混合型波分复用系统中薄膜滤光片的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
混合型波分复用技术通过对传统稀疏波分复用技术与宽光谱掺铒光纤放大技术的结合使用,具备了数据传输距离远、通信效率高、抗干扰和保密性能好、结构简单、可快速组建等特点,一经问世就引起了光纤通信领域的广泛关注。但该技术对所使用的复用/解复用滤光片和增益平坦滤光片技术要求特别严格,以目前的光学薄膜制备技术研制两种滤光片难度很大,这也成为了限制混合型波分复用技术发展的主要因素。为此,本文针对混合型波分复用系统中复用/解复用滤光片和增益平坦滤光片的使用要求,通过对合金靶溅射特性、复合薄膜沉积工艺、膜系设计、制备技术、测试技术进行了详尽的理论分析和实验研究,简化了实验步骤,并利用更少的膜层研制出了低损耗CWDM(Coarse Wavelength Division Multiplexing)滤光片和高增益平坦度GFF(Gain Flattering Filter)滤光片,具体研究内容如下。
     首先采用Ta-Nb合金作为溅射靶材,02为反应气体,采用离子束反应溅射技术制备了一种新型复合薄膜。分别利用分光光度计、X射线衍射仪、X射线光电子能谱仪、扫描电镜和原子力显微镜对制备的复合薄膜的光学特性、结晶状态、成份配比、薄膜表面微结构和表面形貌进行了表征与分析,实验结果显示:相比于Ta2Oj和Nb2O5薄膜,复合薄膜更适用于研制薄膜层数多、薄膜吸收损耗低的滤光片,因此可替代Ta205或Nb2O5作为研制混合型波分复用系统中薄膜器件的薄膜材料。
     其次对不同离子束工艺参量下制备的复合薄膜、Si0:薄膜的特性进行了深入研究,系统的分析了氧气充入方式对复合薄膜特性产生的影响,并对膜厚均匀性进行修正,为研制低损耗CWDM滤光片与GFF滤光片提供了必要的条件。通过正交矩阵法进行离子源工艺参量优化实验,与传统实验方法进行对比可知,正交矩阵法需要更少的实验次数即可获取较理想的工艺参量,这对简化实验步骤、缩短滤光片的研发周期有较大帮助。
     另外,还建立了一套完善的膜系寻优设计方法,并对膜堆叠加、匹配层优化等技术进行了深入研究,选用复合薄膜与SiO2作为高低折射率薄膜材料,以WMS-13作为基底玻璃,利用较少的膜层数设计出了满足混合型波分复用系统使用要求的低损耗CWDM滤光片和高增益平坦度的GFF滤光片膜系。
     根据膜系的结构,研究并制定了采用双离子束溅射法制备CWDM滤光片、GFF滤光片的膜厚监控方案。在低损耗CWDM滤光片研制过程中,采用光电极值法控制各腔内的规整膜层厚度,采用平均时间法控制耦合层厚度。在GFF滤光片研制过程中,采用时间监控法控制膜层厚度。并分别对两种薄膜进行多次沉积,将其结果进行最小二乘拟合得到复合薄膜、SiO2薄膜的沉积速率。实验结果显示:采用上述方法可一定程度上提高离子束溅射系统的膜厚控制精确度,保证低损耗CWDM滤光片和GFF滤光片制备工作可顺利完成,并为高精密薄膜器件的制备提供了更好的膜厚控制方案。
     研制的低损耗CWDM滤光片和GFF滤光片经过光谱特性测试系统检测,具体数据为低损耗CWDM滤光片的通带中心波长为1551.1nm,通带峰值最大插入损耗-0.09dB,通带波纹在0.04dB范围内变化,在-0.5dB处通带宽17.1nm,在-35dB处带宽24.2nm,通带矩形度为0.707,截止区域的截止度均高于-40dB;GFF滤光片的波长独立损失WIL=0.063dB,误差函数EF的极大值与极小值之差为EFp-p=0.198dB;经过测试所研制的滤光片均可满足混合型波分复用系统的使用要求,本文的相关研究均取得了较满意的实验结果。
Hybrid wavelength division multiplexing technology, through the combined use of traditional coarse wavelength division multiplexing technology and wide spectrum of erbium doped fiber amplifier technology, had attracted broad attention of optical fiber communication since it appeared due to its long distance of data transmission, high efficiency of communication, anti-interference and secrecy performance, simple construction, and fast formation, etc. However, the technology was strict with the technology of multiplex/demultiplex optical filters and gain flattening filters it used. The two kinds of filters were difficult to develop with current technology of optical thin-film coating preparation, which became the main factor that restricted the development of hybrid wavelength division multiplexing technology. Therefore, based on the use requirements of multiplex/demultiplex optical filters and gain flattening filters in hybrid wavelength division multiplexing technology, through the detailed theoretical analysis and experimental research on alloy target sputtering characteristics, technique of hybrid thin-film deposition, design of film system, preparation technology and testing technology, it simplified the experimental procedure, and developed low-loss CWDM (Coarse Wavelength Division Multiplexing) filter and GFF (Gain Flattering Filter) by making use of less film in this paper.
