真空紫外光学薄膜制备及其性能检测技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为满足精密光学系统的性能需求,真空紫外光学薄膜元件的尺寸和数值孔径越来越大,对制备高性能的真空紫外光学薄膜提出更多的挑战。主要包括真空紫外光学薄膜光学常数确定、光学元件薄膜厚度非均匀性校正和膜料沉积角对真空紫外光学薄膜性能影响等方面。
     本文详细介绍了光度法确定薄膜光学常数。基于光学薄膜折射率随其厚度变化关系,分别建立折射率均匀和折射率非均匀薄膜模型,提出了用于消除基底背面反射光对实测薄膜光谱数据的影响办法,采用光谱包络法确定光学薄膜材料在真空紫外波段的光学常数。仔细阐述真空紫外光学薄膜基底光学常数的获取方法。另外,将带吸收的等效界面层引入光学薄膜光学常数确定中,首次报道了依据薄膜实测光谱数据,使用多参数拟合法同时确定薄膜材料的光学常数和表面均方根粗糙度。与原子力显微镜实测薄膜均方根表面粗糙度比较,证实了本模型的正确性。
     针对真空镀膜机行星旋转系统的特点,分别建立了未使用和使用修正挡板修正时大尺寸平面/曲面光学元件上沉积光学薄膜厚度模型。详细说明使用计算机辅助完成适用于真空镀膜机行星旋转系统中的修正挡板设计流程,并介绍了两种薄膜材料发射特性的确定办法。全面叙述计算机辅助设计的修正挡板在真空镀膜过程中对大尺寸平面形、凸球形和凸锥形光学元件上光学薄膜厚度非均匀性校正的验证性实验,实验结果证明本文建立的未使用/使用修正挡板时真空镀膜机行星旋转夹具系统中光学元件上沉积的薄膜厚度模型准确性和修正挡板优化设计方法的可靠性。
     氟化镁是真空紫外波段最常用的薄膜材料,采用热蒸发镀膜工艺制备了不同沉积角下的氟化镁光学薄膜。分别使用紫外-可见分光光谱仪、扫描电镜、原子力显微镜、x射线衍射仪、红外光谱仪等对氟化镁薄膜的光谱性能、剖面微观结构、表面形貌、x射线衍射图谱和红外特征谱进行表征,分析氟化镁薄膜光谱性能和微观结构随薄膜材料沉积角的变化关系。研究结果表明,当前工艺条件下制备的氟化镁薄膜是倾斜圆柱状生长,并且具有多晶结构。随着氟化镁薄膜材料的沉积角增加,热蒸发工艺制备的氟化镁光学薄膜的折射率、聚集密度和晶粒尺寸下降,同时该薄膜的消光系数、总光学损耗、表面粗糙度、缺陷密度和吸附的水含量都增加。另外,还分析了不同沉积角下制备的氟化镁薄膜的光谱老化特性,以及紫外辐照处理对老化后的氟化镁光学薄膜的光学性能提高。
With the development of vacuum ultraviolet (VUV) light sources, especially excimer lasers,free electron lasers, and all solid state lasers pumped by semiconductor lasers have shownwidespread potential for a great many applications such as the laser spectrum in VUV,fabrication of micro-electronic devices, precision material processing, and biomedicineengineering. To meet the performance requirements of precision optical systems, the size and thenumerical aperture of the vacuum ultraviolet optical elements is increase. There are morechallenges for the preparation of high-performance vacuum ultraviolet optical coatings,including determination of the optical constants of optical coatings used for the VUV spectralregion, correction of the film thickness non-uniformity deposited on the optical elements and theeffects of deposition angle onto the performances of optical coatings.
     Determination of the optical constants of thin film by a spectrophotometric method isdescribed in the paper. Based on the variation of the refractive index with the thickness of thinfilm, refractive index homogeneous and inhomogeneous coating models are developed. A newmethod is given to correct the spectrum measurements of thin films to eliminate the effect due tothe reflectance from the rear surface of the substrate. Finally, the optical constants of thin filmare extracted from envelops of the transmittance and/or reflectance spectra based on the models.A simple approach for determining the optical constants of substrate is also described. Moreover,a model taking into account surface roughness of an optical coating according to effectiveabsorbing layer theory has been proposed and applied to determine simultaneously the opticalconstants and surface roughness of the optical coating from spectrophotometric measurements.The determined surface roughness of thin film is in good agreement with atomic forcemicroscope (AFM) measurement.
     According to the characteristics of a coating machine with a planetary rotation system, themodels of thin films deposited on a large-size flat/curved optical elements without/withshadowing mask have been developed. The progress of the shadowing mask designed withcomputer-aided for the coating machine having a planetary rotation system is described in detail,and two methods has been used to determinate the emission characteristics parameter of thin filmmaterial. Typical experiments for thickness non-uniformity corrections of thin films deposited onthe flat, convex spherical and convex conical substrates with optimized shadowing mask arecomprehensively performed. The experimentally achieved results strongly suggest that the developed thickness models as well as the corresponding shadowing mask design via numericaloptimization work well for the thickness uniformity correction of thin films deposited on variousshaped substrates with large diameters and/or strongly curved surfaces.
     Magnesium fluoride (MgF2) is a low refractive index material commonly used for VUVoptical coating applications owing to its high transparency in these wavelength ranges. In thepapar, MgF2films deposited by resistive heating evaporation with oblique-angle deposition havebeen investigated in details. The optical and micro-structural properties of single-layer MgF2films were characterized by UV-VIS and FTIR spectrophotometers, scanning electronmicroscope (SEM), AFM, and x-ray diffraction (XRD), respectively. The dependences of theoptical and micro-structural parameters of the thin films on the deposition angle were analyzed.It was found that the MgF2film in a columnar microstructure and polycrystalline. As thedeposition angle increased, the refractive index, packing density and grain size of the MgF2filmsdecreased, while the extinction coefficient, optical loss, root-mean-square (rms) roughness,dislocation density and adsorbed water content increased. Furthermore, the spectral agingcharacteristics of MgF2thin films prepared under different deposition angles are investigated.The improvement of the optical performances of the MgF2thin films treated by UV irradiationhas been proved.
引文
[1] N. Kaiser, H. Pulker. Optical Interference Coatings[M].(刘旭、王占山、易葵译).杭州:浙江大学出版社,2008,178~195.
    [2] H. Blaschke, W. Riggers. Exposure of high-reflecting fluoride coatings under high fluence conditions at193nm[J]. SPIE,2010,7842:78420I.
    [3] M. Bauer, M. Bischoff, S. Jukresch, T. Hülsenbusch, A. Matern, A. G rtler, R. W. Stark, A. Chuvilin, U.Kaiser. Exterior surface damage of calcium fluoride outcoupling mirrors for DUV lasers[J]. Optics Express,2009,17:8253~8263.
