mater., 1990, 2: 222-231
    [74]曹渊,陶长元,杜军,张丙怀,模版法制备纳米线的研究进展,化学世界,2006,12:753-758
    [75]丁书江,延卫,卢正险,导电聚合物微米/纳米管的研究进展,高分子通报,2004,1:8-14
    [76]龙云泽,万梅香,陈兆甲,导电聚合物微米/纳米结构的制备和性质,物理,2004,11:816-822
    [77]何靖,程发良,庞浩,廖兵,导电聚合物纳米管线的制备与应用,现代化工,2004(S1),230-232
    [78]Y.Preezant,Electrical properties of contact region of polymeric semiconductor devices.Master thesis,Technion-Israel Institute of Technology,Department of Electrical Engineering,2005
    [79]H.Sirringhaus,R.J.Wilson,R.H.Friend,W.Wu,E.P.Woo,M.Grell,Mobility enhancement in conjugated polymer field-effect transistors through chain alignment in a liquid-crystalline phase,Applied Physics Letters,2000,77:406-408
    [80]E.M.Johansson,A.Sandell,H.Siegbanhn,H.Rensmo,B.Mahrov,G.Boschloo,E.Figgemeier,A.Hagfeldt,S.K.M.Jonsson,M.Fahlman,Interracial properties ofphotovoltaic TiOz/dye/PEDOTPSS heterojunctions,Synthetic Metals,2005,149:157-167
    [81]J.Ouang,C.-W.Chu,F.-C.Chen,Q.F.Xu,Y.Yang,High-conductivity poly(3,4-ehtylenediox ythiophene):poly(styrenesulfonate) film and its application in polymer optoelectronic devices,Adv.Func.Mater.,2005,15:203-208
    [82]J.Park,C.Seoul,T.Kim,Efficient inter-molecular energy transfer via dye-dopants in poly(methylphenylsilane) based electroluminescent devices,Current Applied Physics,2005,5:293-296
    [83]Y.Wang,F.Teng,Z.Xu,Y.B.Hou,Y.S.Wang,X.R.Xu,Electroplex emission from a blend of poly(N-vinyicarbazole and 2,9-dimethy-4,7-diphenyl-1,10-phenanthroline,Eurpoean Polymer Journal,2005,41:1021-1023
    [84]Y.-M.Wang,F.Teng.Z.Xu,Y.-B.Hou,Y.-S.Wang,X.-R.Xu,Enhancement of electroples emission by using multi-layer device structure,Applied Surface Science,2005,243:355-359
    [85]J.-Y.Liao,K.-C.Ho,A photovoltaic cell incorporating a dye-sensitized ZnS/ZnO composite thin film and a hole-injecting PEDOT layer,Solar Energy Materials & Cells,2005,86:229-241
    [86]C.H.L.Weijtens,V.V.Elsbergen,M.M.De Kok,S.H.P.de Winter,Effect of the alkali metal content on the electronic properties of PEDOT:PSS,Organic Electronics,2005,6:97-104
    [87]M.S.Lee,H.S.Kang,H.S.Kang,J.Joo,A.J.Epstein,J.Y.Lee,Flexible all-polymer field effect transistor with optical transparency using electrically conducting polymers,Thin Solid Films, 2005, 477: 169-173
    
    [88] X. Cui, D. C. Martin, Electrochemical deposition and characterization of poly(3,4-ethylenediox ythiophene) on neural microelectrode arrays, Sensors and Actuators, B: Chemical, 2003, 89: 92-102
    
    [89] J. Mathiyarasu, S. Senthilkumar, K. L. N. Phani, V. Ydgnaraman, PEDOT-Au nanocomposite film for electrochemical sensing, Materials Letters (in press)
    
    [90] S. C. Meskers, Infrared detectors with poly(3,4-ethylenedioxythiophene)/poly(styrene sulfonic acid) (PEDOT/PSS) as the active material, Advanced Materials, 2003,15: 613-616
    
    [91] A. Michalska, A. Galuszkiewicz, M. Ogonowska, M. Ocypa, K. Maksymiuk, PEDOT films: Multifunctional membranes for electrochemical ion sensing, Journal of Solid State Electrochemistry, 2004,8: 381-389
    
    [92] L. Dai, P. Soundarrajan, T. Kim, Sensors and sensor arrays based on conjugated polymers and carbon nanotubes, Pure and Applied Chemistry, 2002, 74: 1753-1772
    
    [93] A. Kros, R. J. M. Nolte, N. A. J. Sommerdijik, Poly(3,4-ethylenedioxythiophene)-based copoly mers for biosensor applications, Journal of Polymer Science, Part A: Polymer Chemistry, 2002,40: 738-742
    
    [94] J. Engel, J. Chen, Z. Fan, C. Liu, Polymer micromachined multimodal tactile sensors, Sensors and Actuators, A: Physical, 2004,17: 50-61
    
