电化学预氧化—生物转盘联合处理采油污水
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着采油技术的不断提高,采油污水成分日趋复杂,直接回注或排放不仅会污染环境,还会造成巨大的浪费。所以,必须对油田采出水进行适当处理然后回注或排放。
     本文以采油污水为研究对象,首先采用电化学预氧化工艺来提高污水的可生化性,考察了电解电压、pH值、电解时间、极板间距、阳极材料、阳极极板数等因素对除污效果的影响。利用正交实验设计和单因素验证确定了电化学预氧化最佳工艺参数为:电解电压15V、pH值为5、极板间距2.0cm、阳极材料为Ti/Ir形稳电极、2个阳极极板,此条件下电解30min采油污水COD的去除率达到61%,SRB杀灭率为99.89%。利用BOD_5/COD_(Cr)比值法和微生物呼吸速率法对污水的可生化性进行了研究,两种实验方法均表明处理前采油污水的可生化性较差,而经电化学氧化工艺处理后的污水可进行生化处理,同时在微生物呼吸速率法的基础上探讨了微生物的生化反应动力学,结果表明,实验条件下微生物呼吸速率都严格遵循一级动力学关系式lnC(O)=lnC_0 (O)–Kt。
     然后对生物转盘生物膜的载体—活性炭进行了表面氧化改性,借助化学分析、表面形态分析等表征方法研究了化学氧化-Fe~(3+)覆盖技术和HF处理后活性炭的表面形貌、表面官能团、比表面积及其亲水性的变化情况,对比分析了两种改性方法对生物转盘挂膜性能的影响。将两种表面氧化处理的活性炭分别制作成两组生物转盘盘片Ι、Π,用其来处理经电化学氧化法预处理的采油污水。结果表明采用化学氧化-Fe~(3+)覆盖技术改性处理过的活性炭具有更大的比表面积、较高的酸性官能团含量、亲水性更好,挂膜后两组生物转盘的微生物相比较丰富,但是生物转盘II的生物膜厚度更厚一些,挂膜速率也更快,两组生物转盘的微生物含量分别为2.20×10~9cfu/g、2.60×10~9cfu/g,生物膜干重分别为12.7858g/m~2、16.9096g/m~2。在盘片转速4rpm、水温20℃、HRT为6h、pH值为6~8时,三级生物转盘各级COD去除率都在80%以上,最高达到了92.36%,并且生物转盘Π要比Ι的去除效果好。实验还研究了电化学预处理对生物转盘处理效果的影响,结果表明电化学与生物转盘联合处理采油污水的效果要远远好于单独使用生物转盘的效果,处理后污水COD含量为65.8mg/L,达到污水综合排放标准的二级标准。
With the continuous improvement of Oil extraction technology, the increasing complexity of produced water components, direct injection or discharge will not only pollute the environment, but also cause great waste. Therefore, the oilfield produced water must be properly treated then reinjected or let.
     This text was based on oilfield produced sewage, first of all, by electrochemical preoxidation process to improve biodegradability of the sewage, inspected the electrolysis voltage, pH value, electrolysis time, plate spacing, the anode material, and the number of the anode plate on the decontamination effect.
     Using Orthogonal experiment design and single-factor authentication determine the best electrochemical preoxidation process parameters: electrolysis voltage 15V, pH 5, plate spacing 2.0cm, anode materials for the Ti/Ir dimensionally stable electrode, the anode is 2 board, under these conditions, the removal rate of COD achieve 61% after electrolyzing 30 min, SRB killing rate was 99.89%. The biochemical capacity of sewage treated and untreated was studied by BOD_5/COD_(Cr) and microbial respiration rate method. Both experimental methods show that the former produced water biodegradability is poor, and the electrochemical oxidation treatment can be the biological treatment of sewage, at the same time, on the basis of microbial respiration rate, the microbial reaction kinetics results show that under the experimental conditions microbial respiration rate are strictly abide by a kinetic relationship lnC(O) = lnC_0(O)-Kt.