    [4] C. Zaczek, S. Müllender, H. Enkisch, F. Bijkerk. Coatings for next generation lithography[J]. SPIE,2008,7101:71010X.
    [5] S. Schroeder, M. Kamprath, A. Dupparé. Characterization of thin films and bulk materials for DUVoptical components[J]. SPIE,2007,6403:64031L.
    [6] N. F. Borrelli, C. Smith, D. C. Allan, T. P. Seward. Densification of fused silica under193-nmexcitation[J]. J. Opt. Soc. Am. B,1997,14:1606~1615.
    [7] R. Thielsch, J. Heber, N. Kaiser, S. Martin, E. Welsch. Critical issues on the assesment of laser indueddamage thresholds of fluoride multilayers coatings at193nm[J]. SPIE,2000,3902:224~234.
    [8] S. Günster, H. Blaschke, D. Ristau. Laser resistivity of selected multilayer designs for DUV/VUVapplications[J]. SPIE,2007,6403:640318.
    [9] H. Blaschke, D. Ristau, W. Riggers, and S. Schippel. Influence of pre-treatment conditions on theresistivity of fluoride multilayers[J]. SPIE,2008,7132:71320I.
    [10] D. C. Allan, C. Smith, N. F. Borrelli, T. P. Seward.193-nm excimer-laser-induced densification of fusedsilica[J]. Optics Letters,1996,21:1960~1962.
    [11] V. Liberman, M. Rothschild, J. H. C. Sedlacek, R. S. Uttaro. Excimer-laser-induced degradation of fusedsilica and calcium fluoride for193-nm lithographic applications[J]. Opt. Lett.,1999,24:58~60.
    [12] S. Laux, H. Bernitzki, M. Klaus, H. Lauth, N. Kaiser. Long-time radiation resistant optical coatings forUVexcimer laser applications[J]. SPIE,2001,4347:13~16.
    [13]尚淑珍,易葵,邵建达,范正修.光刻机系统中193nm薄膜的研究进展[J].激光与光电子进展,2006,43:11~14.
    [14] J. Ullmann, M. Mertin, H. Lauth, H. Bernitzki, K. Mann, R. Thielsch, N. Kaiser. Coated Optics forDUV-Excimer Laser Applications[J]. SPIE,2000,3902:514~527.
    [15] Y. Taki. Structures and optical constants of magnetron sputtered fluoride coatings for deep ultravioletlithography[J].7th International Symposium on Sputtering and Plasma Processes2003.
    [16] Y. Taki. Film structure and optical constants of magnetron-sputtered fluoride films for deep ultravioletlithography[J]. Vacuum,2004,74:431~435.
    [17] H. A. Macleod. Polarization in optical coatings[J]. SPIE,2005,5875:587504.
    [18] P. Kelkar, B. Tirri, R. Wilklow, D. Peterson. Deposition and characterization of challenging DUVcoatings[J]. SPIE,2008,7067:706708.
    [19] S. Laux, H. Bernitzki, D. Fasold, M. Klaus, U. Schuhmann. Low-loss HR coatings on fused silicasubstrates for193nm micro-lithography applications[J]. SPIE,2008,7101:71010Y.
    [20] T. Sandnerl, J. U. Schmidt, H. Schenk, H. Lakner, A. Gatto, M. H. Yang, N. Kaiser, S. Braun, T. Foltyn,A. Leson. Highly reflective coatings for micromechanical mirror arrays operating in the DUV and VUVspectral range[J]. SPIE,2005,5721:72~80.
    [21] J. Wang R. L. Maier. Assessment of AR coated CaF2DUV optical components[J]. OSA, WF6-8(2004).
    [22] S. Z. Shang, J. D. Shao, C. Y. Liao, K. Yi, Z. X. Fan, L. Chen. High-reflectance193nm Al2O3/MgF2mirrors[J]. Applied Surface Science,2005,249:157~161.
    [23] P. Kadkhoda, H. Blaschke, J. Kohlhaas, D. Ristau. Investigations of transmission and reflectance in theDUV/VUV spectral range[J]. SPIE,2000,4099:311~318.
    [24] A. Gatto, M. Yang, N. Kaiser, S. Günster, D. Ristau, M. Trovo, M. Danailov. Toward resistantvacuum-ultraviolet coatings for free-electron lasers down to150nm[J]. Applied Optics,2006,45:7316~7318.
    [25] S. Günster, D. Ristau, A. Gatto, N. Kaiser, M. Trovó, M. B. Danailov. VUV Optics Development for theELETTRA Storage Ring FEL[J]. Proceedings of the2004FEL Conference,2004,233~236.
    [26] S. Günster, D. Ristau, A. Gatto, N. Kaiser, M. Trovó, M. Danailov. Storage ring free-electron lasing at176nm-dielectric mirror development for vacuum ultraviolet free-electron lasers[J]. Applied Optics,2006,45:7316~7318.
    [27] M. Trovo, L. A. Clarke, M. E. Couprie, G. Dattoli, D. Garzella, A. Gatto, L. Giannessi, S. Gunster, N.Kaiser, M. Marsi, M. W. Poole, D. Ristau, R. P. Walker. Operation of the European storage ring FEL atELETTRA down to190nm[J]. Nucl. Instrum. Methods Phys. Res. A,2002,483:157~161.
    [28] A. Gatto. High-performance deep-ultraviolet optics for free-electron lasers[J]. Applied Optics,2002,41:3236~3241.
    [29] S. Günster, H. Blaschke, K. Starke, D. Ristau, M. Danailov, B. Diviacco, A. Gatto, N. Kaiser, F. Sarto, E.Masetti. Surface investigation of VUV-optical componemts after exposure to high energetic synchrotronradiation[J]. SPIE,2004,5273:281~287.
    [30] A. Gatto, R. Thielsch, N. Kaiser, M. Hirsch, D. Garzella, D. Nutarelli, G. D. Ninno, E. Renault, M. E.Couprie, P. Torchio, M. Alvisi, G. Albrand, C. Amra, M. Marsi, M. Trovó, R. Walker, M. Grewe, S. Robert, J.P. Roger, C. Boccara. Towards resistant UV mirrors at200nm for Free Electron LasersManufacture-Characterizations-Degradations tests[J]. SPIE,2000,4102:261~275.
    [31] A. Gatto, T. Feigl, N. Kaiser, D. Garzella, G. De Ninno, M. E. Couprie, M. Marsi. Multiscaledegradations of storage ring FEL optics[J]. Nuclear Instruments and Methods in Physics Research A,2002,483:172~176.
