真空阴极电弧离子镀层中宏观颗粒去除技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
真空阴极电弧离子源具有离化率高(90%以上)、离子能量可控、沉积速率高等优点,广泛应用于等离子体表面改性领域。然而弧源在提供镀膜离子的同时,也会产生直径约为0.1至数百微米的宏观颗粒,这些颗粒大大降低了膜层的表面光洁度,增加了膜层性能的不均匀性,甚至成为贯穿缺陷而严重破坏膜层性能。所以宏观颗粒的存在制约了电弧离子镀工艺在精密镀膜领域的应用。为了去除宏观颗粒,本文提出使用脉冲(叠加直流)电源作为电弧电源,初步降低了弧源发射的宏观颗粒的数量和尺寸;进而设计一种直流可调开放式电磁线圈过滤器,在传输过程中将颗粒过滤掉,获得了较好的颗粒去除效果。
     使用脉冲电源作为弧电源可以调节阴极斑点处的能量输入,从而降低宏观颗粒污染。计算表明阴极斑点处场致发射电流密度及其加热效应导致的局部区域的最高温度均很高,如Ti靶可达1012A/m2和5000K以上。极高的能量输入使得液态颗粒的产生几乎不可避免(大尺寸液态颗粒凝固即成为宏观颗粒),同时也启示调低能量输入或可降低颗粒数量和尺寸。本文使用脉冲电源作为弧电源进行了这样的尝试。试验结果显示调节脉冲参数可以从一定程度上调节能量输入从而影响到宏观颗粒的数量和尺寸,使用相对小的占空比,高的脉冲频率,小的直流电流分量,阴极产生的宏观颗粒数量下降了约9%到39%,从而获得了一定程度的宏观颗粒去除效果。同时该方法无需添加额外装置,仅将电弧主电源替换为脉冲电源就可实现一定的宏观颗粒去除效果,实施较方便。
     进一步,本文提出了一种直流可调开放式电磁线圈过滤器,在传输过程中去除绝大部分宏观颗粒。该过滤器继承了管道式过滤器利用电磁场改变离子运动轨迹的特点,能较好地过滤掉宏观颗粒,并且其开放式结构可以避免宏观颗粒通过器壁反弹导致的膜层污染,获得了更好的颗粒去除效果;该过滤器自身具有的电场可吸引更多离子到达过滤器入口,并降低离子在器壁的损失,增强了过滤效率;该过滤器可实现过滤通道曲率可调,从而可以在过滤效率和过滤效果之间取得平衡。试验结果显示,在遮挡良好、无直接视线连接的镀膜区域(也就是具有直线运动轨迹的宏观颗粒无法到达的区域),每平方毫米范围宏观颗粒数量接近于0,相比而言传统管道式过滤器由于存在颗粒反弹,即使无视线连接的镀膜区域,每平方毫米范围宏观颗粒数量的典型值也在103数量级。同时,饱和离子电流探针试验结果显示当线圈电流在50 A到250 A范围内时,过滤器效率随线圈电流单调增大,最高过滤效率可达2%左右,优于大部分文献报道的90°管道式过滤器的过滤效率(低于1%)。另外,针对复合成分和多层结构膜的镀制,本文还提出了具有公用混合通道的双通道线圈过滤器,利用混合通道磁场对离子的聚焦效应,达到离子混合、均化的效果,从而获得较好的镀膜均匀性;利用双靶并调节弧电流可以方便地在一定范围内调节复合膜的成分比。
     为了检验线圈过滤器在实际镀膜中的应用效果,本文使用单通道和双通道的过滤器镀制了AlN、TiAlN复合成分膜和TiN/AlN多层膜。单通道过滤器镀制AlN薄膜的表面光洁度得到了大幅提高,这表明了过滤器的过滤效果良好。双通道过滤器镀制TiAlN薄膜的抗高温氧化性能得到了较大程度提高,相比较未经过滤的TiAlN薄膜来说,700℃保温1小时的氧化增重下降了54%。双通道线圈过滤器制备TiN/AlN多层膜的分析结果显示,该过滤器可以成功用于制备多层膜,其多层结构特征经由X射线光电子谱仪(XPS)的离子束溅射深度剖析测试和低角度X射线衍射(LAXRD)测试结果得到了证明。
Vacuum cathodic arc deposition is widely adopted in surface modification industry for its merits of high ionization rate (90% above), easily controlling for ions energy, high depositing speed, etc. However, macroparticles, which are emitted along with ions from the cathode to the sample, contaminate sample surface and decrease key properties of deposited films. Therefore, steps must be taken to remove the macroparticles. In this work, power input for cathodic arc source was theoretically analyzed, and pulsed power was adopted for lessening of macroparticle emission. We also designed a new type of flexible electromagnetic filter which could filter most of particles during their flight. And the filter effiency of this type of flexible filter can be enhanced greatly by its magnetic and electric fields.
     Very high current of field emission in vicinity close to the cathodic spot is the source for locally arc heating, which whereafter leads to high ionization rate and the generation of liquid droplets (liquid form of macroparticles). This process implies two points: one is that the emission is inevitable, the other is that energy adjustment could be a method to lessen the emission of macroparticles. We tried to theoretically and experimentally study the effect of pulsing parameters of arc source on the emission of macroparticles. Results show that we could decrease the amount of macroparticles to about 9% to 39% of the original case by adopting relatively small duty cycle, high pulsing frequencies, and small d.c. current.
     A new type of flexbile electromagnetic filter was designed according to detailed analyzing of common 1/4 torus duct filter. Good points are remained and some shortcomings are overcomed. Our filters have good performance with macroparticles removal and transportation efficiency for ions. Experimental results show that the amount of macroparticles is almost close to 0 per square milimeter in the none-line-of-sight zone, while the quantity for 1/4 torus duct filter with the same experimental condition was about 103 order of magnitude. The measurement for saturation ion current revealed that the system efficiency of the flexible filter reached to 2% at 250 A filter current, and kept increasing trend with higher filter current. This efficiency already surpass most reported efficiency of 1/4 torus duct filter (low than 1%). The flexible filter also characterized with its electric field which enhanced filtering efficiency. For dual channel filter, a shared mixing channel was adopted to get better uniformity for deposited films.
     Furthermore, application of flexible filters for fabrication of thin films were also conducted. The fabrication of AlN films was conducted by single channel flexible filter. Experimental results show that surface roughness of AlN was greatly improved comparing with 1/4 torus filter and no filter cases. The fabrication of TiAlN and TiN/AlN films were conducted by dual channel flexible filter. The oxidation resistance at high temperature of TiAlN sample was much better than samples fabricated by two cathode without filters. Experiments of XPS sputtering and low angle XRD both show that the TiN/AlN samples had obvious multilayered characteristics.
引文
[1]达道安,真空设计手册[M]. 2004,北京:国防工业出版社
    [2] Brown I.G. Cathodic arc deposition of films[J]. Annual Review of Materials Science, 1998. 28: 243-269
    [3] Boxman R.L., D.M. Sanders, P.J. Martin, Handbook of Vacuum Arc Science and Technology[M], ed. R.L. Boxman. 1995, New Jersey: Noyes Publications
    [4]周志敏,真空阴极弧法沉积氮化碳薄膜的工艺与微观结构的研究[D], in材料学[博士]. 2003, Publisher:哈尔滨工业大学.