     Then rotating biological contactors biofilm carrier - the surface of activated carbon was modified by the chemical oxidation method - Fe~(3+) coverage technology and HF treatment. In virtue of chemical analysis, analysis of surface morphology characterization studied the changes of surface morphology, surface groups, hydrophilic and specific surface area activated carbon treated.Contrasted the two methods to impact on film properties of rotating biological contactor. Activated carbon dealt with the two surface oxidation was cranked out disces of rotating biological contactorsΙandΠ.Using them to dispose the produced water of being pretreated by electrochemical oxidation.The results showed that the use of chemical oxidation-Fe~(3+) coverage technology modification of activated carbon have greater specific surface area, high levels of acidic functional groups, as well as better link hydrophilic The microbe phase are very abundant of the two rotating biological contactor after attaching biofilm, but the biofilm of II is much thicker and attaching rate is faster. The microbe content are 2.20×10~9cfu/g, 2.60×10~9cfu/g respectively, and the dried weight of biofilm are 12.7858g/m~2,16.9096 g/m~2 respectively of the two rotating biological contactor.The COD removal rates of all the three-stages rotating biological contactor are above 80% with the disc speed of 4rpm, water temperature 20℃, HRT for 6h, pH 6 to 8, the highest level achieves 92.36%, and rotating biological contactorsΠis better thanΙ. Rotating biological contactors are always aerobic running. Also the results show that the electrochemical pretreatment united rotating biological contactors is much better than the separate use of rotating biological contactors on the removal effects. The COD content of sewage disposed is 65.8mg/L and reaches the second-grade standard of the national discharge.
引文
[1]孙彤,翟玉春.采油污水处理技术[J].辽宁工程技术大学学报,2004,23(5): 718-720.
    [2]韩丽娟,张淑芝.采油污水处理工艺探讨[J].水资源保护,2006,22(6):61-63.
    [3]姜桂芳.浅谈油田污水处理技术[J].油气田地面工程,2006,25(11):24.
    [4]陈国威,尹先清.油田采油污水处理现状与发展趋势[J].工业水处理,2002,22(12):13-15.
    [5]陈平,李亚峰,崔红梅,等.pH值对油田污水处理的影响[J].辽宁化工,2006,35(8): 473-474.
    [6]成明泉.现代化污水处理技术及其应用[J].管理科学文摘,2006,(37):58-60.
    [7]张文林,李春利,侯凯湖.含油废水处理技术研究进展[J].化工进展,2005,24 (11):1239-1243.
    [8]王健,李方涛,刘金库,等.Fenton试剂法去除含聚合物硌凝胶采油污水COD的室内研究[J].油田化学,2007,24(2):167-170.
    [9]陈颖,吴红军,孔凡贵,等.高铁酸钾处理含聚合物油田污水的研究[J].工业用水与废水,2004,35(4):29-32
    [10]魏平方,邓皓,邹斌.含油污水处理技术与发展趋势[J].油气田环境保护, 2000,10(1):34-36.
    [11]关卫省,朱唯,朱浚黄.复合絮凝剂XG977用于含油废水处理研究[J].工业水处理,2000,(1):17-19.
    [12]李玉江,隗娜,吴涛,等.活性硅酸混凝剂SPAS处理油田三次采油废水[J].工业水处理,2004,(11):23-25.
    [13] Palmer L. L., Beyer A. H., Stock J. Biological oxidation of dissolved compounds in oilfield produced water by a field pilot biodisk[J].Journal of Petroleum Technology,1981,33(6):1136-1140.
    [14]聂永平,邓正栋,都德箭.膜生物膜反应器研究进展[J].环境污染治理技术与设备, 2002,1(3):12-15.
    [15] Gilbert T.Tellez, N.Nirmalakhandan,et al.Gardea-Torresdey. Performance evaluation of an activated sludge system for removing petroleum hydrocarbons from oilfield produced water[J].Advances in Environmental Research,2002, (6):455-470.
    [16]邓波,祝威.生化法处理高温、高盐油田采出水[J].中国给水排水,2003,19(4): 76-78.
    [17] Campos J . C.,Borges R. M. H.,Oliveira Filho A.M.,et al.Oilfield wastewater treatment by combined microfiltration and biological process[J].Water Research, 2002,36(1):95-104.