    [95] M. Knite, V. Teteris, A. Kiploka, J. Kaupuzs, Polyisoprene-carbon black nanocomposites as tensile strain and pressure sensor material, Sensors and Actuators, A: Physical, 2004,110: 142-149
    
    [96] W. -L. Wang, K. -J. Liao, Y. Li, Y. -T. Wang, Piezoresistive effect of doped carbon nanotube/cellulose films, Chin. Phys. Lett., 2003,20: 1544-1547
    
    [97] J. Yang, D. H. Kim, J. L. Hendricks, M. Leach, R. Northey, D. C. Martin, Ordered surfactant-templated poly(3,4-ehtylenedioxythiophene) (PEDOT) conducting polymer on microfabricated neural probes, Acta Biomaterialia, 2005, 1: 125-136
    
    [98] P. S-Eerola, J. Bobacka, A. Lewenstam, A. Ivaska, All-solid-state chloride sensors based on electronically conducting, semiconducting and insulating polymer membranes, Sensors and Actuators B (in press)
    
    [99] M. S. Cho, H. J. Seo, J. D. Nam, H. R. Choi, J. C. Koo, K. G. Song, Y. Lee, A solid state actuators based on the PEDOT/NBR system, Sensors and Actuators B, 2006,119: 621 -624
    
    [100] M. Vazquez, P. danielsson, J. bobacka, A. Lewenstam, A. Lvaska, Solution-cast films of poly(3,4-ethylenedioxythiophene) as ion-to-electron transducers in all-solid-state ion-selective electrodes, Sensors and Actuators B, 2004,97: 182-189
    [101]Y.J.Yang,Y.D.Jiang,J.H.Xu,J.S.Yu,PEDOT multilayer LB films and their gas sensitivity based on quartz crystal microbalance,Materials Science and Engineering B,2007,139:251-255
    [102]Y.J.Yang,Y.D.Jiang,J.H.Xu,Preparation and properties of conducting polymeric ultrathin films,Acta Physico-Cnimica sinica,2007,23:484-488
    [103]M.K.Ram,O.Yavuz,M.Aldissi,HCI gas sensing based on ordered ultrathin films of conducting polymer and its nanocomposite,Synthetic Metals,2005,151:77-84
    [104]柯善明,刘来君,唐波,樊慧庆,LB膜技术在尖端材料制备中的应用,材料导报,2006,2:6-8
    [105]毕亚东,韩恩山,张西慧,LB膜技术的应用研究进展,化工进展,2002,12:894-902
    [106]欧阳健明,LB膜原理与应用,暨南大学出版社,1999
    [107]F.L.Carter,P.C.Berg,W.R.Barger,Langmuir-Blodgett test structures for molecular electronics-recent trends in Japan,Molecular electronic devices,1998,3:441-463
    [108]顾长志,孙良彦,LB膜气体传感器的发展概况,传感器技术,1992,4:8-11
    [109]S.Ozturk,D.Balkose,S.Okur,J.Umemura,Effect of humidity on electrical conductivity of zinc stearate nanofilms,Colloids and Surface A:Physicochem.Eng Aspects,2007,302:67-74
    [110]M.rikukawa,M.Nakagawa,K.Ishida,H.Abe,K.Sanui,N.Ogata,Electrical properties of conductive Langmuir-Blodgett films comprised of head-to-tail poly(3-hexylthiophene),Thin Solid Films,1996,284:636-639
    [111]C.Gerardi,F.Dericcardis,E.Milella,Characterization of polypyrrle containing Langmuir-Blo dgett films by surface specific techniques,Materials Science and Engineering C,1998,5:203-207
    [112]A.V.Nabok,B.Iwantono,A.K.Hassan,A.K.Ray,T.Wilkop,Electrical characterisation of LB films containing CdS nanoparticles,Materals Science and Engineering,2002,22:355-358
    [113]柳士忠,张贞文,王俊,杜祖亮,戴树玺,十八胺/杂多阴离子杂化LB膜的制备与表征,无机化学学报,2001,1:96-100
    [114]R.Capan,A.K.Ray,A.K.Hassan,Electrical characterization of stearic acid/eicosylamine alternate layer Langrnuir-Blodgett films incorporating CdS nanoparticles,Thin Solid Films,2007,515:3956-3963
    [115]J.H.Fendler,Chemical self-assembly for electronic applications,Chem.Mater.,2001,13:3196-3210
    [116]Z.X.Tang,S.T.Donohoe,J.M.Robinson,P.A.Chiarelli,H.L.Wang,Film formation,surface character,and relative density for electrochromic PEI/(PSS:PEDOT) multilayered thin films,Polymer,2005,46:9043-9052
    [117]徐祖顺,易昌凤,聚合物纳米粒子,化学工业出版社,2006
    [118]刘成站,褚莹,邢双喜,隋晓萌,吴子生,AEOT/异辛烷/水反胶束体系中合成导电聚苯胺,高等学校化学学报,2003,12:2239-2242
    [119]周富荣,郭晓洁,匡亚琴,反胶束微乳液法制备纳米ZnO,应用化工,2005,11:690-694
    [120]M.Muntaz,A.D.Cuendias,J.-L Putaux,E.Cloutet,H.Cramail,Synthesis of PEDOT nanoparticles and vesicles by dispersion polymerization inalcoholic media,Macromolecular Rapid Communications,2006,27:1446-1453
    [121]李勇军,刘春艳,有序纳米结构薄膜材料,化学工业出版社,2006
    [122]王利,祈志美,崔大付,微结构气敏传感器制造工艺的研究,仪表技术与传感器,1998,3:10-13
    [123]单成祥,传感器的理论与设计基础及其应用,国防工业出版社,1999
    [124]周名成,俞汝勤,紫外与可见分光光度分析法,化学工业出版社,1986
    [125]王建棋,吴文辉,冯大明,电子能谱学(XPS/XAES/UPS)引论,国防工业出版社,1992
    [126]汪昆华,罗传秋,聚合物近代仪器分析(第二版),清华大学出版社,2000
    [127]白春礼,扫描隧道显微技术及其应用,上海科学技术出版社,1992
    [128]黄春辉,李富友,黄岩谊,光电功能超薄膜,北京大学出版社,2001
    [129]P.W.M.Blom,M.C.Vissenberg,Charge transport in poly(p-phenylene vinylene) light emitting diodes,Materials Science and Engineering R:Reports,2000,27:53-94
    [130]P.M.Borsenberger,L.Pautmeier,H.B.Assler,Charge transport in disordered molecular solids,Journal of Chemical Physics,1991,94:5447-5454
    [131]P.M.Borsenberger,L.Pautmeier,H.B.Assler,Hole transport in 1,1-bis(di-4-tolylaminophen yl)eyclohexane,Journal of Chemical Physics,1991,94:8276-8281
    [132]M.H.Heng,Influence of injection barrier height and morphology on current-voltage characteristics,Applied Physics Letters,2003,82:2281-2283
    [133]K.Book,H.Bassler,A.Elschner,S.Kirchmeyer,Hole injection from an ITO/PEDOT anode into the hole transport layer of an OLED probed by bias induced absorption,Organic Electronics,2003,4:227-232
    [134]F.Cacialli,J.S.Kim,T.M.Brown,Surface and bulk phenomena in conjugated polymers devices,Synthetic Metals,2000,109:7-11
    [135]欧阳健明,白钰,于贵,王师,刘云圻,李永舫,朱道本,LB膜的XPS光谱及其电致发光,光谱学与光谱分析,2004,4:499-501
    [136]欧阳健明,LB膜的电致发光及其器件,发光学报,2000,4:363-368
    [137] A. N. Narades, M. Kemerink, A. M. Jolanda, Microscopic understanding of the anisotropic conductivity of PEDOT: PSS thin films, Adv. Mater., 19: 1196-1200
    