    [5] Anders A. Cathodic arc plasma deposition[J]. Vacuum Technology & Coating, 2002. 3
    [6] Boxman R.L. Vacuum arc deposition: early history and recent developments[C]. 2000
    [7]闻立时,黄荣芳.离子镀硬质膜技术的最新进展和展望[J].真空, 2000(1): 1-11
    [8] Sanders D.M., D.B. Boercker, S. Falabella. Coating technology based on the vacuum arc--A review[J]. IEEE Transactions on Plasma Science, 1990. 18(6): 883-894
    [9] Juttner B. Cathode spots of electric arcs[J]. Journal of Physics D: Applied Physics, 2001. 34(17): R103
    [10] Boxman R.L., V.N. Zhitomirsky. Recent progress in filtered vacuum arc deposition[J]. Surface and Coatings Technology, 1996. 86-87(10): 243-253
    [11] Anders A. Metal plasma immersion ion implantation and deposition: a review[J]. Surface and Coatings Technology, 1997. 93(2-3): 158-167
    [12] Komvopoulos K., I.G. Brown, B. Wei, S. Anders, A. Anders, S.C. Bhatia, Surface treatment of magnetic recording heads[P], U.S.专利, 5,476,691, 19 December, 1995
    [13] Boxman R.L., S. Goldsmith, S. Shalev, H. Yaloz, N. Brosh. Fast deposition of metallurgical coatings and production of surface alloys using a pulsed high current vacuum arc[J]. Thin Solid Films, 1986. 139(1): 41-52
    [14] Boxman R.L., S. Goldsmith. Principles and applications of vacuum arc coatings[J]. Plasma Science, IEEE Transactions on, 1989. 17(5): 705-712
    [15] Anders S., A. Anders, I. Brown. Macroparticle-free thin films produced by an efficient vacuum arc deposition technique[J]. Journal of Applied Physics, 1993. 74(6): 4239-4241
    [16] Koskinen J., A. Anttila, J.P. Hirvonen. Diamond-like carbon coatings by arc-discharge methods[J]. Surface and Coatings Technology, 1991. 47(1-3): 180-187
    [17] McKenzie D.R., D. Muller, B.A. Pailthorpe, Z.H. Wang, E. Kravtchinskaia, D. Segal, P.B. Lukins, P.D. Swift, P.J. Martin, G. Amaratunga, P.H. Gaskell, A. Saeed.Properties of tetrahedral amorphous carbon prepared by vacuum arc deposition[J]. Diamond and Related Materials, 1991. 1(1): 51-59
    [18]骆瑞雪,李争显.电弧离子镀技术及其在装饰镀层中的应用[J].稀有金属快报, 2004(12): 27-29
    [19] Anders A., Arc initiation in cathodic arc plasma sources[P], United States专利, 6,465,793, October 15, 2002
    [20] Martin P.J., A. Bendavid. Review of the filtered vacuum arc process and materials deposition[J]. Thin Solid Films, 2001. 394(1-2): 1-14
    [21] Kutzner J., H.C. Miller. Ion flux from the cathode region of a vacuum arc[J]. Plasma Science, IEEE Transactions on, 1989. 17(5): 688-694
    [22]李德元,等离子技术在材料加工中的应用[M]. 2005,北京:机械工业出版社
    [23] Juttner B. The dynamics of arc cathode spots in vacuum. Part III: measurements with improved resolution and UV radiation[J]. Journal of Physics D: Applied Physics, 1998. 31(14): 1728
    [24] Siemroth P. Fundamental processes in vacuum arc deposition[J]. Surface and Coatings Technology, 1995. 74-75(9): 92-96
    [25] Anders S., A. Anders, B. Juettner. Brightness distribution and current density of vacuum arc cathode spots[J]. Journal of Physics D: Applied Physics, 1992. 25(11): 1591-1599
    [26] Djakov B.E., B. Juttner. Random and directed components of arc spot motion in vacuum[J]. Journal of Physics D: Applied Physics, 2002. 35(20): 2570-2577
    [27] Anders A., E.M. Oks, G.Y. Yushkov, K.P. Savkin, I.G. Brown, A.G. Nikolaev. Measurements of the total ion flux from vacuum arc cathode spots[J]. Plasma Science, IEEE Transactions on, 2005. 33(5): 1532-1536
    [28] Beilis I., B.E. Djakov, B. Juttner, H. Pursch. Structure and dynamics of high-current arc cathode spots in vacuum[J]. Journal of Physics D: Applied Physics, 1997. 30(1): 119-130
    [29] Gidalevich E., S. Goldsmith, R.L. Boxman. Macroparticle rotation in the vacuum arc plasma jet[J]. Journal of Applied Physics, 2004. 95(6): 2969-2974
    [30] Siemroth P., T. Witke, T. Schulke, A. Lenk. Short-time investigation of laser and arc-assisted deposition processes[J]. Surface and Coatings Technology, 1994. 68-69: 713-718
    [31]余画洋,过滤式阴极弧等离子体设备的研制和纳米TiN薄膜的制备研究[D], in物理学;凝聚态物理[硕士]. 2002, Publisher:兰州大学. p.66页
    [32] Anders A., S. Anders, A. Forster, I.G. Brown. Pressure ionization: its role in metal vapour vacuum arc plasmas and ion sources[J]. Plasma Sources Science and Technology, 1992. 1(4): 263
    [33] Anders A. Physics of arcing, and implications to sputter deposition[J]. Thin Solid Films, 2006. 502(1-2): 22-28
    [34] Schulke T., P. Siemroth. Vacuum arc cathode spots as a self-similarityphenomenon[J]. Plasma Science, IEEE Transactions on, 1996. 24(1): 63-64
    [35] Anders A. The fractal nature of vacuum arc cathode spots[J]. Plasma Science, IEEE Transactions on, 2005. 33(5): 1456-1464
    [36] Bilek M.M.M., A. Anders, I.G. Brown. Magnetic system for producing uniform coatings using a filtered cathodic arc[J]. Plasma Sources Science and Technology, 2001. 10(4): 606-613
    [37]程仲元,邹积岩,杨磊.磁控真空电弧沉积TiN膜的扫描电镜分析[J].微细加工技术, 1996(2): 44-48
    [38] Sanders D.M., A. Anders. Review of cathodic arc deposition technology at the start of the new millennium[J]. Surface and Coatings Technology, 2000. 133(134): 78-79
    [39] Boxman R.L., I.I. Beilis, E. Gidalevich, V.N. Zhitomirsky. Magnetic control in vacuum arc deposition: a review[J]. Plasma Science, IEEE Transactions on, 2005. 33(5): 1618-1625
    [40] Zhitomirsky V.N., O. Zarchin, W. She-Guan, R.L. Boxman, S. Goldsmith. Ion current produced by a vacuum arc carbon plasma source[J]. Plasma Science, IEEE Transactions on, 2001. 29(5): 776-780
    [41] Wang B.Y., Z.Y. Li. Effect of pulse discharge on ultrafine particles formation[J]. High Voltage Engineering, 1996. 22(1): 81-83
    [42] Monteiro O.R., A. Anders. Vacuum-arc-generated macroparticles in the nanometer range[J]. Plasma Science, IEEE Transactions on, 1999. 27(4): 1030-1033
    [43] Brown I.G., A. Anders. Recent advances in vacuum arc ion sources[J]. Surface and Coatings Technology, 1996. 84(10): 550-556