    [32] H. Ogawa, K. Yamada, N. Sei, R. Kuroda, K. Yagi-Watanabe, M. Yasumoto, T. Ohdaira, R. Suzuki.Study of mirror degradation in short-wavelength FELs and recent FEL application experiments on the storagering NIJI-IV[J]. Nuclear Instruments and Methods in Physics Research A,2008,593:17~20.
    [33]薛春荣,易葵,魏朝阳,邵建达,范正修.真空紫外到深紫外波段基底材料的光学特性[J].强激光与粒子束,2009,21:287~290.
    [34] C. G rling, U. Leinhos, K. Mann. Surface and bulk absorption in CaF2at193and157nm[J]. OpticsCommunications,2005,249:319~328.
    [35] Y. Taki, K. Muramatsu. Hetero-epitaxial growth and optical properties of LaF3on CaF2[J]. Thin SolidFilms,2002,12:30~37.
    [36] S. Niisaka, T. Saito, J. Saito, A. Tanaka, A. Matsumoto, M. Otani, R. Biro, C. Ouchi, M. Hasegawa, Y.Suzuki, K. Sone[J]. Development of optical coatings for157-nm lithography.I. Coating materials[J]. AppliedOptics,2002,41:3242~3247.
    [37] V. Liberman, M. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, A. Grenville. Excimer-laser-induceddensification of fused silica: laser-fluence and material-grade effects on the scaling law[J]. J. Non-Cryst.Solids,1999,244:159~171.
    [38] V. Liberman, T. M. Bloomstein, M. Rothschild, J. H. C. Sedlacek, R. S. Uttaro, A. K. Bates, C. V. Peski,K. Orvek. Materials issues for optical components and photomasks in157nm lithography[J]. J. Vac. Sci.Technol. B,1999,17:3273~3279.
    [39] S. Günster, D. Ristau, M. Trovó, M. Danailov, A. Gatto, N. Kaiser, F. Sarto, A. Piegari,. Deposition ofrobust multilayer mirror coatings for Stroage Ring FEL lasing at176nm[J]. SPIE,2005,5963:5963A.
    [40] S. Günster, B. G rtz, D. Ristau, E. Quesnel, G. Ravel, M. Trovó, M. Danailov. IBS deposition of densefluoride coatings for the vacuum ultraviolet free electron laser[J]. SPIE,2005,5963:59630I.
    [41] R. Thielsch, J. Heber, N. Kaiser, O. Apel, K. Mann, D. Ristau, H. Blaschke, W. Arens. AbsorptionLimited Performance of SiO2-AlO3Multi-Layer Coatings at193nm-a Systematic Study[J].OSA,2001, ThA6.
    [42] R. Thielsch, N. Kaiser. Mechanical stress, and thermal-elastic properties of oxide coatings for use in theDUV spectral region[J]. OSA,2001, ThB7.
    [43] H. Blaschke, M. Lappschies, D. Ristau. Performance enhancement of ion beam sputtered oxide coatingsfor193nm[J]. SPIE,2007,6720:67200T.
    [44] T. M. Bloomstein, V. Liberman, M. Rothschild, D. E. Hardy, R. B. Goodman. Optical Materials andCoatings at157nm[J]. SPIE,1999,3676:342.
    [45] Y. Wang, Y. G. Zhang, W. Chen, X. Liu. Optical properties and residual stress of YbF3thin filmsdeposited at different temperatures[J]. OSA,2007, ThB7.
    [46]薛春荣,易葵,邵建达,范正修.几种氟化物薄膜材料的光学特性[J].光学精密工程,2009,17:1507~1512.
    [47]薛春荣,易葵,齐红基,范正修,邵建达.深紫外/紫外薄膜材料的光学常数研究[J].中国激光,2009,36:2135~2139.
    [48]薛春荣,易葵,齐红基,邵建达,范正修.氟化物材料在深紫外波段的光学常数[J].物理学报,2009,58:5035~5040.
    [49] B. H. Liao, M. C. Liu, C. C. Lee. Process for deposition of AlF3thin films[J]. Applied Optics,2008,47:C41~45.
    [50] M. Bischoff, D. G bler, N. Kaiser, A. Chuvilin, U. Kaiser, A. Tünnermann. Optical and structuralproperties of LaF3thin films[J]. Applied Optics,2008,47: C157~C161.
    [51] J. Wang, R. Maier, P. G. Dewa, H. Schreiber, R. A. Bellman, D. D. Elli. Nanoporous structure of a GdF3thin film evaluated by variable angle spectroscopic ellipsometry[J]. Applied Optics,2007,46:3221~3226.
    [52] D. Ristau, W. Arens, S. Bosch, A. Duparré, E. Masetti, D. Jacob, G. Kiriakidis, F. Peiró, E. Quesnel, A.Tikhonravov. UV-Optical and Microstructural Properties of MgF2-Coatings Deposited by lBS and PVDProcesses[J]. SPIE,1999,3738:436~445.
    [53] M. Rothschild, T. M. Bloomstein, J. E. Curtin, D. K. Downs, T. H. Fedynyshyn, D. E. Hardy, R. R. Kunz,V. Liberman, J. H. C. Sedlacek, R. S. Uttaro.157nm: Deepest deep-ultraviolet yet[J]. J. Vac. Sci. Technol. B,1999,17:3262~3266.
    [54] D. Ristau, S. Günster, S. Bosch, A. Duparré, E. Masetti, J. F. Borrull, G. Kiriakidis, F. Peiró, E. Quesnel,A. Tikhonravov. Ultraviolet optical and microstructural properties of MgF2and LaF3coatings deposited byion-beam sputtering and boat and electron-beam evaporation[J]. Applied Optics,2002,41:3196~3204.
    [55] S. Güster, D. Ristau, S. Bosch. Spectrophotometric determination of absorption in the DUV/VUV spectralrange for MgF2and LaF3thin films[J]. SPIE,2001,4099:299~310.
    [56] D. Ristau, S. Günster, S. Bosch, A. Duparré, E. Masetti, J. Ferre-Borull, G. Kiriakidis, F. Peiro, E.Quesnel, A. Thikonravov. UV-Optical and microstructural properties of MgF2-and LaF3-coatings deposited byIBS and PVD processes[J]. Applied Optics,2001,26:123-128.
    [57] R. Thielsch, J. Heber, H. Uhlig, N. Kaiser. Development of mechanical stress in fluoride multi-layers forUV-applications[J]. SPIE,2004,5250:127~136.
    [58] M. C. Liu, B. H. Liao, W. H. Cho, C. C. Lee, C. C. Jaing. The research of oblique deposition oflanthanum fluoride thin films at193nm[J]. SPIE,2007,6645:66451Y.
    [59] M. C. Liu, C. C. Lee, B. H. Liao, M. Kaneko, K. Nakahira, Y. Takano. Fluoride antireflection coatingsdeposited at193nm[J]. Applied Optics,2008,47: C214~218.