     Firstly, Ta-Nb alloy target was used as a sputtering material, O2was used as the reaction gas, and a new type of composite film was prepared by the technique of ion beam reactive sputtering deposition (IBRSD). Respectively, spectrophotometer, X-ray diffraction, X-ray photoelectron spectroscopy, scanning electron microscopy, atomic force microscopy were used to characterize and analyze the optical properties, crystalline state, composition ratio, the film surface microstructure and surface morphology of the composite film, the experimental results showed that:compared with Ta2O5and Nb2O5, the composite film was more suitable for developing the filters with more layers and lower absorption loss, the composite film could replace Ta2O5and Nb2O5to prepare the thin-film element for hybrid-WDM systems.
     Secondly, the properties of composite film and SiO2film deposited by ion beam sputtering under different ion beam process parameters were studied, the properties of composite film under different reaction gas parameters were researched, and the uniformity of film layers'thickness was corrected, the necessary conditions for the development of low-loss CWDM filters and gain flattering filters were provided, orthogonal matrix method was used to optimize the process parameters of the ion beam, comparing with the traditional methods, the optimized methods showed that the orthogonal matrix method needed fewer experiments to obtain the desired process parameters, and the great help of simplify the experiment procedures and shorten the development cycles was given.
     A perfect optimization method for designing filter film was established, the technologies of film stack plus and matching layers optimization were studied, the composite film and SiO2were chosen as the high and low refractive index film material, WMS-13glass was chosen as the substrate material, the film systems of the low-loss CWDM filters and GFF filters were designed by making use of less film and the requirements of hybrid WDM systems had been met.
     According to the structures of thin film system, the film thickness monitoring strategy of CWDM filters and GFF filters prepared by dual ion beam sputtering methods were studied and developed. In the preparation of the low loss CWDM filters, the optical extreme value method and average time method were used to monitor layers'thickness. In the preparation of the GFF filters, time monitoring method was used to control layers'thickness. The deposition rates of composite and SiO2film were acquired by the least square fitting for results of different deposition experiments. The experimental results showed that the film thickness monitoring precision of ion beam sputtering system could be improved by using those methods, the preparation work of low-loss CWDM and GFF filters could be successfully completed and a better film thickness monitoring scheme was provided for the preparation of high precision thin film devices.
     The transmission spectrum of the preparation of low-loss CWDM filter had been tested, which demonstration that the center wavelength of filter was1551.1nm, the width of the filter's pass band was17.1nm and24.2nm in the region of-0.5dB and-35dB respectively, the worst insertion loss within pass band region is-0.09dB, the ripple of the pass band is0.04dB, and the rectangle degree was0.707; the transmission spectrum of the preparation of GFF filter had been tested, which demonstration that the wavelength independent loss of GFF was0.063dB, the difference of maximum and minimum of error function was0.198dB. The results shown that the preparation of the filters met the using requirements of hybrid wavelength division multiplexing system well after testing, the related researches had achieved satisfactory results.