    [44] Schülke T., A. Anders. Velocity distribution of carbon macroparticles generated by pulsed vacuum arcs[J]. Plasma Sources Science and Technology, 1999. 8(4): 567-571
    [45] Shalev S., R.L. Boxman, S. Goldsmith. Velocities and emission rates of cathode-produced molybdenum macroparticles in a vacuum arc[J]. Journal of Applied Physics, 1985. 58(7): 2503-2507
    [46] Beilis I.I., M. Keidar, R.L. Boxman, S. Goldsmith. Nonequilibrium macroparticle charging in low-density discharge plasmas[J]. IEEE Transactions on Plasma Science, 1997. 25(2): 346-352
    [47] Anders A. Approaches to rid cathodic arc plasmas of macro- and nanoparticles: a review[J]. Surface and Coatings Technology, 1999. 120-121: 319-330
    [48]郭慧梅,林国强.大颗粒在等离子体鞘层中的受力分析与计算[J].金属学报, 2004(10): 1064-1068
    [49] Huang M.D., G.Q. Lin, Y.H. Zhao, C. Sun, L.S. Wen, C. Dong. Macro-particle reduction mechanism in biased arc ion plating of TiN[J]. Surface and Coatings Technology, 2003. 176(1): 109-114
    [50] Keidar M., I. Beilis, R.L. Boxman. Macroparticle interaction with a substrate incathodic vacuum arc deposition[J]. Surface and Coatings Technology, 1996. 86-87(10): 415-420
    [51] Miyano R., K. Kimura, K. Izumi, H. Takikawa, T. Sakakibara. Preparation of metal nitride and oxide thin films using shielded reactive vacuum arc deposition[J]. Vacuum, 2000. 59(1): 159-167
    [52] Fang D.Y. Cathode spot velocity of vacuum arcs[J]. Journal of Physics D: Applied Physics, 1982. 15(5): 833
    [53] Robert M. John S., J.G. Winans. Motion of Arc Cathode Spot in a Magnetic Field[J]. Physical Review, 1954. 94(5): 1097-1102
    [54] Gallagher C.J. The Retrograde Motion of the Arc Cathode Spot[J]. Journal of Applied Physics, 1950. 21(8): 768-771
    [55]王浩,韦伦存,邹积岩,程礼椿.磁控电弧离子镀阴极斑点特性的高速摄影研究[J].真空科学与技术学报, 1995(6)
    [56] Boxman R.L., S. Goldsmith. Macroparticle contamination in cathodic arc coatings: generation, transport and control[J]. Surface and Coatings Technology, 1992. 52(1): 39-50
    [57] Anders S., A. Anders, Y. Kin Man, X.Y. Yao, I.G. Brown. On the macroparticle flux from vacuum arc cathode spots[J]. Plasma Science, IEEE Transactions on, 1993. 21(5): 440-446
    [58] Harris S.G., E.D. Doyle, Y.C. Wong, P.R. Munroe, J.M. Cairney, J.M. Long. Reducing the macroparticle content of cathodic arc evaporated TiN coatings[J]. Surface and Coatings Technology, 2004. 183(2-3): 283-294
    [59] Miyano R., Y. Fujimura, H. Takikawa, T. Sakakibara, M. Nagao. Cathode spot motion in vacuum arc of zinc cathode under oxygen gas flow[J]. Plasma Science, IEEE Transactions on, 2001. 29(5): 713-717
    [60]张玉娟,吴志国,张伟伟,阎鹏勋,刘维民,薛群基.多弧镀及磁过滤阴极弧沉积TiN薄膜的摩擦学性能对比[J].摩擦学学报, 2004(06): 17-21
    [61] Coll B.F., D.M. Sanders. Design of vacuum arc-based sources[J]. Surface and Coatings Technology, 1996. 81(1): 42-51
    [62] Takikawa H., H.A.T.H. Tanoue. Review of Cathodic Arc Deposition for Preparing Droplet-Free Thin Films[J]. Plasma Science, IEEE Transactions on, 2007. 35(4): 992-999
    [63] Ramalingam S., C.B. Qi, K. Kim, Controlled vacuum arc material deposition, method and apparatus[P], United States专利, 4,673,477, June 16, 1987
    [64] Hettkamp E., H. Fuchs, H. Mecke. Ion current-adapted control of the arc current in a pulsed cathodic arc process[J]. Surface and Coatings Technology, 2003. 174-175(9-10): 790-794
    [65] Keutel K., E. Hettkamp, H. Fuchs. Investigations of plasma properties during TiN deposition by a modified pulsed arc process[J]. Thin Solid Films, 2004. 458(6): 173-178
    [66] Utsumi T., J.H. English. Study of electrode products emitted by vacuum arcs in form of molten metal particles[J]. Journal of Applied Physics, 1975. 46(1): 126-131
    [67] Boxman R.L., S. Goldsmith, A. Ben-Shalom, L. Kaplan, D. Arbilly, E. Gidalevich, V. Zhitomirsky, A. Ishaya, M. Keidar, I.I. Beilis. Filtered vacuum arc deposition of semiconductor thin films[J]. Plasma Science, IEEE Transactions on, 1995. 23(6): 939-944
    [68]吴瑜光,张通和,张荟星,张孝吉,王广甫.磁过滤阴极真空弧沉积薄膜研究[J].微细加工技术, 2001(01): 46-50
    [69] Karpov D.A. Cathodic arc sources and macroparticle filtering[J]. Surface and Coatings Technology, 1997. 96(1): 22-33
    [70] Kumagai M., K. Yukimura, E. Kuze, T. Maruyama, M. Kohata, K. Numata, H. Saito, X. Ma. Macroparticles on titanium nitiride thin film prepared by cathodic-arc plasma-based ion implantation and deposition[J]. Surface and Coatings Technology, 2003. 169-170: 401-404
    [71] Aksenov I.I., V.A. Belous, V.G. Padalka, V.M. Khoroshikh. Transport Of Plasma Streams In A Curvilinear Plasma-Optics System[J]. Sov J Plasma Phys, 1978. 4(4): 425-428
    [72] Aksenov I.I., V.A. Belous, V.G. Padalka, V.M. Khoroshikh. Apparatus to rid the plasma of a vacuum arc of macroparticles[J]. Instruments and Experimental Techniques, 1978. 21(5, Part 2)
    [73] Anders A., S. Anders, I.G. Brown. Transport of vacuum arc plasmas through magnetic macroparticle filters[J]. Plasma Sources Science and Technology, 1995. 4(1): 1
    [74] Aksenov I.I., V.E. Strel'nitskij, V.V. Vasilyev, D.Y. Zaleskij. Efficiency of magnetic plasma filters[J]. Surface and Coatings Technology, 2003. 163-164: 118-127
    [75] Takikawa H., K. Izumi, R. Miyano, T. Sakakibara. DLC thin film preparation by cathodic arc deposition with a super droplet-free system[J]. Surface and Coatings Technology, 2003. 163-164(1): 368-373
    [76] Gorokhovsky V.I., Apparatus for application of coatings in vacuum[P], United States专利, 5,435,900, July 25, 1995
    [77] Shi X., B.K. Tay, H.S. Tan, E. Liu, J. Shi, L.K. Cheah, X. Jin. Transport of vacuum arc plasma through an off-plane double bend filtering duct[J]. Thin Solid Films, 1999. 345(1): 1-6
    [78] Anders A., R.A. MacGill. Twist filter for the removal of macroparticles from cathodic arc plasmas[J]. Surface and Coatings Technology, 2000. 133-134: 96-100
    [79] Storer J., J.E. Galvin, I.G. Brown. Transport of vacuum arc plasma through straight and curved magnetic ducts[J]. Journal of Applied Physics, 1989. 66(11): 5245-5250