    [60] M. C. Liu, C. C. Lee, M. Kaneko, K. Nakahira, Y. Takano. Microstructure related properties oflanthanum fluoride films deposited by molybdenum boat evaporation at193nm[J]. Thin Solid Films,2005,492:45~51.
    [61] M. C. Liu, C. C. Lee, M. Kaneko, K. Nakahira, Y. Takano. Microstructure-and composition-relatedcharacteristics of LaF3thin films at193nm[J]. Opt. Eng.,2006,45:083801.
    [62] M. C. Liu, C. C. Lee, M. Kaneko, K. Nakahira, Y. Takano. Fluoride antireflection coatings at193nm byresistive heating boat[J]. Applied Optics,2007,34:124-129.
    [63] B. Li, D. Lin, Y. Han, C. Guo, Y. Zhang, H. Liu. Anti-Reflective Fluoride Coatings for Widely TunableDeep-Ultraviolet Diode-Pumped Solid-State Laser Applications[J]. Chinese Physics Letters,2010,27:044201.
    [64] C. C. Lee, M. C. Liu, M. Kaneko, K. Nakahira, Y. Takano. Characterization of AlF3thin films at193nmby thermal evaporation[J]. Appl. Opt.,2005,44:7333~7338.
    [65] C. C. Jaing, M. C. Liu, C. C. Lee, B. H. Liao, C. J. Tang. Thermal Expansion Coefficients of ObliquelyDeposited MgF2Thin Films[J]. Applied Optics,010,40:134-138.
    [66] C. C. Jaing, M. C. Liu, C. C. Lee, W. H. Cho, S. W. T., C. J. Tang. Residual Stress of ObliquelyDeposited MgF2Thin Films[J]. Applied Optics,2007,32:123-127.
    [67] C.-C. Jaing, M.-H. Shiao, C.-C. Lee, C.-J. Lu, M.-C. Liu, C.-H. Lee, H.-C. Chen. Effects of ion assist andsubstrate temperature on the optical properties and microstructure of MgF2films produced by e-beamevaporation[J]. SPIE,2005,5870:58700F.
    [68] C. C. Jaing, M. H. Shiao, C. C. Lee, C. J. Lu, M. C. Liu, L. C. H., H. C. Chen. Effects of ion assistanceand substrate temperature on optical characteristics and microstructure of MgF2films formed by electron-beamevaporation[J]. Jpn. J. Appl. Phys.,2006,45:5027~5029.
    [69] A. Melninkaitis, M. Maciulevicius, T. Rakickas, D. Miksys, R. Grigonis, V. Sirutkaitis. Comparison ofoptical resistance of ion assisted deposition and standard electron beam deposition methods for highreflectance dielectric coatings[J]. SPIE,2005,5963:59631H.
    [70] M. Bischoff, M. Sode, D. G bler, H. Bernitzki, C. Zaczek, N. Kaiser, A. Tünnermann. Metal fluoridecoatings prepared by ion-assisted deposition[J]. SPIE,2008,7101:71010L.
    [71] M. Bischoff, D. G bler, N. Kaiser. Plasma Assisted Deposition of Metal Fluoride Coatings[J]. AppliedOptics,2010,38:135-139.
    [72] S. Wilbrandt, O. Stenzel, N. Kaiser. Combined in-situ and ex-situ optical analysis of fluoride coatingsdeposited by PIAD[J]. Applied Optics,2010,38:123-125.
    [73] S. Wilbrandt, O. Stenzel, N. Kaiser. All-optical in-situ analysis of PIAD deposition processes[J].SPIE,2008,7101:71010D.
    [74] T. Yoshida, K. Nishimoto, K. Sekine, K. Etoh. Fluoride antireflection coatings for deep ultraviolet opticsdeposited by ion-beam sputtering[J]. Applied Optics,2006,45:1375~1379.
    [75] T. Yoshida, K. Nishimoto, K. Etoh. Fluoride antireflection mulatilayers with high transmittance for ArFexcimer laser by ion beam sputtering method[J]. Jpn. J. Appl. Phys.,2004,43:258~260.
    [76] T. Yoshida, K. Nishimoto, K. Sekine, K. Etoh. Fluoride coatings for DUV/VUV optics fabricated by IonBeam Sputtering method[J]. Applied Optics,2004,36:123-126.
    [77] J. I. Larruquert, R. A. M. Keski-Kuha. Far ultraviolet optical properties of MgF2films deposited byion-beam sputtering and their application as protective coatings for Al[J]. Opt. Comm.,2003,215:93~99.
    [78] E. Quesnel, A. Duparré, J. F. Borrull, J. Steinert. DUV Light Scattering and Morphology of Ion BeamSputtered Fluoride Coatings[J]. SPIE,1999,3738:410~416.
    [79] J. Dijon, E. Quesnel, B. Rolland, P. Garrec, C. Pelld, J. Hue. High damage threshold fluoride UV mirrorsmade by ion beam sputtering[j]. SPIE,1997,3244:406~415.
    [80] C. C. Lee, B. H. Liao, M. C. Liu. Developing new manufacturing methods for the improvement of AlF3thin films[J].Optics Express,2008,16:6904~6905.
    [81] K. Iwahori, M. Furuta, Y. Taki, T. Yamamura, A. Tanaka. Optical properties of fluoride thin filmsdeposited by RF magnetron sputtering[J]. Applied Optics,2006,45:4598~4602.
    [82] N. Toyoda, I. Yamada. Gas cluster ion beam process for high-quality thin film deposition[J]. AppliedOptics,2010,38:123-130.
    [83] R. G tzelmann, D. H. Hagedorn, A. Z ller, A. Kobiak, W. Klug,. Oxide and Fluoride coatings for theexcimer wavelength193nm[J]. SPIE,2005,5963:59630L.
    [84] H. Uhlig, R. Thielsch, J. Heber, N. Kaiser. Lanthanide tri-fluorides: a survey of the optical, mechanicaland structural properties of thin films with emphasis of their use in the DUV-VUV-spectral range[J]. SPIE,2005,5963:59630N.
    [85] R. Thielsch, J. Heber, H. Uhlig, N. Kaiser. Optical, structural, and mechanical properties of gadoliniumtrifluoride thin films grown on amorphous substrates[J]. SPIE,2005,5963:1-12.
    [86] S. Z. Shang, L. Chen, H. H. Hou, K. Yi, Z. X. Fan, J. D. Shao. Annealing effects on electron-beamevaporated Al2O3films[J]. Applied Surface Science,2005,242:437~442.