    [18]刘刚,胡文胜.油气田污染物处理方法初探[J].天然气与石油,2000.18(2):47-51.
    [19]肖昌胜,王志强.利用氧化塘技术处理采油废水[J].工业水处理,2002,20(10): 60-61.
    [20]汪涵.电化学技术在环保领域的应用[J].化工环保,2005,25(5):361-363.
    [21]冯玉杰,李晓岩,尤宏,等.电化学技术在环境工程中的应用[M].北京:化学工业出版社.2002
    [22]王翠,史佩红,杨春林,等.电化学氧化法在废水处理中的应用[J].河北工业科技,2004,21(1):49-50.
    [23]侯峰岩,王为.电化学技术与环境保护[J].化工进展,2003,22(5):471-476.
    [24]宋爽,周华敏,何志桥,等.铂电极上氟苯电化学降解机理及动力学[J].化工学报,2006,57(10):2332-2336.
    [25] Apostolos G Vlyssides.Degradation ofMethylparathion in Aqueous Solution by Electrochemical Oxidation[J]. Environment Science & Technology,2004,38: 6125-6131.
    [26] Rajesh S Bejankiwar,K S Lokesh,T P HalappaGowda.Colour and organic removal of biologically treated coffee curing wastewater by electrochemical oxidation method[J].Journal of Environmental Sciences,2003,15(3):323-327.
    [27]周集体,杨凤林,杨卫身,等.连续吸附—电解再生污水处理设备[P].中国,CN1201759A,2002.
    [28]李青,周雍茂.环境污染物的电化学处理技术[J].江苏化工,2002,30(6):47-50.
    [29]童庆松.电化学技术在净化环境中的应用[J].环境保护,1994,10(6):34-36.
    [30]景长勇,霍保全.电催化氧化法降解苯酚废水的实验研究[J].环境污染治理技术与设备,2006,7(12):108-111.
    [31] C. Carvalho, A. Fernandes, A. Lopes, et al. Electrochemical degradation applied to the metabolites of Acid Orange 7 anaerobic biotreaatment[J]. Chemosphere,2007(67): 1316-1324.
    [32] Yusuf Yavuz, A.Savas Koparal. Electrochemical oxidation of phenol in a parallel plate reactor using ruthenium mixed metal oxide electrode [J]. Journal of Hazardous Materials B, 2006, 136 (2): 296-302.
    [33] Wang Rui, Chen Chenlong, Josef S.Gratzl. Dechlorination of chlorophenols found in pulp bleach plant E-1 effluents by advanced oxidation processes [J]. Bioresource Technology, 2005, 96(8): 897 - 906.
    [34] Robson T.S.Oliveira, Giancarlo R. Salazar -Banda, Mauro C. Santos, Marcelo L. Calegaro, Douglas W. Miwa, Sergio A.S. Machado, Luis A. Avaca. Electrochemical oxidation of benzene on boron- doped diamond electrodes [J]. Chemosphere, 2007,66(11):2152-2158.
    [35]李海芳,亓学梅,赵金国,等.污水处理生物转盘结构及组合工艺[J].城市环境与城市生态,2005,18(1):18-32.
    [36]顾夏声.废水生物处理数学模型[M].北京:清华大学出版.1993:68-79.
    [37] Zhongming Zheng, Jeffrey Philip Obbard. Removal of surfactant solubilized polycyclic aromatic hydrocarbons by Phanerochaete chrysosporium in a rotating biological contactor reactor [J].Jounal of Biotechnnnnology, 2002,5(96):241-249.
    [38] Ghasem Najafpour, Hii Ai Yieng, Habibollah, et al. Effect of organic loading on performance of rotating biological contactors using Palm Oil Mill effluents[J].Process Biochemistry,2005,11(40):2879-2884.
    [39] M.Y.Chen, M.J.Syu. Film analysis of activated sludge microbial discs by the Taguchi method and grey relational analysis [J].Bioprocess Biosyst Eng,2003,9(26):83-92.
    [40] M.Martin-Cereceda, J.Zamora, B.Perez- Uz, et al. Ciliate communities of rotating biological contactor biofilms:A Multiv- ariate Approach [J].System Appl Micro- biol,2002,7(25):301-313.