    [80] Eungsun B., K. Jong-Kuk, K. Sik-Chol, A. Anders. Effect of ion mass and chargeState on transport of vacuum arc plasmas through a biased magnetic filter[J]. Plasma Science, IEEE Transactions on, 2004. 32(2): 433-439
    [81] Kimblin C.W. Erosion and ionization in the cathode spot regions of vacuum arcs[J]. Journal of Applied Physics, 1973. 44(7): 3074-3081
    [82] Zhitomirsky V.N., R.L. Boxman, S. Goldsmith. Unstable arc operation and cathode spot motion in a magnetically filtered vacuum-arc deposition system[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1995. 13(4): 2233-2240
    [83] Boercker D.B., S. Falabella, D.M. Sanders. Plasma transport in a new cathodic arc ion source: theory and experiment[J]. Surface and Coatings Technology, 1992. 53(3): 239-242
    [84] Falabella S., D.M. Sanders. Comparison of two filtered cathodic arc sources[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1992. 10(2): 394-397
    [85]王广甫,张荟星.过滤管道磁场对改进弧沉积系统弧放电和传输效率的影响[J].北京师范大学学报(自然科学版), 2001(02): 48-51
    [86] Zhang T., P.K. Chu, R.K.Y. Fu, I.G. Brown. Plasma transport in magnetic duct filter[J]. Journal of Physics D: Applied Physics, 2002. 35(24): 3176
    [87]张涛,侯君达,刘志国,张一聪.磁过滤的阴极弧等离子体源及其薄膜制备[J].中国表面工程, 2002(02): 15-19+24+2
    [88] Wang L.P., X.F. Wang, B.Y. Tang, K.Y. Gan, X.Y. Peng. High duty, long lifetime, cathodic arc plasma source[J]. Review of Scientific Instruments, 2003. 74(6): 2983-2986
    [89] Aksenov I.I., V.V. Vasilyev, A.A. Luchaninov, V.E. Strel'nitskij. Vacuum arc plasma source[C]. in Discharges and Electrical Insulation in Vacuum, 2004. Proceedings. ISDEIV. XXIst International Symposium on. 2004
    [90] Sangines R., D. Andruczyk, R.N. Tarrant, M.M.M. Bilek, D.R. McKenzie. Characterization of a Filtered High Current Pulsed Cathodic Vacuum Arc Plasma Source: Plasma Transport Analysis[C]. in AIP Conference Proceedings. 2008
    [91] Kwok D.T.K., T. Zhang, P.K. Chu, M.M.M. Bilek, A. Vizir, I.G. Brown. Experimental investigation of electron oscillation inside the filter of a vacuum arc plasma source[J]. Applied Physics Letters, 2001. 78(4): 422-424
    [92] Cluggish B.P. Transport of a cathodic arc plasma in a straight, magnetized duct[J]. Plasma Science, IEEE Transactions on, 1998. 26(6): 1645-1652
    [93]王广甫,张荟星.聚焦磁场对系统弧放电和传输效率的影响[J].北京师范大学学报(自然科学版), 2000(03): 59-62
    [94] Bilek M.M.M., I.G. Brown. The effects of transmission through a magnetic filter on the ion charge state distribution of a cathodic vacuum arc plasma[J]. Plasma Science, IEEE Transactions on, 1999. 27(1): 193-198
    [95] Alterkop B., E. Gidalevich, S. Goldsmith, R.L. Boxman. The numerical calculationof plasma beam propagation in a toroidal duct with magnetized electrons and unmagnetized ions[J]. Journal of Physics D: Applied Physics, 1996. 29(12): 3032
    [96] Bilek M.M.M., D.R. McKenzie, Y. Yongbai, M.U. Chhowalla, W.I. Milne. Interactions of the directed plasma from a cathodic arc with electrodes and magnetic fields[J]. Plasma Science, IEEE Transactions on, 1996. 24(5): 1291-1298
    [97]张涛,张荟星,朱剑豪, I.G. Brown.阴极真空弧源磁过滤弯管偏压模式研究[J].核技术, 2002(01): 62-65
    [98] Anders A., S. Anders, I.G. Brown. Effect of duct bias on transport of vacuum arc plasmas through curved magnetic filters[J]. Journal of Applied Physics, 1994. 75(10): 4900-4905
    [99] Eungsun B., A. Anders. Bias and self-bias of magnetic macroparticle filters for cathodic arc plasmas[J]. Journal of Applied Physics, 2003. 93(11): 8890-8897
    [100] Zhang T., Y.C. Zhang, P.K. Chu, I.G. Brown. Wall sheath and optimal bias in magnetic filters for vacuum arc plasma sources[J]. Applied Physics Letters, 2002. 80(3): 365-367
    [101] Anders S., A. Anders, M.R. Dickinson, R.A. MacGill, I.G. Brown. S-shaped magnetic macroparticle filter for cathodic arc deposition[J]. Plasma Science, IEEE Transactions on, 1997. 25(4): 670-674
    [102] Timoshenko A.I., V.S. Taran, V.I. Tereshin, O.G. Chechel'nitskiy. Spatial distribution of the vacuum arc plasma fluxes in a curvilinear magnetic duct[J]. Plasma Science, IEEE Transactions on, 2005. 33(5): 1636-1640
    [103] Takikawa H., K. Kimura, R. Miyano, T. Sakakibara, A. Bendavid, P.J. Martin, A. Matsumuro, K. Tsutsumi. Effect of substrate bias on AlN thin film preparation in shielded reactive vacuum arc deposition[J]. Thin Solid Films, 2001. 386(2): 276-280
    [104] Chu P.K. Novel silicon-on-insulator structures for reduced self-heating effects[J]. Circuits and Systems Magazine, IEEE, 2005. 5(4): 18-29
    [105] Setter N., V. Sherman, K. Astafiev, A.K. Tagantsev. Polar Ceramics in RF-MEMS and Microwave Reconfigurable Electronics: A Brief Review on Recent Issues[J]. Journal of Electroceramics, 2004. V13(1): 215-222
    [106] Dimitrova V., D. Manova, E. Valcheva. Optical and dielectric properties of dc magnetron sputtered AlN thin films correlated with deposition conditions[J]. Materials Science and Engineering B, 1999. 68(1): 1-4
    [107] Setoyama M., A. Nakayama, M. Tanaka, N. Kitagawa, T. Nomura. Formation of cubic-AlN in TiN/AlN superlattice[J]. Surface and Coatings Technology, 1996. 86-87(Part 1): 225-230
    [108] Petrov I., E. Mojab, R.C. Powell, J.E. Greene, L. Hultman, J.E. Sundgren. Synthesis of metastable epitaxial zinc-blende-structure AlN by solid-state reaction[J]. Applied Physics Letters, 1992. 60(20): 2491-2493
    [109] Madan A., I.W. Kim, S.C. Cheng, P. Yashar, V.P. Dravid, S.A. Barnett.Stabilization of Cubic AlN in Epitaxial AlN/TiN Superlattices[J]. Physical Review Letters, 1997. 78(9): 1743
    [110] Mashimo T., M. Uchino, A. Nakamura, T. Kobayashi, E. Takasawa, T. Sekine, Y. Noguchi, H. Hikosaka, K. Fukuoka, Y. Syono. Yield properties, phase transition, and equation of state of aluminum nitride (AlN) under shock compression up to 150 GPa[J]. Journal of Applied Physics, 1999. 86(12): 6710-6716