    [87] A. Tikhonravov, M. Trubetskov, T. Amotchkina, G. DeBell, V. Pervak, A. K. Sytchkova, M. L. Grilli, D.Ristau. Optical parameters of oxide films typically used in optical coating production[J]. Appl. Opt.,2011,50:C75~C85.
    [88] B. Blanckenhagen, D. Tonovaa, T. Koslowski. Influence of the amorphous character of Al2O3layers ontheir use in the Deep UV spectral range[J]. SPIE,2005,5963:59630K.
    [89] M. Ylilammi, T. Ranta-aho. Metal fluoride thin films prepared by atomic layer deposition[J]. J.Electrochem. Soc.,1994,141;1278~1284.
    [90] T. Pilvi, M. Ritala, M. Leskel, M. Bischoff, U. Kaiser, N. Kaiser. Atomic layer deposition process withTiF4as a precursor for depositing metal fluoride thin films[J]. Applied Optics,2008,47: C271~C274.
    [91] S. Schr der, H. Uhlig, A. Duparré, N. Kaiser. Nanostructure and optical properties of fluoride films forhigh-quality DUV/VUV optical components[J]. SPIE,2005,5963:59630R.
    [92]B. Cho, J. E. Rudisill, E. Danielewicz.193nm Laser Induced Spectral Shift in HR Coated Mirror[J].SPIE,2009,7504:750409.
    [93] H. Schreiber, J. Wang. Engineered fluoride-coated elements for laser system[P]. European Patent EP,2008,1965229,.
    [94] C. C. Lee, M. C. Liu, M. Kaneko, K. Nakahira, Y. Takano. Influence of thermal annealing and ultravioletlight irradiation on LaF3thin films at193nm[J]. Applied Optics,2005,44:6921~6926.
    [95] C. C. Lee, H. C. Chen, C. C. Jaing. Investigation of thermal annealing of optical properties and residualstress of ion-beam-assisted TiO2thin films with different substrate temperatures[J]. Appl. Opt.,2006,45:3091~3096.
    [96] Y. Zhao, Y. Wang, H. Gong, J. Shao, Z. Fan. Annealing effects on structure and laser-induced damagethreshold of Ta2O5/SiO2dielectric mirrors[J]. Appl. Surf. Sci.,2003,210:353~358.
    [97] C. J. Stolz, L. M. Sheehan, S. M. Maricle, S. Schwartz, M. R. Kozlowski, R. T. Jennings, J. Hue. Laserconditioning methods of hafnia silica multilayer mirrors[J]. SPIE,1998,3264:105~112.
    [98] E. Eva, K. Mann, N. Kaiser, B. Anton, R. Henking, D. Ristau, P. Weissbrodt, D. Mademann, L. Raupach,E. Hacker. Laser conditioning of LaF3/MgF2dielectric coatings at248nm[J]. Appl. Opt.,1996,35:5613~5619.
    [99] T. M. Bloomstein, M. Rothschild, V. Liberman, D. Hardy, N. N. Efremow, S. T. Palmacci. Laser cleaningof optical elements in157nm lithography[J]. SPIE,2000,4000:1537~1545.
    [100]张东平,张大伟,范树海,黄建兵,赵元安,邵建达,范正修.应用离子后处理技术提高薄膜激光损伤阈值[J].强激光与粒子束,2005,17:213~216.
    [101] F. Sarto, M. Alvisi, E. Melissano, A. Rizzo, S. Scaglione, L. Vasanelli. Adhesion enhancement of opticalcoatings on plastic substrate via ion treatment[J]. Thin Solid Films,1999,346:196~201.
    [102] J. Wang, R. Maier, P. G. Dewa, H. Schreiber, R. A. Bellman, D. D. Elli. Nanoporous structure of a GdF3thin film evaluated by variable angle spectroscopic ellipsometryJ]. Applied Optics,2007,46:3221~3226.
    [103] J. Heber, A. Gatto, N. Kaiser. Spectrophotometry in the vacuum UV[J]. SPIE,2003,4932:544-548.
    [104] Y. Taki, S. Watanabe, A. Tanak. Postfluorination of fluoride films for vacuum-ultraviolet lithography toimprove their optical properties[J]. Applied Optics,2006,45:1380~1385.
    [105] Y. Hoshino, Y. Taki. fluorination treatment apparatus, process for producing fluoorination treatedsubstance, and fluorination treated substance[P]. United States Patent US,2004,2004/0006249A1.
    [106] K. Choi, S. Ghosh, J. Lim, C. M. Lee. Removal efficiency of organic contaminations on Si wafer by drycleaning using UV/O3and ECR plasma[J]. Appl. Surf. Sci.,2003,206:355~364.
    [107] D. Doering, K. Forcht. Coating-induced wave front aberrations[J]. SPIE,2008,7100:71000E.
    [108] C. Zaczek, A. Pazidis, H. Feldermann. High-performance optical coating for VUV lithographyapplication[J]. Applied Optics,2007,42:123-130.
    [109] A. V. Tikhonravov, M. K. Trubetskov, G. W. DeBell. On the accuracy of optical thin film parametersdetermination based on spectral photometric data[J]. SPIE,2003,5188:190-199.
    [110] J. P. Borgogno, F. Flory, P. Roche, B. Schmitt, G. Albrand, E. Pelletier, H. A. Macleod,"Refractiveindex and inhomogeneity of thin films[J]. Applied Optics,1984,23:3567-3570.
    [111] S. C. Chiao, B. G. Bovard, and H. A. Macleod. Optical-constant calculation over an extended spectralregion:application to titanium dioxide film[J]. Applied Optics,1995,34:7355~7360.
    [112] R. Swanepoel. Determination of the thickness and optical constants of amorphous silicon[J]. J. Phys. E,1983,16:1214~1222.
    [113] J. C. Manifacier, J. Gasiot, J. P. Fillard. A simple method for the determination of the optical constants n,k and the thickness of a weakly absorbing thin film[J]. Journal of Physics E: Scientific Instruments,1976,9:1002~1004.
    [114] D. Minkov, R. Swanepoel. Computerization of the optical characterization of a thin dielectric film[J].Opt. Eng.,1993,32:3333~3337.
    [115] J. P. Borgogno, B. Lazarides, E. Pelletier. Automatic determination of the optical constants ofinhomogeneous thin films[J]. Applied Optics,1982,21:4020~4029.
    [116] C. M. Horwitz,"Refractive index determination using reflectance extrema," Appl. Opt.17,1771~1775(1978).
    [117] M. F. Al-Kuhaili, E. E. Khawaja, S. M. A. Durrani. Determination of the optical constants (n and k) ofinhomogeneous thin films with linear index profiles[J]. Applied Optics,2006,45:4591~4597.
    [118] A. V. Tikhonravov, M. K. Trubetskov, B. T. Sullivan, J. A. Dobrowolski. Influence of smallinhomogeneities on the spectral characteristics of single thin films[J]. Applied Optics,1997,36:7188~7198.