引文
[1]H.A.Macleod. Thin-Film Optical Filters. New York:Taylor & Francis,1969:80-95
    [2]吴自勤.薄膜生长.北京:科学技术出版社,2001:58-82
    [3][日]金原粲.藤原英夫著, 王力衡译.薄膜.北京:电子工业出版社,1988:58-72
    [4]唐晋发,郑权.应用薄膜光学.上海:科学技术出版社,1984: 122-135
    [5]林永昌,卢伟强.光学薄膜原理.北京:国防工业出版社,1990: 142-181
    [6][英]希瑟.M.利德尔著唐晋发,顾培夫译.多层膜设计中的计算机辅助技术.杭州:浙江大学出版社,1984:12-22
    [7]尹树百.薄膜光学-理论与实践.北京:科学出版社,1987:1-4
    [8]P.M. Martin. Handbook of Deposition Technologies for Films and Coating. William Andrew.2009:23-32
    [9]H.K.Pulker. Coating on Glass. Elsevier Science, Second Edition,1999:42-50
    [10]K.S. Sree Harsha. Principles of Vapor Deposition of Thin Flims. Elsevier Science,2006:37-41
    [11]Willey R R. Practical design and product ion of optical thin films. New York:Marcel Dekker Inc,1996:109-121
    [12]王英剑,李庆国,范正修.电子束、离子辅助和离子束溅射三种工艺对光学薄膜性能的影响.强激光与粒子束.2003,15(09):841-844
    [13]杨祥林.光纤通信系统.北京:国防工业出版社,2000:2-4
    [14]Bruce Nyman. Technology trends in dense WDM demultiplexer. Optical fiber technolog.2001, (7):255-257
    [15]Smit M K. Phasar based WDM devices:Pricipals, design, and applications. IEEE J. Select Topics Quantum Electronics.1996, (2):236-239
    [16]Maack D R. Reliability method dologies for fiber optic components. Optics & Photonics News.2002,32 (5):34-36
    [17]曾铁坚.波分复用技术在HFC网的应用研究.有线电视技术.2008,15(6):22-25
    [18]张成良.WDM技术的现状与发展趋势.电信科学,1998,(9):23-25
    [19]史黛芬,亚力山大.密集波分复用(DWDM).亚太电信发展.1997,9:80-82
    [20]小林功郎.光集成器件.北京:科学出版社,2002:170-181
    [21]唐晓东,曾庆济,金耀辉等.全光通信网光电器件及其最新发展.光通信技术.2001,25(2):90-93
    [22]顾培夫,李海峰,章岳光等.光学薄膜在波分复用系统中的应用.光学仪器,2001,23(5):105-106
    [23]曹自强.光纤制导技术及其应用.光子学报.2007,36(S1):53-55.
    [24]刘雪辰,胡鹏,赵岩.鱼雷光纤线导光传输技术研究.鱼雷技术.2013,21(01):34-38.
    [25]吴静,商海英,韦正世.光纤制导技术及器件的发展.光纤与电缆及其应用技术.2006,39(4):7-11.
    [26]刘金声.离子束沉积薄膜技术及其应用.北京:国防工业出版社,2003:1-3
    [27]V.S.Smentkowski. Trends in sputtering. Progress in Surface Science.2000,32 (2):51-58
    [28]K.Wasa, S.Haber. Handbook of Sputter Deposition Technology. William Andrew,1993:65-71
    [29]刘国平.网络时代光纤通信技术的应用与发展前景.科技资讯.2008,5(36):31-36
    [30]樊昌信,张甫翊,徐炳翔等.通信原理.北京:国防工业出版社,2000:112-132
    [31]冷鹿峰,苏翼凯.高速光纤传输系统.上海:上海交通大学出版社,2009:185-190
    [32]董渊.密集波分复用技术及其在南京联通传输网络中应用的研究:[硕士学位论文].南京:南京邮电大学,2011
    [33]李覆信,沈建华.光纤通信系统.北京:机械工业出版社,2003:22-27
    [34]M.Duelk. Next-generation 100G ethemet. European Conference on Optical Communication.2005 (5):15-18
    [35]G. Raybon, RJ.Winzer. 100Gb/s challenges and solutions. Optical Fiber communication/National Fiber Optical Engineers Conference.2008:1-35.