    [111] Iwata A., J. Akedo, M. Lebedev. Cubic Aluminum Nitride Transformed Under Reduced Pressure Using Aerosol Deposition Method[J]. Journal of the American Ceramic Society, 2005. 88(4): 1067-1069
    [112] Chen D., X.L. Ma, Y.M. Wang. Thickness-dependent structural transformation in the AlN film[J]. Acta Materialia, 2005. 53(19): 5223-5227
    [113] Pankov V., M. Evstigneev, R.H. Prince. Role of substrate in the pseudomorphic stabilization of rocksalt-type AlN phase in AlN/TiN superlattices[J]. Applied Physics Letters, 2002. 80(22): 4142-4144
    [114] Kim I.W., A. Madan, M.W. Guruz, V.P. Dravid, S.A. Barnett. Stabilization of zinc-blende cubic AlN in AlN/W superlattices[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2001. 19(5): 2069-2073
    [115]孙剑,吴嘉达,应质峰,施维,凌浩,周筑颖,丁训民,王康林,李富铭.氮化铝薄膜的低温沉积[J].半导体学报, 2000. 21(9): 914-917
    [116]杨克涛,陈光辉. AlN薄膜的研究进展[J].山东陶瓷, 2005(1)
    [117] Kar J.P., G. Bose, S. Tuli. Correlation of electrical and morphological properties of sputtered aluminum nitride films with deposition temperature[J]. Current Applied Physics, 2006. 6(5): 873-876
    [118] Takikawa H., N. Kawakami, T. Sakakibara. N2 gas absorption in cathodic arc apparatus with an Al cathode under medium vacuum[J]. Plasma Science, IEEE Transactions on 1999. 24(4)
    [119]潘俊德,田林海,莘海维,贺琦.工艺参数对电子浴辅助阴极电弧源法合成AlN薄膜的影响[J].中国有色金属学报, 2001(2)
    [120] Weber F.R., F. Fontaine, M. Scheib, W. Bock. Cathodic arc evaporation of (Ti,Al)N coatings and (Ti,Al)N/TiN multilayer-coatings--correlation between lifetime of coated cutting tools, structural and mechanical film properties[J]. Surface and Coatings Technology, 2004. 177-178: 227-232
    [121] Mayrhofer P.H., D. Music, J.M. Schneider. Influence of the Al distribution on the structure, elastic properties, and phase stability of supersaturated Ti[sub 1 - x]Al[sub x]N[J]. Journal of Applied Physics, 2006. 100(9): 094906
    [122] Mayrhofer P.H., A. Horling, L. Karlsson, J. Sjolen, T. Larsson, C. Mitterer, L. Hultman. Self-organized nanostructures in the Ti--Al--N system[J]. Applied Physics Letters, 2003. 83(10): 2049-2051
    [123] Barshilia H.C., K.S. Rajam. A Raman-scattering study on the interface structure of nanolayered TiAlN/TiN and TiN/NbN multilayer thin films grown by reactive dcmagnetron sputtering[J]. Journal of Applied Physics, 2005. 98(1): 014311
    [124] Munz W.-D. Titanium aluminum nitride films: A new alternative to TiN coatings[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1986. 4(6): 2717-2725
    [125] Harris S.G., E.D. Doyle, A.C. Vlasveld, P.J. Dolder. Dry cutting performance of partially filtered arc deposited titanium aluminium nitride coatings with various metal nitride base coatings[J]. Surface and Coatings Technology, 2001. 146-147: 305-311
    [126] Kutschej K., P.H. Mayrhofer, M. Kathrein, P. Polcik, C. Mitterer. Influence of oxide phase formation on the tribological behaviour of Ti-Al-V-N coatings[J]. Surface and Coatings Technology, 2005. 200(5-6): 1731-1737
    [127] Prengel H.G., A.T. Santhanam, R.M. Penich, P.C. Jindal, K.H. Wendt. Advanced PVD-TiAlN coatings on carbide and cermet cutting tools[J]. Surface and Coatings Technology, 1997. 94-95: 597-602
    [128]李成明,张勇,曹尔妍,薛明伦.磁过滤对多弧离子镀(TiAl)N薄膜的影响[J].中国有色金属学报, 2001(S1): 184-187
    [129] Kim G., S. Lee, J. Hahn. Properties of TiAlN coatings synthesized by closed-field unbalanced magnetron sputtering[J]. Surface and Coatings Technology, 2005. 193(1-3): 213-218
    [130] Beckers M., N. Schell, R.M.S. Martins, A. Mucklich, W. Moller. In situ x-ray diffraction studies concerning the influence of Al concentration on the texture development during sputter deposition of Ti--Al--N thin films[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2005. 23(5): 1384-1391
    [131] Sullivan J.F., F. Huang, J.A. Barnard, M.L. Weaver. Effect of nitrogen pressure on the hardness and chemical states of TiAlCrN coatings[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2005. 23(1): 78-84
    [132] Matsui Y., M. Hiratani, Y. Nakamura, I. Asano, F. Yano. Formation and oxidation properties of (Ti[sub 1 - x]Al[sub x])N thin films prepared by dc reactive sputtering[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2002. 20(3): 605-611
    [133]王海东,童洪辉,沈丽如,金凡亚,徐桂东. Al含量对电弧离子镀共沉积Ti_(1-x)Al_xN涂层性能的影响[J].热加工工艺(热处理版), 2006(4)
    [134] Falub C.V., A. Karimi, M. Ante, W. Kalss. Interdependence between stress and texture in arc evaporated Ti-Al-N thin films[J]. Surface and Coatings Technology, 2007. 201(12): 5891-5898
    [135] Mashiki T., H. Hikosaka, H. Tanoue, H. Takikawa, Y. Hasegawa, M. Taki, M. Kumagai, M. Kamiya. TiAlN film preparation by Y-shape filtered-arc-deposition system[J]. Thin Solid Films, 2007. In Press, Corrected Proof
    [136] Munz W.-D., D.B. Lewis, P.E. Hovsepian, C. Schonjahn, A. Ehiasarian, I.J. Smith.Industrial scale manufactured superlattice hard PVD coatings[J]. Surface Engineering, 2001. 17(1): 15-27
    [137] Hauert R., J. Patscheider. From Alloying to Nanocomposites- Improved Performance of Hard Coatings[J]. Advanced Engineering Materials, 2000. 2(5): 247-259
    [138] Staia M.H., M. D'Alessandria, D.T. Quinto, F. Roudet, M.M. Astort. High-temperature tribological characterization of commercial TiAlN coatings[J]. Journal of Physics: Condensed Matter, 2006. 18(32): S1727
    [139] Zoestbergen E., N.J.M. Carvalho, J.T.M. de Hosson. Stress state of TiN/TiAlN PVD multilayers[J]. Surface Engineering, 2001. 17(1): 29-34
    [140]胡晓萍,李戈扬,顾明元. c-AlN的生长对AlN/(Ti,Al)N纳米多层膜力学性能的影响[J].材料研究学报, 2003. 17(3): 326-331
    [141] Ziebert C., S. Ulrich. Hard multilayer coatings containing TiN and/or ZrN: A review and recent progress in their nanoscale characterization[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2006. 24(3): 554-583
    [142]吴大维.硬质薄膜材料的最新发展及应用[J].真空, 2003(6): 1-4
    [143] Dai H., Y. Shen, J. Wang, M. Xu, L. Li, X. Li, X. Cai, P.K. Chu. Fabrication for Multi-Layered Composite Thin Films by Dual-Channel Vacuum Arc Deposition[J]. Review of Scientific Instruments, 2008. 79(6): 065104