    [119] S. Y. Kim. Simultaneous determination of refractive index, extinction coefficient, and void distributionof titanium dioxide thin film by optical methods[J]. Applied Optics,1996,35:6703~6707.
    [120] D. P. Arndt, R. M. A. Azzam, J. M. Bennett, J. P. Borgogno, C. K. Carniglia, W. E. Case, J. A.Dobrowolski, U. J. Gibson, T. Tuttle Hart, F. C. Ho, V. A. Hodgkin, W. P. Klapp, H. A. Macleod, E. Pelletier,M. K. Purvis, D. M. Quinn, D. H. Strome, R. Swenson, P. A. Temple, T. F. Thonn. Multiple determination ofthe optical constants of thin-film coating materials[J]. Appl. Opt.,1984,23:3571~3596.
    [121] A. Tikhonravov, M. Trubetskov, T. Amotchkina, D. Ristau, S. Günster. Reliable determination ofwavelength dependence of thin films refractive index[J]. SPIE,2003,5188:331~342.
    [122] A. V. Tikhonravov, M. K. Trubetskov, A. V. Krasilnikova, E. Masetti, A. Duparré, E. Quesnel, D.Ristau. Investigation of the surface micro-roughness of fluoride films by spectroscopic ellipsometry[J]. ThinSolid Films,2001,397:229~237.
    [123] G. Parjadis de Larivière, J. M. Frigerio, J. Rivory, F. Abelés. Estimate of the degree of inhomogeneity ofthe refractive index of dielectric films from spectroscopic ellipsometry[J]. Applied Optics,1992,31:6056~6061.
    [124] B. P. Marcelo, J. B. Bruno, H. Flavio. Spectral polarimetry technique as a complementary tool toellipsometry of dielectric films[J]. Applied Optics,2011,50: C420~C423.
    [125] D. Tonova, B. von Blanckenhagen. Characterization of multilayer dielectric coatings by ellipsometryand X-ray grazing incidence reflectometry[J]. SPIE,2004,5250:254~262.
    [126] D. A. Tonova, A. A. Konova. Characterization of inhomogeneous dielectric coatings with arbitraryrefractive index profiles by multiple angle of incidence ellipsometry[J]. Thin Solid Films,2001,397:17~23.
    [127] J. L. Cardin, D. Leduc. Determination of refractive index, thickness, and the optical losses of thin filmsfrom prism–film coupling measurements[J]. Applied Optics,2008,47:894~900.
    [128] J. Massaneda, F. Flory, E. Pelletier. Determination of the refractive indices of layers in a multilayer stackby a guided-wave technique[J]. Applied Optics,1999,38:4177~4181.
    [129] Y. J. Jen, C. H. Hsieh, T. S. Lo. Optical constant determination of an anisotropic thin film via surfaceplasmon resonance:analyzed by sensitivity calculation[J]. Opt. Commun.,2005,244:269~277.
    [130] Y. J. Jen, C. Y. Peng, H. H. Chang. Optical constant determination of an anisotropic thin film viapolarization conversion[J]. Opt. Express,2007,15:4445~4451.
    [131] C. R. Xue, K. Yi, C. Y. Wei, J. D. Shao, Z. X. Fan. Optical constants of DUV/UV fluoride thin films[J].Chinese Optics Letters,2009,7:449~451.
    [132] C. R. Xue, K. YI, C. Y. Wei, J. D. Shao, Z. X. Fan. Determination of optical constants in the VUV rangefor fluoride thin films[J]. SPIE,2009,7283:72831E.
    [133]郭春,林大伟,张云洞,李斌成.光度法确定LaF3薄膜的光学常数[J].光学学报,2011,31:731001.
    [134] A. V. Tikhonravov, M. K. Trubetskov, A. A. Tikhonravov, A. Duparre. Impact of surface roughness onspectral properties of thin films and multilayers[J]. Optical Society of America,2001,12:1~3.
    [135] C. K. Carnigila. Scalar scattering theory for multilayer optical coatings[J]. Opt. Eng.,1979,18:104~115.
    [136] C. K. Carniglia, D. G. Jensen. Single-layer model for surface roughness[J]. Appl. Opt.,2002,41:3167~3171.
    [137] A. V. Tikhonravov, M. K. Trubetskov, M. A. Kokarev, T. V. Amotchkina, A. Duparré, E. Quesnel, D.Ristau, S. Günster. Effect of Systematic Errors in Spectral Photometric Data on the Accuracy of Determinationof Optical Parameters of Dielectric Thin Films[J]. Appl. Opt.,2002,41:2555~2560.
    [138]潘栋粱,熊胜明,张云洞,王任华.行星夹具膜厚均匀性计算[J].强激光与粒子束,2000,24:277~280.
    [139]方明,郑伟军,吴明,范瑞瑛,易葵,范正修.平面行星夹具均匀性修正挡板设计方法研究[J].真空科学与技术学报,2006,26:286~289.
    [140]方明,范正修,黄建兵.平面行星夹具的物理气相沉积均匀性计算[J].计算物理,2006,23:738~742.
    [141] F. Villa and O. Pompa. Emission pattern of a real vapor sources in high vacuum: an overview[J]. Appl.Opt.,1999,38:695~703.
    [142] F. Villa, A. Martínez, L. E. Regalado. Correction masks for thickness uniformity in large-area thinfilms[J]. Applied Optics,2000,39:1602~1610.
    [143] J. B. Oliver, P. Kupinski, A. L. Rigatti, A. W. Schmid, J. C. Lambropoulos, S. Papernov, A. Kozlov.Large-aperture plasma-assisted deposition of inertial confinement fusion laser coatings[J]. Applied Optics,2011,50: C19~C26.
    [144] B. Sassolas, R. Flaminio, J. Franc, C. Michel, J. L. Montorio, N. Morgado, L. Pinard. Masking techniquefor coating thickness control on large and strongly curved aspherical optics[J]. Applied Optics,2009,48:3760~3765.
    [145] E. N. Kotlikov, V. N. Prokashev, V. A. Ivanov, A. N. Tropin. Thickness uniformity of films depositedon rotating substrates[J]. J. Opt. Technol.,2009,76:100~103.
    [146] J. Q. Lu, L. Yang, J. H. Yoon, T. Y. Cho, G. Q. Tao. Modeling film uniformity and symmetry in ionizedmetal physical vapor deposition with cylindrical targets[J]. Thin Solid Films,2008,517:853~856.
    [147] J. W. Arkwright. Design of multiaperture masks for subnanometer correction of ultraprecision opticalcomponents[J]. Appl. Opt.,2007,46:6375~6380.