    [36]J.Hecht. OTDM promises high communications speeds using optical processors. Laser Focus World.2009,12 (04): 121-124
    [37]张永鹏,杨祎。光无源接入网复用技术比较.现代电子技术.2009,33(09):63-65
    [38]徐宁榕.WDM技术与应用.北京:人民邮电出版社,2002:3-5
    [39]张崇富.光码分复用(OCDM)关键技术及应用研究:[博士学位论文].成都:电子科技大学,2009
    [40]吕立冬.频分复用相干光时域反射系统研究:[博士学位论文].南京:南京大学,2012
    [41]董潮云.光纤通信技术的现状及发展趋势分析.信息通信.2013,27(01):237-238
    [42]Bruce Nyman. Technology trends in dense WDM demultiplexers. Optical fiber technology,2001, (7):255-257
    [43]Takahasi H, Ods K, Toba H, et al. Transmission characters of array waveguide in wavelength multiplexer. Journal of Ligthwave Tech.1995,13 (3):447-455
    [44]王志明,孙树东.粗波分复用(CWDM)技术及其应用.电力系统通信.2005,26(148):52-54
    [45]张劲松,陶智勇,韵湘.光波分复用技术.北京:北京邮电大学出版社,2002:12-20
    [46]刘海.混合无源光网络技术研究:[博士学位论文].武汉:华中科技大学,2009
    [47]何华,高永琪,张志元.鱼雷光纤线导系统传输波长的选择研究.舰船电子工程.2008,28(09):196-199
    [48]Black Shark. Jane's Underwater Warfare Systems. Janes Information Group,2009:6-10
    [49]Joon Tae Ahn. All optical gain clamped erbium doped fiber amplifier with improved noise figure and freedom from relaxation oscillation. Photonics Technology Letters, IEEE.2004,16 (01):84-86
    [50]Sakamoto, T. Rare earth doped fiber amplifier for eight channel CWDM transmission systems. Optical Fiber Communication Conference.2004,5 (02):22-27
    [51]P.P. Hema, Prof.A.Sangeetha. Analysis of four channel CWDM transceiver modules based on extinction ratio and with the use of EDFA. International Journal of Engineering and Technology.2013,5 (12):2895-2901
    [52]V.Tran, EDFA transient control based on envelope detect for opt. Burst Swit. Netw.2005,17 (01):1768-1773
    [53]M. Hashimoto, H. Sawada, M. Yoshida, et al. A new method for low noise automatic gain control of EDFA's for WDM systems in metropolitan networks. Proc ECOC.2001,16(01):174-175
    [54]Toshiyuki Miyamoto, Masato Tanaka, Junko Kobayashi, et al. Highly nonlinear fiber-based lumped fiber raman amplifier for CWDM transmission systems. Journal of Lightwave Technology.2005,23 (11):3475-3481
    [55]Scott S-H Yam, Youichi Akasaka, Yoshinori Kubota, et al. Hybrid doped fiber amplifier with 100nm bandwidth for coarse wavelength division multiplexing. Optics Communications.2005,249 (4):539-542
    [56]Joao Batista Rosolem, Antonio Amauri Juriollo, Roberto Arradi, et al. S-C-L triple-band double-pass erbium-doped silica fiber amplifier with an embedded DCF module for CWDM applications. Journal of Lightwave Technology. 2006.24 (10):3691-3697