    [41] Ahmed Tawfik, BramKlapwijk,Fatma el-Gohary, et al.Treatment ofanaerobically pre-treated domestic sewageby a rotating biological contactor[J].Water Research.2002, 36:147-155.
    [42]王亚龙,刘秀平,左群.煤渣过滤、生物转盘和生态池在处理生活污水中的联合应用[J].现代预防医学,2005,32(4):387-388.
    [43] A.Tawfik,A.Klapwijk,F.El-Gohary,et al.Potemtials of using a rotating biological contactor for post-treatment of anaerobically pre-treated domestic wastewater[J].Biochemical Engineering Journal,2005,5(25):89-98.
    [44]张自杰.环境工程手册—水污染防治卷[M].北京:高等教育出社.1996:722-727.
    [45]刘秀芝,张唯,张萍.生物脱氮的工艺特点和发展趋势[J].黑龙江环境报,2000,24(1):49-56.
    [46]孙卫红,操家顺,江溢.A/O生物转盘工艺处理氨氮废水[J].上海环境科学,2001,20(8):390-392.
    [47] P.Saikaly,G.M.Ayoub.Ammonia nitrogen removal in step-stage rotating biological contactor[J].Water ,Air and Soil Pollution,2003,34(150):177-191.
    [48] Demetrios N.Hiras,Ioannis D.Manariotis,Sotirios G. Grigoropoulos.Organic and nitrogen removal in a two-stage rotating biological contactor treating municipal wastewater[J].Bioresource Technology,2004,24(93):91-98.
    [49] Watanabe Y, BangDY, ItohK, et al. Nitrogen removal from wastewaters by abio-reactor with partially and fully merged rotating biofilms[J]. Wat. Sci. Tech.,1994,11(5):431-438
    [50] J.W.W. Eckenfelder, Industrial Water Pollution Control,3rd ed., McGraw-Hill, New Yourk,2000:388-393.
    [51] E.Garcia-Sanda,F.Omil,M.Lema.Clean production in fish canning industries: recovery and reuse of selected wastes[J].Clean Techonl. Environ. Policy,2003,12(5):289-294.
    [52] A.Mosqera-Corral,J.L.Campos,M.Sanchez,et al.Combined system for biological removal of nitrogen and carbon from a fish cannery wastewater [J]. Environ. Eng., 2003,35(9):826-833.
    [53] M.Achour,O.Khelifi,I.L.Campos,et al.Design of an integrated bioprocess for the treatment of tuna processing liquid effluents[J].Process Biochem.,2000,21(35): 1013-1017.
    [54] W.G.C.Raper,J.M.Green.Simple process for nutrient removal from food processingeffluents[J].Water Sci. Technol.,2001,5(43):123–130.
    [55] A. Palenzuela-Rollon, G. Zeeman, H.J. Lubberding, et al. Treatment of fish processing wastewater in a one- or two-step upflow anaerobic sludge blanket (UASB) reactor[J].Water Sci. Technol., 2002,8(45):207–212.
    [56] O.J.Yu,H.Xu,D.Yao,et al.Development of a two-stage flexible fibre biofilm reactor for treatment of food processing wastewater[J].Water Sci Technol.,2003,18(47):189–194.
    [57] V.Oyanedel,J.M.Garrido,J.M.Lema,et al.A membrane assisted hybrid bioreactor for the post treatment of an anaerobic effluent from a fish canning factory[J]. Water Sci.Technol.,2003,9(48):301–309.
    [58] G.D.Najafpour,A.A.L.Zinatizadeh, L.K. Lee. Performance of a three-stage aerobic RBC reactor in food canning wastewater treatment[J]. Biochemical Engineering Journal,2006,15(30):297–302.
    [59] I.Alemzadeh,F.Vossoughi,M.Houshmandi.Phenol biodegradation by rotating biological contactor[J].Biochemical Engineering Journal,2002,6(11):19-23.
    [60] Partha Sarathi Majumder,S.K. Gupta. Removal of chlorophenols in sequential anaerobic–aerobic reactors[J].Bioresource Technology, 2007,16(98):118–129.