    [148] J. B. Oliver, D. Talbot. Optimization of deposition uniformity for large-aperture National IgnitionFacility substrates in a planetary rotation system[J]. Appl. Opt.,2006,45:3097~3105.
    [149] B. Cimma, D. Forest, P. Ganau, B. Lagrange, J. M. Mackowski, C. Michel, J. L. Montorio, N. Morgado,R. Pignard, L. Pinard, A. Remillieux. Ion beam sputtering coatings on large substrates: toward an improvementof the mechanical and optical performances[J]. Applied Optics,2006,45:1436~1439.
    [150] J. W. Arkwright. Fabrication of optical elements with better than λ/1000thickness uniformity bythin-film deposition through a multi-aperture mask[J]. Thin Solid Films,2006,515:854-858.
    [151] J. Arkwright, D. Farrant, J. Zhang. Sub-nanometer metrology of optical wafers using an angle-scannedFabry-Perot interferometer[J]. Opt. Express,2006,14:114~119.
    [152] F. Beauville, D. Buskulic, R. Flaminio, F. Marion, A. Masserot, L. Massonnet, B. Mours, F. Moreau, J.Ramonet, E. Tournefier. Low loss coatings for the VIRGO large mirrors[J]. SPIE,2004,5250:483~492.
    [153] F. Wang, R. Crocker, R. Faber. Simulation of precision evaporation coaters-beyond thicknessuniformity[J].53rd SVC Annual Tech Conf2010,12:123-125.
    [154] F. L. Wang, R. Crocker, R. Faber. Large-area Uniformity in Evaporation Coating through a New Formof Substrate Motion[J]. OSA, Optical Interferce Coating, Tucson, A. Z.,2010,1-3.
    [155] M. Gross, S. Dligatch, A. Chtanov. Optimization of Coating Uniformity in an Ion Beam SputteringSystem using a Modified Planetary Rotation Method[J].Applied Optiucs,2010,48:123.
    [156] T. Murata, H. Isgizawa, I. Motoyama, A. Tanaka. Investigations of MgF2optical thin films preparedfrom autoclaved sol[J]. Journal of Sol-Gel science and Technology,2004,32:161~165.
    [157] M. R. Kozlowski, I. M. Thomas. Future trends in optical coatings for high-power laser applications[J].SPIE,1994,2262:54~59.
    [158] C. Liu, M. Kong, C. Guo, B. Li. Theoretical design of shadowing masks for uniform coatings onspherical substrates in planetary rotation systems[J]. Opt. Express,2012,20:23790~23797.
    [159] C. Guo, M. Kong, C. Liu, B. Li. Optimization of thickness uniformity of optical coatings on a conicalsubstrate in a planetary rotation system[J]. App. Opt.,2013,52(4): B26~B32.
    [160] C. C. Jaing, M. C. Liu, C. C. Lee, W. H. Cho, W. T. Shen, C. J. Tang, B. H. Liao. Residual stress inobliquely deposited MgF2thin films[J]. Appl. Opt.,2008,47: C266-C270.
    [161] H. A. Macleod. Thin-film optical filters[M]. Bristol and Philadelphia, London,2001,40~43.
    [162] S. Humphrey. Direct calculation of the optical constants for a thin film using a midpoint envelope[J].Applied Optics,2007,46:4660~4666.
    [163] H. Niederwald, L. Deisenroth, S. Nunnendorf. Off Axis Microspectrophotometer for Optical CoatingCharacterization on Complex Surfaces[J]. SPIE,2005,5965:59651S.
    [164] R. Conwell. Investigation of fluoride thin-films for reflective coatings at157nm[J]. SPIE,1998,3268:351~356.
    [165] S. Günster, D. Ristau, S. Bosch. Spectrophotometric determination of absorption in the DUV/VUVspectral range for MgF2and LaF3thin films[J]. SPIE,2000,4099:299~310.
    [166] H. Blaschke, J. Kohlhaas, P. Kadkhoda, D. Ristau. DUV/VUV spectrophotometry for high precisionspectral characterization[J]. SPIE,2003,4932:536~543.
    [167] E. D. Palik. Handbook of optical constants of solids II[M]. Academic Press Boston,1998,907~918.
    [168] E. D. Palik. Handbook of Optical Constants of Solids I[M]. Academic Press, Boston,1998,759~760.
    [169] D. Minkov, R. Swanepoel. Computer drawing of the envelopes of spectra with interference[J]. SPIE,1992,1782:212~220.
    [170] D. A. Minkov. Calculation of the optical constants of a thin layer upon a transparent substrate from thereflection spectrum[J]. J. Phys. D,1989,22:1157~1161.
    [171] P. Marchand, L. Marmet. Binomial smoothing filter: a way to avoid some pitfalls of least-squarespolynomial smoothing[J]. Rev. Sci. Instrum.,1983,54:1034~1041.
    [172] X. Fu, S. Wang, D. Deng, K. Yi, J. Shao, Z. Fan. ZrO2films with variable refractive index by glancingangle deposition[J]. Chin. Opt. Lett.,2006,4:247~248.
    [173] X. Xiao, G. Dong, C. Xu, H. He, H. Qi, Z. Fan, J. Shao. Structure and optical properties of Nb2O5sculptured thin film by glacing angle deposition[J]. Appl. Surf. Sci.,2008,255:2192~2195.
    [174] X. Xiao, G. Dong, H. He, H. Qi, Z. Fan, J. Shao. Optical properties and microstructure of Ta2O5thinfilms prepared by oblique angle deposition[J]. Chin. Opt. Lett.,2009,7:967~970.
    [175] E. D. Palik. Handbook of Optical Constants of Solids I[M], Academic Press, Boston,1998,102.
    [176] M. C. Liu, C. C. Lee, M. Kaneko, K. Nakahira, Y. Takano. Microstructure of magnesium fluoride filmsdeposited by boat evaporation at193nm[J]. Applied Optics,2006,45:7319~7324.
    [177] D. J. Smith, M. McCullough, C. Smith, R. Crocker, I. Stevenson. Uniformity of Coatings for LargeTelescope Optics[J]. OSA,2009,12:510~514.
    [178] R. M. Ythier, X. Bozec, R. Geyl, A. Rinchet, C. Hecquet, M.-F. Ravet-Krill, F. Delmotte, B. Sassolas, R.Flaminio, J.-M. Mackowski, C. Michel, J.-L. Montorio, N. Morgado, L. Pinard, E. Romeo. EUV near normalincidence collector development at SAGEM[J]. SPIE,2008,6921:692135.
    [179]唐晋发,顾培夫,刘旭,李海峰.现代光学薄膜技术[M].浙江大学出版社,2006,271~285.