    [1] Harris S.G., E.D. Doyle, Y.C. Wong, P.R. Munroe, J.M. Cairney, J.M. Long. Reducing the macroparticle content of cathodic arc evaporated TiN coatings[J]. Surface and Coatings Technology, 2004. 183(2-3): 283-294
    [2] Anders A. Metal plasma immersion ion implantation and deposition: a review[J]. Surface and Coatings Technology, 1997. 93(2-3): 158-167
    [3] Anders A., S. Anders, I.G. Brown. Transport of vacuum arc plasmas through magnetic macroparticle filters[J]. Plasma Sources Science and Technology, 1995. 4(1): 1
    [4]李成明,张勇,曹尔妍,薛明伦.磁过滤对多弧离子镀(TiAl)N薄膜的影响[J].中国有色金属学报, 2001(S1): 184-187
    [5] Karpov D.A. Cathodic arc sources and macroparticle filtering[J]. Surface and Coatings Technology, 1997. 96(1): 22-33
    [6] Anders A. Approaches to rid cathodic arc plasmas of macro- and nanoparticles: a review[J]. Surface and Coatings Technology, 1999. 120-121: 319-330
    [7] Anders A. Physics of arcing, and implications to sputter deposition[J]. Thin Solid Films, 2006. 502(1-2): 22-28
    [8] Lu X., Q. Yang, C. Xiao, A. Hirose. Nonlinear Fowler-Nordheim plots of the field electron emission from graphitic nanocones: influence of non-uniform field enhancement factors[J]. Journal of Physics D: Applied Physics, 2006. 39(15): 3375
    [9]米夏兹Γ.A.,真空放电物理和高功率脉冲技术[M]. 2007,北京:国防工业出版社
    [10] Forbes R.G. Physics of generalized Fowler-Nordheim-type equations[J]. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures, 2008. 26(2): 788-793
    [11]达道安,真空设计手册[M]. 2004,北京:国防工业出版社
    [12]黄美东,董闯,宫骏,卢春燕,孙超,黄荣芳,闻立时.偏压对阴极电弧离子镀AIN薄膜的影响[J].材料研究学报, 2001. 15(6): 675-680
    [13] Anders A., S. Anders, A. Forster, I.G. Brown. Pressure ionization: its role in metal vapour vacuum arc plasmas and ion sources[J]. Plasma Sources Science and Technology, 1992. 1(4): 263
    [14] Takikawa H., H.A.T.H. Tanoue. Review of Cathodic Arc Deposition for Preparing Droplet-Free Thin Films[J]. Plasma Science, IEEE Transactions on, 2007. 35(4): 992-999
    [15] Curtins H. PLATIT: a new industrial approach to cathodic arc coating technology[J]. Surface and Coatings Technology, 1995. 76-77(Part 2): 632-639
    [16] Anders A., Arc initiation in cathodic arc plasma sources[P], United States专利, 6,465,793, October 15, 2002
    [17] Beilis I.I., M. Keidar, R.L. Boxman, S. Goldsmith. Nonequilibrium macroparticle charging in low-density discharge plasmas[J]. IEEE Transactions on Plasma Science, 1997. 25(2): 346-352
    [18]郭慧梅,林国强.大颗粒在等离子体鞘层中的受力分析与计算[J].金属学报, 2004(10): 1064-1068
    [19]张三慧,电磁学[M]. 1999,北京:清华大学出版社
    [20]张涛,郭达勤,朱剑豪.磁过滤弯管中的电子运动模式[J].北京师范大学学报(自然科学版), 2001(01): 51-53
    [21] Boxman R.L., V.N. Zhitomirsky. Recent progress in filtered vacuum arc deposition[J]. Surface and Coatings Technology, 1996. 86-87(10): 243-253
    [22] Martin P.J., A. Bendavid. Review of the filtered vacuum arc process and materials deposition[J]. Thin Solid Films, 2001. 394(1-2): 1-14
    [23] Aksenov I.I., A.N. Belokhvostikov, V.G. Padalka, N.S. Repalov, V.M. Khoroshikh. Plasma flux motion in a toroidal plasma guide[J]. Plasma Physics and Controlled Fusion, 1986(5): 761
    [24] Aksenov I.I., V.E. Strel'nitskij, V.V. Vasilyev, D.Y. Zaleskij. Efficiency of magnetic plasma filters[J]. Surface and Coatings Technology, 2003. 163-164: 118-127
    [25] Davis W.D., H.C. Miller. Analysis of the Electrode Products Emitted by dc Arcs in a Vacuum Ambient[J]. Journal of Applied Physics, 1969. 40(5): 2212-2221
    [26] Schmidt G. Plasma Motion Across Magnetic Fields[J]. Physics of Fluids, 1960. 3(6): 961-965
    [27] Veerasamy V.S., G.A.J. Amaratunga, W.I. Milne. Plasma motion in a filtered cathodic vacuum arc[J]. Plasma Science, IEEE Transactions on, 1993. 21(3): 322-328
    [28] Shi X., Y.Q. Tu, H.S. Tan, B.K. Tay, W.I. Milne. Simulation of plasma flow in toroidal solenoid filters[J]. Plasma Science, IEEE Transactions on, 1996. 24(6): 1309-1318
    [29] Shi X., B.K. Tay, D.I. Flynn, Q. Ye, Z. Sun. Characterization of filtered cathodic vacuum arc system[J]. Surface and Coatings Technology, 1997. 94-95: 195-200
    [30] Shi X., B.K. Tay, H.S. Tan, E. Liu, J. Shi, L.K. Cheah, X. Jin. Transport of vacuum arc plasma through an off-plane double bend filtering duct[J]. Thin Solid Films, 1999. 345(1): 1-6
    [1]蔡珣,戴华,沈耀,胡亚威,陈秋龙,自由开放式线圈过滤器[P],中国专利, 200610117883.X, 2006-11-2
    [2]沈耀,戴华,蔡珣,胡亚威,陈秋龙,多通道线圈过滤器离子复合镀膜装置和方法[P],中国专利, 200710037887.1, 2007-3-8
    [3] King R.J., M.J. Downs, P.B. Clapham, K.W. Raine, S.P. Talim. A comparison of methods for accurate film thickness measurement[J]. Journal of Physics E: Scientific Instruments, 1972. 5(5): 445
    [4] Downs M.J. Problems associated with thin film measurement using double beam interference microscopy[J]. Journal of Physics E: Scientific Instruments, 1981. 14(1): 24
    [5] Zhou P.Y., Y.L. Xu, Y.F. Wu. The Analysis of Measurement of Thin Film Thickness by Interfero-Microscope[J]. Journal of Capital Normal University (Natural Science Edition), 1999. 20(2): 33-36
    [6]赵光兴,陈洪酋,杨国光.干涉条纹的数据拟合方法[J].光学学报, 2000. 20(6)
    [7]陈本永,李达成,朱若谷.基于干涉条纹跟踪实现纳米级位移测量的方法研究[J].光学技术, 2001. 27(3)
    [8] Ohring M., Materials Science of Thin Films : Deposition and Structure[M]. 2002: San Diego, CA Elsevier
    [9] Cai C.L., L.X. Hang, G. Li, J.Q. Xu, Y.X. Yan, C. Zhu. Measuring on emission characteristic of pulse vacuum arc ion deposition[J]. Optical Instruments, 2001. 23(5-6): 49-52
    [10] Li G., C.L. Cai, G.Q. Quan, Y.X. Yang. The thickness uniformity of the films deposited by pulsed-arc ion source[J]. Journal of Xi'an Institute of Technology, 2002. 22(3): 214-219
    [11] Cai C.L., J.M. Wang, Q. Mi, L.X. Hang, Y.X. Yan, J.Q. Xu. Study on the Deposition Ration of Pulsed Vacuum Arc Ion Deposition[J]. Surface Technology, 2002. 31(6): 27-29
    [12] Dai H., Y. Shen, H. Zhou, X. Cai. Effects of step slope on thickness measurement by optical interferometry for opaque thin films[J]. Thin Solid Films, 2007. 516(8): 1796-1802