    [57]J.B. Rosolem, A. A. Juriollo, M. A. Romero. Polarization analysis in double pass erbium doped fiber amplifiers with an embedded DCF module. IEEE Photonics Technology Letters.2004,16 (8):1828-1833
    [58]胡台光.波分复用器件现状.光通信技术.2000,25(3):79-83
    [59]杨军,明海.光学薄膜在光通信中应用.光电子技术与信息.2003,16(3):33-36
    [60]洪宝玉.声光可调谐掺铒光纤激光器的研究:[硕士学位论文].天津:天津大学,2004
    [61]白胜元.光学薄膜设计及其在光波分复用系统中的应用:[博士学位论文].浙江:浙江大学,2001
    [62]Michel Lequime. Tunable thin-film filters:review and perspectives. Proceedings of SPIE.2004:302-311
    [63]Angus Macleod. Challenges in the design and production of narrow band filters for optical fiber telecommunications. SPIE.2000,40 (3):46-57
    [64]Dennis Derickson, Rance Fortenberry, Mike Scobey, et al. Advancements in thin-film filters for telecommunications applications. Proceedings of SPIE.2003,5246:595-607
    [65]张晋荣.用于超宽带多通道WDM的薄膜光滤波器的研究:[硕士学位论文].吉林:吉林大学,2009
    [66]郑长波,徐惠敏,杨恒等.离子束溅射沉积薄膜技术概述.实验室科学.2007,4(4):153-157
    [67]刘金声.离子束沉积薄膜技术及应用.北京:国防工业出版社,2003,8-26
    [68]晏建武.纳米Ni-Cr薄膜的制备、表征及其性能研究:[博士学位论文].长沙:中南大学,2006
    [69]唐伟忠.薄膜材料制备原理技术及应用.北京:冶金工业出版社,2003,57-79
    [70]杨烈宇,关文铎,顾卓明.材料表面薄膜技术.北京:人民交通出版社,1991,75-76
    [71]黄清明,俞建长,吴万国.薄膜镀层的XRD分析.福州大学学报.2004,32(6):773-775
    [72]江美福.反应磁控溅射法制备的氟化类金刚石薄膜的结构和性能研究: [博士学位论文].苏州:苏州大学. 2005
    [73]Chhowalla M, Ferrari A C, Robertson J. et al. Evolution of sp2 bonding with deposition temperature in tetrahedral amorphous carbon (ta-C) studied by Raman spectroscopy. Applied Physics Letters,2000,76:1419-1421
    [74]何宇亮,陈光华,张仿清.非晶态半导体物理学.北京:高等教育出版社,1989:103-133
    [75]石光,章明秋,容敏智等.X射线光电子能谱技术在高分子材料摩擦化学研究中的应用.化学研究.2004,15(3):75-80
    [76]马孜,吕百达.光学薄膜表面形貌的原子力显微观察闭.电子显微学报.2000,19(5):704-708
    [77]钱欣,程蓉.原子力显微镜在合成膜表征中的应用.膜科学与技术.2004,24(2):62-67
    [78]Zdunek K. Concept techniques deposition mechanism of impulse plasma deposition. Surf Coat Tech.2007,201: 4813-4816
    [79]Anger M A, Vazquez L, Jergel M, et al. Structure and morphology evolution of ALN films grown by DC sputtering. Surface and Coatings Technolgy.2004,26 (140):180-181
    [80]Shroder R E, Nemanich R J, Glass J T. Analysis of the composite structures in diamond thin films by Raman spectroscopy. Phys Rev B 41.1990,3738-3745
    [81]李小宁.冷凝泵的内部构造、工作原理及其维护保养.真空.2000,37(06):43-46
    [82]尤大伟.制备光学薄膜的离子源技术概述.真空科学与技术学报.2009,29(1):107-113
    [83]顾培夫,白胜元,李海峰等.密集波分复用薄膜干涉滤波片的设计.光学学报.2002,22(7):794-797
    [84]Ralf Faber, Keqi Zhang, Alfons Zoeller. Design and manufacturing of WDM narrow band interference filters. SPIE.2000,40 (3):48-64.