    [180] G. I. Abzalova, R. S. Sabirov, A. V. Mikha lov. Depositing uniform-thickness coatings on large surfacesby means of electron-beam evaporation in vacuum[J]. J. Opt. Technol.,2005,72:799~801.
    [181] T. D. Rahmlow, J. E. Lazo-Wasem, M. B. Moran, L. F. Johnson. Optical Coatings for Deep ConcaveSurfaces[J]. SPIE,2010,7660:766026.
    [182] D. Ness, D. Pitrat, C. Wood. Thermally Robust IBS Coatings for Deep Concave Surfaces[J]. SPIE,2010,7660:766025.
    [183] J. A. Monsoriu, W. D. Furlan, P. Andrés, J. Lancis. Fractal conical lenses[J]. Optic Express,2006,14:9077~9082.
    [184] Z. Ding, H. Ren, Y. Zhao, J. Nelson, Z. Chen. high-resolution optical coherence tomography over a largedepth range with an axicon lens[J]. Opt. Let.,2002,27,243~245.
    [185] L. Sara, I. Umberto, C. Robert. Analysis of the combined impact of the laser spectrum, illuminatormiscablibrations, and lens aberrations on the90nm technology node imaging with off axis illumination[J].SPIE,2006,6154:615434.
    [186] I. Huang, L. Lin, C. L. Lin. Novel illumination aperturesfor resolution-enhanced technology andthrough-pitch critical dimension control[J]. SPIE,2005,5754:1395~1404.
    [187] C. C. Jaing. thermal expansion coefficients of obliquely deposited MgF2thin films and their intrinsicstress[J]. Appl. Opt.,2011,50: C159~C163.
    [188] D. J. Poxson, F. W. Mont, M. F. Schubert, J. K. Kim, E. F. Schubert. Quantification of porosity anddeposition rate of nanoporpous films grown by oblique-angle deposition[J]. Applied Physics Letters,2008,93:101914.
    [189] L. Abel-Tibérini, F. Lemarquis, M. Lequime. Masking mechanisms applied to thin-film coatings for themanufacturing of linear variable filters for two-dimensional array detectors[J]. Applied Optics,2008,47:5706~5714.
    [190] B. Suman, P. Kumar. A survey of simulated annealing as a tool for single and multiobjectiveoptimization[J]. Journal of the Operational Research Society,2006,57:1143~1160.
    [191] S. Kirkpatrick, C. D. Gelatt, M. P. Vecchi. Optimization by simulated annealing[J]. Science,1983,220:671~680.
    [192] C. Zaczek. High-performance optical coating for VUV lithography application[J]. OSA2007.
    [193]唐晋发,顾培夫,刘旭,李海峰.现代光学薄膜技术[M].浙江大学出版社,2006,61~94.
    [194]尚淑珍,邵建达,范正修.低损耗193nm增透膜[J].物理学报,2008,57:1946~1950.
    [195]尚淑珍,邵建达,范正修,赵祖欣.热舟蒸发LaF3薄膜的紫外性能研究[J].物理学报,2008,57:1941~1945.
    [196]尚淑珍,赵祖欣,邵建达.沉积温度对舟蒸发MgF2薄膜性能的影响[J].强激光与粒子束,2008,20:396~400.
    [197] C. Guo, M. Kong, W. Gao, B. Li. Simultaneous determination of optical constants, thickness, andsurface roughness of thin film from spectrophotometric measurements[J]. Opt. Let.,2013,38(1):40~42.
    [198] N. Kaiser. Review of the fundamentals of thin-film growth[J]. Applied Optics,2002,41:3053~3060.
    [199] B. A. Movchan, A. V. Demchishin. Study of the structure and properties of thick vacuum condensates ofnickel, titanium, tungsten, aluminium oxide and zirconium dioxide[J]. Phys. Met. Metallogr (USSR),1969,28:83~90.
    [200] J. A. Thornton. Influence of apparatus geometry and deposition conditions on the structure andtopography of thick sputtered coatings[J]. J. Vac. Sci. Technol.,1974,11:666~670.
    [201] R. Messier, A. P. Giri, R. A. Roy. Revised structure zone model for thin film physical structure[J]. J.Vac. Sci. Technol. A,1984,2:500~503.
    [202] L. Abelmann, C. Lodder. Oblique evaporation and surface diffusion[J]. Thin Solid films,1997,305:1~21.
    [203] Y. J. Jen, C. F. Lin. Anisotropic optical thin films finely sculptured by substrate sweep technology[J].Optic Express,2008,16:5372~5377.
    [204] J. Q. Xi, J. K. Kim, E. F. Schubert, D. X. Ye, T. M. Lu, S. Y. Lin. Very low-refractive_index optical thinfilms consisting of an array of SiO2nanorods[J]. Opt. Let.,2006,31:601~603.
    [205] I. Hodgkinson, Q. H. Wu, J. Hazel. Empirical Equations for the Principal Refractive Indices and ColumnAngle of Obliquely Deposited Films of Tantalum Oxide, Titanium Oxide, and Zirconium Oxide[J]. Appl. Opt.,1998,37:2653~2659.
    [206] S. J. Jang, Y. M. Song, C. Yeo, C. Y. Park, J. S. Yu, Y. T. Lee. Antireflective property of thin film a-Sisolar cell structures with graded refractive index structure[J]. Optics Express,2011,19:A108~A117.
    [207] R. N. Tait, T. Smy, M. J. Brett. Modeling and characterization of columnar growth in evaporatedfilms[J]. Thin Solid films,1993,226:196~201.
    [208] M. C. Liu, C. C. Lee, M. Kaneko, K. Nakahira, Y. Takano. Microstructure-related properties at193nmof MgF2and GdF3films deposited by a resistive-heating boat[J]. Aptlied Optics,2006,45:1368~1374.
    [209] M. Vijayakumar, S. Selvasekarapandian, T. Gnanasekaran, S. Fujihara, S. Koji. Structural andimpedance studies on LaF3thin films prepared by vacuum evaporation[J]. Journal of Fluorine Chemistry,2004,125:1119~1125.
    [210]余华,崔云,申雁鸿,齐红基,邵建达,范正修.沉积速率对热舟蒸发LaF3薄膜性能的影响[J].中国激光,2007,34:1557~1561.
    [211]余华,崔云,申鸿雁,齐红基,邵建达,范正修.沉积温度对LaF3薄膜性能的影响[J].强激光与粒子束,2007,19:1507~1511.
    [212] K. R. Mann, E. Eva. Characterizing the absorption and aging behaviour of DUV optical material by highresolution excimer laser calorimetry[J]. SPIE,1998,3334:1055~1061.
    [213] Y. M. Zhu, J. Shen, B. Ma.Thermal effect in UV-O3treatment used for synthesis of mesoporous silicafilms[J]. Applied Optics,2010,42:123-126.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700