    [61] Guimaraes C,Porto P,Oliveira R,Mota M.Continuous decolourization of asugar refinery wastewater in a modified rotating biological contactor with Phanerochaete chrysosporium immobilized on polyurethane foam disks [J].Process biochemistry,2005,40(15):535-540.
    [62] J. Axelsson,U. Nilsson,E. Terrazas,et al. Decolorization of the textile dyes Reactive Red 2 and Reactive Blue 4 using Bjerkandera sp. Strain BOL 13 in a continuous rotating biological contactor reactor[J].Enzyme and Microbial Technology,2005,12(45):1-6.
    [63] Ilgi Karapinar Kapdan, Fikret Kargi.Biological decolorization of textile dyestuff containing wastewater by Coriolus versicolor in a rotating biological contactor[J].Enzyme and Microbial Technology,2002,30(1):195-199.
    [64] Brian Van Driessel,Lew Christov. Decolorization of bleach plant effluent by Mucoralean and White-Rot Fungi in a rotating biological contactor reactor[J].Journal of Bioscience and Bioengineering,2001,92(3):271-276.
    [65]冯玉杰,崔玉虹,孙丽欣,等.电化学废水处理技术及高效电催化电极的研究与进展[J].哈尔滨工业大学学报,2004,36(4):450-455.
    [66] D W Kirk,H Sharifian,F R Foulkes.Anodic oxidation of ani-line for wastewater treatment[J].J.Appl.Electrochem.,1985,4(15):285-292.
    [67]陈卫国,朱锡海.电催化产生H2O2和OH·机理及在有机物降解中的应用[J].水处理技术,1997,23(6):354-357.
    [68]陈魁.应用概率统计[M].北京:清华大学出版社.2003:272-275.
    [69]王辉.含苯酚废水电化学氧化降解研究[D].兰州:西北师范大学,2005.6.
    [70]江霜英,洪艳,周荣丰,等.电解法应用于染料废水的预处理研究[J].同济大学学报(自然科学版),2006,34(5):638-645.
    [71]韩玮,何康林.奎河污水可生化性研究[J].环境技术,2004,(3):42-44.
    [72]刘颖,张朝辉,张焕胜,等.污水可生化性及影响因素研究[J].中国海洋大学学报,2005,35(6):1029-1032.
    [73]李恒进,田超,谢玉文.油田含油污水生化处理技术研究及应用[J].生产与环境,2006,6(8):27.
    [74]陈壁波.废水可生化性评价方法及中段废水可生化性的评价[J].广西轻工业, 2006,(5):65-67.
    [75]孙洪伟,王亚娥,李杰,等.工业废水可生化性及其测定方法的比较研究[J].甘肃环境研究与监测,2003,16(3):213-215.
    [76]杨培霞,梁淑敏,光焕竹.工业废水可生化性测试技术[J].化学工程师,2002,88(11):32-33.
    [77]陈衡,李洁.采油废水的可生化性研究[J].内蒙古石油化工,2006,(3):89-90.
    [78]沈延.直接染料的可生化降解性研究[D].东华大学硕士论文. 2006:20-21.
    [79]徐亚同,史家樑,张明.污染控制微生物工程[M].北京:化学工业出版社.2001:55-63.
    [80]韩玮.污废水可生化性评价方法的可行性研究[J].江苏环境科技,2004,17(3):8-9.
    [81]韩玮,何康林.污水可生化性的研究[J].科技纵横,2004,6:11-12.
    [82]章非娟.水污染控制工程实验[M].北京:高等教育出版社.1998.
    [83]徐亚同,史家樑,张明.污染控制微生物工程[M].北京:化学工业出版社.2001:55-63.
    [84] UygurA, Kargi F. Salt inhibition on biological nutrient removal from saline wastewater in a sequencing batch reactor [J]. Enzyme andMicrobial Technology, 2004, 34 (3/4):313-318.
    [85] Kargi Fand Uygur A. Imp roved nutrient removal from saline wastewater in an SBR by Halobacteria supp lemented activated sludge[J]. J. Environ. Eng Sci. 2005,22 (2):170-176.
    [86] BrentM P, TomasW, David R Y. Kinetics of phenol biodegradation in high salt solutions [J].Water Research,2002,36(4):4811-4820.