    [1] Swift P.D. Macroparticles in films deposited by steered cathodic arc[J]. Journal of Physics D: Applied Physics, 1996(7): 2025
    [2] Takikawa H., H.A.T.H. Tanoue. Review of Cathodic Arc Deposition for Preparing Droplet-Free Thin Films[J]. Plasma Science, IEEE Transactions on, 2007. 35(4): 992-999
    [3] Shinno H., M. Fukutomi, M. Fujitsuka, M. Okada. In situ coating of low-Z materials by reactive vacuum arc-deposition with a stabilized arc cathode[J]. Journal of Nuclear Materials, 1985. 133-134: 749-753
    [4] Abramoff M.D., P.J. Magelhaes, S.J. Ram. Image Processing with ImageJ[J]. Biophotonics International, 2004. 11(7): 36-42
    [5] Wang B.Y., Z.Y. Li. Effect of pulse discharge on ultrafine particles formation[J]. High Voltage Engineering, 1996. 22(1): 81-83
    [6]贾鸿谟,手工钨极氩弧焊技术及其应用[M]. 2006,太原:山西科学技术出版社
    [1] Curtins H. PLATIT: a new industrial approach to cathodic arc coating technology[J]. Surface and Coatings Technology, 1995. 76-77(Part 2): 632-639
    [2] Anders A., Arc initiation in cathodic arc plasma sources[P], United States专利, 6,465,793, October 15, 2002
    [3] Boxman R.L., V.N. Zhitomirsky. Recent progress in filtered vacuum arc deposition[J]. Surface and Coatings Technology, 1996. 86-87(10): 243-253
    [4] Takikawa H., H.A.T.H. Tanoue. Review of Cathodic Arc Deposition for Preparing Droplet-Free Thin Films[J]. Plasma Science, IEEE Transactions on, 2007. 35(4): 992-999
    [5] Shi X., B.K. Tay, H.S. Tan, E. Liu, J. Shi, L.K. Cheah, X. Jin. Transport of vacuum arc plasma through an off-plane double bend filtering duct[J]. Thin Solid Films, 1999. 345(1): 1-6
    [6] Beilis I.I., M. Keidar, R.L. Boxman, S. Goldsmith. Macroparticle separation and plasma collimation in positively biased ducts in filtered vacuum arc deposition systems[J]. Journal of Applied Physics, 1999. 85(3): 1358-1365
    [7] Schülke T., A. Anders. Velocity distribution of carbon macroparticles generated by pulsed vacuum arcs[J]. Plasma Sources Science and Technology, 1999. 8(4): 567-571
    [8] Anders A. Approaches to rid cathodic arc plasmas of macro- and nanoparticles: a review[J]. Surface and Coatings Technology, 1999. 120-121: 319-330
    [9] Zhang T., P.K. Chu, R.K.Y. Fu, I.G. Brown. Plasma transport in magnetic duct filter[J]. Journal of Physics D: Applied Physics, 2002. 35(24): 3176
    [10] Zhitomirsky V.N., O. Zarchin, W. She-Guan, R.L. Boxman, S. Goldsmith. Ion current produced by a vacuum arc carbon plasma source[J]. Plasma Science, IEEE Transactions on, 2001. 29(5): 776-780
    [11] Storer J., J.E. Galvin, I.G. Brown. Transport of vacuum arc plasma through straight and curved magnetic ducts[J]. Journal of Applied Physics, 1989. 66(11): 5245-5250
    [12] Anders A., S. Anders, I.G. Brown. Transport of vacuum arc plasmas through magnetic macroparticle filters[J]. Plasma Sources Science and Technology, 1995. 4(1): 1
    [13]张三慧,电磁学[M]. 1999,北京:清华大学出版社
    [14] Anders A., R.A. MacGill. Twist filter for the removal of macroparticles from cathodic arc plasmas[J]. Surface and Coatings Technology, 2000. 133-134: 96-100
    [15] Eungsun B., A. Anders. Bias and self-bias of magnetic macroparticle filters for cathodic arc plasmas[J]. Journal of Applied Physics, 2003. 93(11): 8890-8897
    [16] Anders A., Miniaturized cathodic arc plasma source[P], United States专利,6,548,817, April 15, 2003
    [17] Anders A., E.M. Oks, G.Y. Yushkov, K.P. Savkin, I.G. Brown, A.G. Nikolaev. Measurements of the total ion flux from vacuum arc cathode spots[J]. Plasma Science, IEEE Transactions on, 2005. 33(5): 1532-1536
    [18]张涛,郭达勤,朱剑豪.磁过滤弯管中的电子运动模式[J].北京师范大学学报(自然科学版), 2001(01): 51-53
    [19] Zhang T., J.D. Hou, B.Y. Tang, P.K. Chu, I.G. Brown. Guiding of plasma by electric field and magnetic field[J]. Chinese Physics, 2001. 10(5): 424-428
    [20] Anders A. Ion charge state distributions of vacuum arc plasmas: The origin of species[J]. Physical Review E - Statistical Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 1997. 55(1 SUPPL. B): 969-981
    [21] Brown I.G., B. Feinberg, J.E. Galvin. Multiply stripped ion generation in the metal vapor vacuum arc[J]. Journal of Applied Physics, 1988. 63(10): 4889-4898
    [22] Abramoff M.D., P.J. Magelhaes, S.J. Ram. Image Processing with ImageJ[J]. Biophotonics International, 2004. 11(7): 36-42
    [23] Dai H., L. Li, Y. Hu, X. Li, P.K. Chu. Effects of pulsing frequencies on macro-particle contamination during pulsed vacuum arc deposition[J]. Surface and Coatings Technology, 2007. 201(15): 6545-6549
    [24] Monteiro O.R., A. Anders. Vacuum-arc-generated macroparticles in the nanometer range[J]. Plasma Science, IEEE Transactions on, 1999. 27(4): 1030-1033
    [25] Keidar M., I. Beilis, R.L. Boxman. Macroparticle interaction with a substrate in cathodic vacuum arc deposition[J]. Surface and Coatings Technology, 1996. 86-87(10): 415-420
    [26] Chen X., J. Chen, Y. Wang. Heat transfer from a rarefied plasma flow to a metallic particle with high surface temperature[J]. Journal of Physics D: Applied Physics, 1994. 27(8): 1637
    [27] Kwok D.T.K., T. Zhang, P.K. Chu, M.M.M. Bilek, A. Vizir, I.G. Brown. Experimental investigation of electron oscillation inside the filter of a vacuum arc plasma source[J]. Applied Physics Letters, 2001. 78(4): 422-424
    [28]沈耀,戴华,蔡珣,胡亚威,陈秋龙,多通道线圈过滤器离子复合镀膜装置和方法[P],中国专利, 200710037887.1, 2007-3-8
    [29] Martins D.R., M.C. Salvadori, P. Verdonck, I.G. Brown. Contamination due to memory effects in filtered vacuum arc plasma deposition systems[J]. Applied Physics Letters, 2002. 81(11): 1969-1971
    [30]沈耀,戴华,王婧,蔡珣,无推进长寿命阴极电弧源装置[P],中国专利, 200810037103.X, 2008-5-8
    [1] Vyas A., K.Y. Li, Z.F. Zhou, Y.G. Shen. Synthesis and characterization of CNx/TiN multilayers on Si(100) substrates[J]. Surface and Coatings Technology, 2005. 200(7): 2293-2300