    [85]狄国庆.溅射制备Ta205薄膜的表面形貌与光学特性.物理学报.2011,60(3):038101-1-038101-7
    [86]袁文佳,章岳光,沈伟东等.离子束溅射制备Nb205光学薄膜的特性研究.物理学报.2011,60(4):047803-]-047803-6
    [87]李晓平.WDM薄膜滤光片和分束器的设计与制造研究:[博士学位论文].武汉:华中科技大学,2005
    [88]范平,郑壮豪,张东平等.离子束溅射制备CulnSe2薄膜的研究.真空科学与技术学报.2009,29(6):659-663
    [89]朱志强,丁铁柱,张利文等.离子束溅射La0.5SrO0.5CoO3-δ薄膜的XRD和XPS研究.真空科学与技术学报.2006,26(6):494-499
    [90]赖发春,林丽梅,瞿燕.反应磁控溅射制备Ti02和Nb205混合光学薄膜.光子学报.2006,35(10):1551-1554
    [91]唐晋发,顾培夫,刘旭等.现代光学薄膜技术.浙江:浙江大学出版社,2006:403-412
    [92]邵淑英,范正修,范瑞瑛.沉积温度对电子束蒸发沉积Zr02薄膜性质的影响.中国激光.2004,31(06):701-704
    [93]AI-JUMAILY GA, EDLOU S M. Optical properties of tantalum pentoxide coatings deposited using ion beam processes. Thin Solid Film.1992,209 (2):223-229
    [94]Ma Qing, Rosenberg Richard A. Angle-resolved X-ray photo electron spectroscopy study of the oxides on Nb surfaces for super conducting r.f.cavity applications. Appl Surf Sci.2003,206(4):209-217
    [95]Zhao Zhiwei, Tay Beng kang, Yu Guo qing. Room temperature deposition of amorphous titanium dioxide thin film with high refractive index by a filtered cathodic vacuum arctechnique. Appl Opt.2004,43 (6):1281-1285
    [96]S. Mohan, M.G.Krishna. A review of ion bean assisted deposition of optical thin films. Vacuum.1995,46 (7): 645-651
    [97]汤雪飞,范正修,王之江.离子束溅射沉积光学薄膜速率分布.中国激光.1993,20(5):345-348
    [98]CHEN Kui. Experimental Design and Analysis. BeiJing:Tsinghua University Press.1996:94-120.
    [99]LI Zhaohui, MALIK O P. An orthogonal test approach based control parameter optimization and its application to a hydro-turbine governor. IEEE Transactions on Energy Conversion.1997,12 (4):388-392.
    [100]梁静.粗波分复用(CWDM)技术及其在接入网中的应用.通信技术.2009,42(07):216-218
    [101]Bai Sengyuan, Gu Peifu, Liu Xu et al. Optical stability of thin film filters. Acta Photonica Sinica.2001,30(5): 576-580
    [102]Takashashi H. Temperature stability of thin-film narrow bandpass filters produced by ion assisted deposition. Applied Optics.1995,34 (4):667-675
    [103]Yanagimachi Y, Oguri H, Nayyer J. High performance and highly stable 0.3 nm full-width at half maximum interference optical filters. Applied Optics.1994,33 (16):3513-3517
    [104]Minowa J, Fujii Y. High performance bandpass filter for WDM transmission. Applied Optics.1984,23(2):193-194
    [105]于文兵,吕品.基于遗传算法的窄带滤光片膜系最佳设计.武汉理工大学学报.2004,26(5):32-34
    [106]D. E. Goldberg. Genetic Algorithms in Search Optimization and Machine Learning. Reading:Addison Wesley, 1989:58-64
    [107]周明,孙树栋.遗传算法原理及应用.北京:国防工业出版社,1999:78-89
    [108]S. Martins, J. Rivory, M. Schoenauer. Synthesis of optical multiplayer systems using genetic algorithms. Appl.Opt. 1995,34 (13):2247-2254
    [109]俞侃,廖剑锋,张晓丹等.基于遗传算法的斜入射窄带滤光片膜系优化设计.光子学报.2013,42(02):18]-185
    [110]杨永亮,刘国军,付秀华等.激光敌我识别系统中滤光膜的研制.光学学报.2012,32(1):318-324
    [111]唐晋发,顾培夫,刘旭等.现代光学薄膜技术.杭州:浙江大学出版社,2006:123-131
    [112]Agilent8164A光波测量系统说明书.美国Agilent公司,2003
    [113]林永昌,李芳,刘育梁.增益平坦滤光片的设计.光学仪器.2004,26(2):5-7
    [114]张立超.溅射法制备多层膜沉积速率的标定.光学精密工程.2010,18(12):2530-2536
    [115]SPILLER E. Soft X-Ray Optics. Bellingham:SPIE Press,1994:1567-1579
    [116]陈浩海,王英.GFF制作过程中的EF指标监测的实现.光通信研究.2006,32(6):61-63

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700