    [87]王玉芳.有机钻井液处理剂生物降解动力学研究[J].石油钻探技术,2006,34(4):52-54.
    [88]范福洲,康勇,孔琦,等.废水处理用生物膜载体研究进展[J].化工进展,2005, 12(24):1331-1335.
    [89]岑贞章,戴光泽,董立新,等.表面处理对碳纤维挂膜性能的影响研究[J].重庆工学院学报(自然科学版),2007,21(5):18-20.
    [90]戴芳天.活性炭在环境保护方面的应用[J].东北林业大学学报,2003,31(2):48-49.
    [91]胡静,张林生.生物活性炭技术在欧洲水处理中的应用与发展[J].环境技术,2002, (2):33-37.
    [92]姚丽群,高利平,托罗别克,等.活性炭的表面化学改性及其对有机硫化物的吸附性能的研究[J].燃料化学学报,2006,34(6):749-752.
    [93]张春山,邵曼君.活性炭材料改性及其在环境治理中的应用[J].过程工程学报,2005,5(2):223-227.
    [94] Bae J S, Do D D. Surface diffusion of strongly adsorbing vapors in activated carbon by a differential permeation method[J].Chem. Eng. Sci., 2003,58(19):4403-4415.
    [95] Ania C O, Parra J B, Pis J J. Influence of oxygen-containing functional groups on active carbon adsorption of selected organic compounds[J]. Fuel Process. Technol.,2002, 79(3):265-271.
    [96] Akmil BaAr C, Karagunduz A, Keskinler B, et al. Effect of presence of ions on surface characteristics of surfactant modified powdered activated carbon(PAC) [J].Appl.Surf. Sci.,2003,218(1-4):170-175.
    [97] Aksoylu A E, Faria J L, Pereira M F R. Highly dispersed activated carbon supported Platinum catalysts prepared by OMCVD: A comparison with wet impregnated catalysts[J].Appl. Catal. A:General,2003,243(2):357-365.
    [98] Lee J J,Han S J,Kim H Y,et al. Performance of Comos catalysts supported on nanoporous carbon in the hydrodesulfurization of dibenzothiophene and 4,6-dimethyldibenzothiophene[J].Catal.Today,2003,86(1-4):141-149.
    [99] Ferrari M,Delmon B,Grange P.Influence of the active phase loading in carbon supported molybdenum–cobalt catalysts for hydrodeoxygenation reactions[J]. Microporous Mesoporous Mater.,2002,56(3):279-290.
    [100] Iwasa N,Mayanagi T,Nomura W,et al. Effect of Zn addition to supported Pd catalysts in the steam reforming of methanol[J]. Appl. Catal. A:General,2003,248(1-2):153-160.
    [101] Zhong Z,Liu B,Sun L F.Dispersing and coating of transition metals Co, Fe and Ni on carbon materials[J]. Chem. Phys. Lett., 2002,362(1-2):135-143.
    [102]邱介山,王艳斌,邓贻钊.几种活性炭表面酸性基团的测定及其对吸附性能的影响[J].炭素技术,1996,(4):11-16.
    [103]刘杰,何振坤,王绍堂.炭纤维生物膜的形成机制:Ⅰ炭纤维表面特性对微生物固着化的影响[J].新型炭材料,2002,17(3):20-24.
    [104]何振坤,刘杰,王绍堂.炭纤维生物膜的形成机制:Ⅱ炭纤维表面特性对微生物活性与增殖的影响[J].新型炭材料,2003,18(1):43-47.
    [105]黄理辉,马鲁铭,王红武.催化内电解法对胞外聚合物形成的影响[J].中国环境科学,2005,25(6):660-663
    [106] Howard F Jenkinson, Hilary M Lappin-Scott. Biofilms adhere to stay[J].Trends in Microbiology,2001,9(1):9-10. [107王红武,马鲁铭,董美玉,等.PHB及糖原在废水生物处理好氧条件下的形成[J].精细化工,2003,17(9):519-521.
    [108]黄理辉,马鲁铭,张波,等.铁离子促进悬浮载体挂膜的机理研究[J].中国给水排水, 2007,23(9):106-108.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700