    [2] Chu P.K. Novel silicon-on-insulator structures for reduced self-heating effects[J]. Circuits and Systems Magazine, IEEE, 2005. 5(4): 18-29
    [3] Petrov I., E. Mojab, R.C. Powell, J.E. Greene, L. Hultman, J.E. Sundgren. Synthesis of metastable epitaxial zinc-blende-structure AlN by solid-state reaction[J]. Applied Physics Letters, 1992. 60(20): 2491-2493
    [4]田家万,劳技军,虞晓江,李戈扬,宁兆元.纳米多层膜中立方AIN外延生长的HRTEM观察[J].电子显微学报, 2002. 21(5)
    [5] Matsumoto T., M. Kiuchi. Zinc-blende aluminum nitride formation using low-energy ion beam assisted deposition[J]. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2006. 242(1-2): 424-426
    [6] Iwata A., J. Akedo, M. Lebedev. Cubic Aluminum Nitride Transformed Under Reduced Pressure Using Aerosol Deposition Method[J]. Journal of the American Ceramic Society, 2005. 88(4): 1067-1069
    [7] Cimalla V., V. Lebedev, U. Kaiser, R. Goldhahn, C. Foerster, J. Pezoldt, O. Ambacher. Polytype control and properties of AlN on silicon[J]. physica status solidi (c), 2005. 2(7): 2199-2203
    [8] Lin W.-T., L.-C. Meng, G.-J. Chen, H.-S. Liu. Epitaxial growth of cubic AlN films on (100) and (111) silicon by pulsed laser ablation[J]. Applied Physics Letters, 1995. 66(16): 2066-2068
    [9] Okubo S., N. Shibata, T. Saito, Y. Ikuhara. Formation of cubic-AlN layer on MgO(1 0 0) substrate[J]. Journal of Crystal Growth, 1998. 189-190(6): 452-456
    [10] Setoyama M., A. Nakayama, M. Tanaka, N. Kitagawa, T. Nomura. Formation of cubic-AlN in TiN/AlN superlattice[J]. Surface and Coatings Technology, 1996. 86-87(Part 1): 225-230
    [11]于毅,赵宏锦,任天令,刘理天.硅基AlN薄膜的成分与表面分析[J].仪器仪表学报, 2003(S2)
    [12]杨克涛,陈光辉. AlN薄膜的研究进展[J].山东陶瓷, 2005(1)
    [13]胡晓萍,李戈扬,顾明元. c-AlN的生长对AlN/(Ti,Al)N纳米多层膜力学性能的影响[J].材料研究学报, 2003. 17(3): 326-331
    [14]闻立时,黄荣芳.离子镀硬质膜技术的最新进展和展望[J].真空, 2000(1): 1-11
    [15] Munz W.-D. Titanium aluminum nitride films: A new alternative to TiN coatings[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 1986. 4(6): 2717-2725
    [16] Harris S.G., E.D. Doyle, A.C. Vlasveld, P.J. Dolder. Dry cutting performance of partially filtered arc deposited titanium aluminium nitride coatings with various metal nitride base coatings[J]. Surface and Coatings Technology, 2001. 146-147: 305-311
    [17] Weber F.R., F. Fontaine, M. Scheib, W. Bock. Cathodic arc evaporation of (Ti,Al)N coatings and (Ti,Al)N/TiN multilayer-coatings--correlation between lifetime of coated cutting tools, structural and mechanical film properties[J]. Surface and Coatings Technology, 2004. 177-178: 227-232
    [18]潘俊德,田林海,莘海维,贺琦.工艺参数对电子浴辅助阴极电弧源法合成AlN薄膜的影响[J].中国有色金属学报, 2001(2)
    [19]黄美东,董闯,宫骏,卢春燕,孙超,黄荣芳,闻立时.偏压对阴极电弧离子镀AIN薄膜的影响[J].材料研究学报, 2001. 15(6): 675-680
    [20]胡赓祥,蔡珣,戎咏华,材料科学基础[M]. 2006,上海:上海交通大学出版社
    [21]闫鹏勋,李晓春,李春,李鑫,徐建伟.偏压类型对磁过滤等离子体制备优质类金刚石膜的影响[J].中国有色金属学报, 2005(07): 7-12
    [22]闫鹏勋,吴志国,徐建伟,张玉娟,张伟伟,刘伟民.在室温条件下制备高质量纳米结构TiN薄膜研究[J].无机材料学报, 2004(06): 172-176
    [23] Takikawa H., K. Izumi, R. Miyano, T. Sakakibara. DLC thin film preparation by cathodic arc deposition with a super droplet-free system[J]. Surface and Coatings Technology, 2003. 163-164(1): 368-373
    [24] You G.F., B.K. Tay, S.P. Lau, D.H.C. Chua, W.I. Milne. Carbon arc plasma transport through different off-plane double bend filters[J]. Surface and Coatings Technology, 2002. 150(1): 50-56
    [25] Takikawa H., N. Kawakami, T. Sakakibara. N2 gas absorption in cathodic arc apparatus with an Al cathode under medium vacuum[J]. Plasma Science, IEEE Transactions on 1999. 24(4)
    [26] Sanders D., Vacuum Arc-Based Processing[M]. Handbook of Plasma Processing Technology - Fundamentals, Etching, Deposition, and Surface Interactions, ed. S.M. Rossnagel, J.J. Cuomo, and W.D. Westwood. 1990: William Andrew Publishing/Noyes
    [27] Anders A. Physics of arcing, and implications to sputter deposition[J]. Thin Solid Films, 2006. 502(1-2): 22-28
    [28] Anders S., S. Raoux, K. Krishnan, R.A. MacGill, I.G. Brown. Plasma distribution of cathodic arc deposition systems[J]. Journal of Applied Physics, 1996. 79(9): 6785-6790
    [29] Dai H., Y. Shen, J. Wang, M. Xu, L. Li, X. Li, X. Cai, P.K. Chu. Fabrication for Multi-Layered Composite Thin Films by Dual-Channel Vacuum Arc Deposition[J]. Review of Scientific Instruments, 2008. 79(6)
    [30] Mori T., S. Fukuda, Y. Takemura. Improvement of mechanical properties of Ti/TiN multilayer film deposited by sputtering[J]. Surface and Coatings Technology, 2001. 140(2): 122-127
    [31] Li D.J., M. Cao, X.Y. Deng, X. Sun, W.H. Chang, W.M. Lau. Multilayered coatings with alternate ZrN and TiAlN superlattices[J]. Applied Physics Letters, 2007. 91(25): 251908
    [32] Barshilia H.C., K.S. Rajam. A Raman-scattering study on the interface structure of nanolayered TiAlN/TiN and TiN/NbN multilayer thin films grown by reactive dc magnetron sputtering[J]. Journal of Applied Physics, 2005. 98(1): 014311
    [33] Pujada B.R., F.D. Tichelaar, G.C.A.M. Janssen. Stress in tungsten carbide-diamond like carbon multilayer coatings[J]. Applied Physics Letters, 2007. 90(2): 021913
    [34] Fullerton E.E., I.K. Schuller, H. Vanderstraeten, Y. Bruynseraede. Structural refinement of superlattices from x-ray diffraction[J]. Physical Review B, 1992. 45(16): 9292
    [35] Tsai Y.-Z., J.-G. Duh. Thermal stability and microstructure characterization of CrN/WN multilayer coatings fabricated by ion-beam assisted deposition[J]. Surface and Coatings Technology, 2005. 200(5-6): 1683-1689
    [36] Ziebert C., S. Ulrich. Hard multilayer coatings containing TiN and/or ZrN: A review and recent progress in their nanoscale characterization[J]. Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films, 2006. 24(3): 554-583
    [37] Liu Z.J., A. Vyas, Y.H. Lu, Y.G. Shen. Structural properties of sputter-deposited CNx/TiN multilayer films[J]. Thin Solid Films, 2005. 479(1-2): 31-37

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700