    [138] A. -E. Navarro, C. Moustrou, H. Brisset, N. Spinelli, Characterization of PEDOT film functionalized with a series of automated synthesis ferrocenyl-containing oligonucleotides, Tetrahedron, 2005, 61: 3947-3952
    
    [139] R. Kiefer, D. G. Weis, J. T Sejdic, G. Urban, Effect of electrochemical synthesis conditions on the deflection of PEDOT bilayers, Sensors and Actuators B, 2007,123: 378-383
    
    [140] A. Kros, Nico A. J. M. Sommerdijk, R. J. M. Nolte, Poly(pyrrole) versus poly(3,4-ethylenedio xythiophene): implications for biosensor applications, Sensors and Actuators B, 2005,106: 289-295
    
    [141] J. Li, J. -K. Kim, percolation treshold of conducting polymer composites containing 3D randomly distributed graphite nanoplatelets, Composite Science and Technology, 2007, 67: 114-2120
    
    [142] S. Forrest, P. Burrows, M. Thompson, The dawn of organic electronics, IEEE Spectrum, 2000, 37: 29-34
    
    [143] R. O. Martin, S. Kim, K. Dain, In-situ characterization of conducting polymer ultrathin films, Thin Solid Films, 2004, 31: 164-171
    
    [144] L. B. Schein, Comparison of charge transport models in molecularly doped polymers, Philosophical Magazine B, 1992, 65: 795-810
    
    [145] N. Koch, J. Schwartz, A. Kahn, Organic molecular films on gold versus conducting polymer, Organic electronics, 2005, 25: 41-47
    
    [146] M. Onoda, T. Yamaue, K. Tada, T. Kawai, K. Yoshino, Molecular self-assembly of conducting polymers, Synthetic Metals, 1997, 84: 983-984
    
    [147] J. Roncali, A. Yassar, F. Garnier, Electrochmical synthesis of highly conducting poly(thiophene) thin films, Synthetic Metals, 1989,28: 275-280
    
    [148] H. -Y. Wang, J. B. Lando, Gas-sensing mechanism of Phthalocyanine Langmuir-Blodgett films, Langmuir, 1994,10: 790-796
    
    [149] N. Sunel, A. G. Sedef, M. Parlak, L. Toppare, Electronic properties of polymide-PPY/metal junction and electrical conductivity of typical sample at low temperatures, Materials chemistry and Physics, 2005,91: 227-232
    
    [150] S. C. J. Meskers, J. K. J. Van Duren R. A. J. Janssen, Non-linearity in the I-V characteristic of poly(3,4-ethylenedioxythiophene):poly(styrenesulfonic acid) (PEDOT:PSS) due to joule heating, Organic Electronics, 2004, 5: 207-211
    [151]於黄中,刘少琼,黄河,共轭导电聚合物电致发光元件的原理与进展,2001,5:563-567
    [152]P.V.Braun,P.Osenar,Semiconducting superlattices templated by molecular assemblies,Nature,1996,380:325-328
    [153]H.Wilier,Self-organized superlattices of nanoparticles,Angew.Chem.,1996,35:1079-1081
    [154]J.H.Fendler,F.C.Meldrum,The colloid-chemical approach to nanostructured materials,Adv.Mater.,1995,100:607-632
    [155]M.P.Pileni,Nanosized particles made incolloidal assemblies,Langmuir,1997,13:3266-3276
    [156]J.Y.Ying,C.P.Mehnert,M.S.Wong,Synthesis and application of supramolecular templated mesoporous materials,Angew.Chem.Int.Ed.Eng.,1999,38:56-57
    [157]M.J.Hostetle,R.W.Murray,Colloids and self-assembled monolayers,Curr.Opin.Colloid.Interface Sci.,1997,2:42-50
    [158]Z.Zhang,M.G.Lagally,Atomistic processes in the early stages of thin-film growth,Science,1997,276:377-383
    [159]C.G.Wu,T.Bein,Conducting carbon wires in ordered,nanometer-sized channels,Science,1994,266:1013-1015
    [160]G.Binnig,H.Rohrer,Ch.Gerber,E.Weibel,Surface studies by scanning tunneling microscopy,Phys.Rev.Lett.,1982,49:57-60
    [161]Z.L.Wang,Structural analysis of self-assembling nanocrystal superlattices,Adv.Mater.,1998,10:13-30
    [162]A.J.Nozik,J.A.Turner,M.W.Peterson,Kinetics of electron transfer from photoexited superlattice electrode,J.Phys.Chem.,1988,92:2493-2501
    [163]D.S.Boudreaux,F.Williams,A.J.Nozik,Hot carrier injection at semiconductor-electrolyte junctions,J.of Appl.Phys.,1980,51:2158-2163
    [164]J.Z.Zhang,Interracial charge carrier dynamics of colloidal semiconductor nanoparticles,J.Phys.Chem.,2000,104:7239-7253
    [165]D.Duoghong,J.J.Ramsden,M.Gratzel,Dynamics of interfacial electron-transfer processes in colloidal semiconductor systems,J.Am.Chem.Soc.,1992,114:5221-5230
    [166]H.L.Wang,K.W.Helon,Charge carrier transfer dynamics of colloidal semiconductor nanoparticles,J.Phys.Chem.,2003,114:6334-6341
    [167]D.J.Norris,M.G.Bawendi,Measurement and assignment of the size-dependent spectrum in quantum dots,Phy.Rev.B:Condens.Matter,1996,53:16338-16346
    [168]M.Y.Gao,Y.Yang,B.Yang,J.C.Shen,X.C.Ai,Effect of the surface chemical modification on the potical properies of polymer-stabilized nanoparticles, J. Chem. Soci. Faraday Trans., 1995,91: 4121-4125
    
    [169] J. H. Fendler, F. C. Meldrum, The colloid chemical approach to nanostructured materials, Adv. Mater., 1995,7:607-632
    
    [170] H. C. Hamaker, The London-van der Walls attraction between spherical particles, Physica 4, 1937, 1058-1072
    
    [171] C. R. Kagan, C. B. Murray, M. Nirmal, M.G. Bawendi, Electronic energy transfer in quantum dot solids, Phys. Rev. Lett. 1996, 76: 1517-1520
    
    [172] J. C. Kaivin, M. K. Helin, Conductive performance in mixed organic-inorganic nanoparticles film, Polymer, 2003,45:632-638

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700