多聚赖氨酸诱导大豆种子铁蛋白一维二维自组装机理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
自组装(self-assembly)是一种普遍存在于生命体系中的现象。相较于DNA和多肽类物质,蛋白质大分子因其空间的结构复杂性,以及受非共价键大量性和无序性分布的影响,自组装研究水平较低。如何控制非共价键作用,进而制备蛋白质有序自组装产物是目前研究的热点和难点。铁蛋白是一类由24个亚基组成的球状壳状蛋白质,是广泛存在于动物、植物以及微生物体细胞中的一种铁贮藏蛋白。铁蛋白结构具有正八面体对称性,其每一个亚基通常都是由4个螺旋束(A、B、C、D)以及位于亚基C-末端的E螺旋结构组成,该E螺旋是形成铁蛋白四重轴通道的主要氨基酸。植物铁蛋白中成熟期大豆种子铁蛋白mature soybean seed ferritin (mSSF)是由同源性很高的分子量26.5kDa的H-1亚基与28.0kDa的H-2型亚基以1:1比例组成的。前期研究发现mSSF的H-1型亚基的E-螺旋是缺失的(H-1AE),因此形成的铁蛋白四重轴通道尺寸增大。本研究首先依据mSSF的结构特点,在体外制备了大豆种子铁蛋白reconstructed mSSF (rmSSF),并设计合成了不同聚合度的线性阳离子多聚赖氨酸Poly (a, L-lysine)(PLL).本文以rmSSF为单体,研究PLL诱导的rmSSF一维二维自组装特性;重点研究了二者相互作用机理;并从小分子多肽以及铁蛋白各自角度研究其结构对自组装的影响。该研究将拓宽铁蛋白在纳米科技领域的应用范围,为以铁蛋白为模版制备新型纳米材料和器件打下一定的研究基础。具体研究结果如下:
     1.实验通过分子生物学及化学手段,利用铁蛋白可逆组装性质,在pH11.4时将等比例混合的rH-2及rH-1△E蛋白变性解离为亚基,在pH7.0诱蛋白复性,体外制备了大豆种子铁蛋白nnSSF.由于H-1亚基C端末尾16个氨基酸的缺失导致了rmSSF的四重轴通道尺寸的增大,获得的rmSSF保留了铁蛋白的球形空壳四级结构、氧化沉淀活性及还原释放活性。
     2.依据rmSSF内部空腔在生理条件下带负电荷和四重轴通道对称性分布的特点,实验设计了在结构上与rmSSF具有电荷互补规律及尺寸契合度的15个聚合度的多聚赖氨酸PLL(PLL15).研究表明PLL15可以诱导rmSSF按照其四重轴通道方向进行有序的一维线性自组装。实验利用荧光技术、透射电镜、分子生物学、动态光散射等手段证明了PLL15可以通过静电作用力结合于rmSSF的四重轴部位,结合比例为1:1,并且PLL15在rmSSF的一维排列中起到桥梁连接作用。rmSSF自组装过程受时间、PLL添加比例、pH、离子强度、多肽电荷密度等因素的影响,通过调节作用时间和PLL添加比例可以控制rmSSF自组装产物的聚合长度。另外,研究发现线性rmSSF自组装产物还能作为模板将5nm Fe3O4铁核进行线性排列。
     3.研究发现尿素(10mM)能够显著增大铁蛋白铁还原释放速率U0值,即增大四重轴通道尺寸。在尿素(10.0mM)存在条件下,PLL15能诱导rmSSF按照铁蛋白四重轴通道方向进行有序自组装形成二维平面排列。在该自组装过程中,PLL15结合于rmSSF的四重轴部位,结合比例为3:1,静电作用力在二者的结合中及rmSSF二维排列中起了重要作用。rmSSF自组装过程受时间、PLL添加比例、pH、离子强度、多肽电荷密度等因素的影响。研究表明该体系同样适用于具有类似结构的杂合植物铁蛋白。另外,rmSSF内部空腔装载的三价铁矿化核也可以受PLL15的诱导进行二维点阵排列,证明rmSSF自组装产物在无机纳米粒子排列领域具有一定的应用潜力。
Self-assembly is a ubiquitous phenomenon in the living system, and it is one of the most essential content in life science. The phenomenon of self-assembling of widespread molecules such as proteins, DNA, and peptides in nature is the hotspot of bio-nanotechnology research. Compared with DNA and peptides, the research level of self-assembly of protein biomolecules is much lower due to its complexity of the spatial structures, and the disorder and great amount of of non-covalent interactions. Thus, how to control the non-covalent interactions, especially the electrostatic force, to prepare ordered protein self-assembly is a hotspot of the current study. Ferritins are members of the superfamily of iron storage and detoxification proteins found throughout the animal, plant, and microbial kingdoms. All ferritins are composed of24structurally identical subunits that assemble into a very robust protein cage with octahedral (432) symmetry. The external diameter of these assembled protein cages is12nm and the internal cavity is8nm. Each subunit of the ferritin usually consists of four helix bundle (A, B, C, and D), and a short E helix located at the C-terminus. Different from mammal fertitin, phytoferritin only contains H-type subunit. Particularly, mature soybean seed ferritin (mSSF) is comprised with H-1(26.5kDa) and H-2(28.0kDa) subunits with a high homology. In mSSF, the E-helix of H-1(26.5kDa) subunit is removed during its early configuration, thereby forming a protein which has expanded4-fold channels. In view of two important properties of mSSF structure, a highly negative charge density on the inner cavity under physiological conditions and the expanded symmetrical4-fold channels, we synthesized the reconstructed mSSF (rmSSF) in vitro. In addition, based on the the structural characteristics of mSSF, we designed a linear poly (a, L-lysine)(PLL) to induce ordered self-assembly of rmSSF and explored the polymerization mechanism. The study will broaden the range of applications of ferritin nanotechnology, and provide a good template for the preparation of novel nanomaterials and devices. Main results were bbtained as follows:
     1. mSSF is a heteropolymer consisting of H-1ΔAE and H-2in a1:1ratio, forming a hollow and spherical structure. Through molecular biology and chemical means, using the reversible assembly property of ferritin, reconstructed mSSF (rmSSF) was prepared. The4-fold channel size of rmSSF was1.2nm in length and0.4nm in width, which was obviously larger than that of its analogue, rH-2, a homopolymer. In addition, this ferritin maintained its hollow and spherical structure and iron oxidiase activity.
     2. Poly (a, L-lysine)(PLL) is a good example of a water-soluble polymer with positive charges based on a naturally occurring amino acid monomer lysine. PLL with polymerization degree of15(PLL15) was designed, and rmSSF was induced into linear chains in the presence of PLL15through channel-directed electrostatic interaction, and their binding ratio was1:1(PLL15/rmSSF). Moreover, the self-assembly of rmSSF induced by PLL15could be controlled by reacton time and PLL15/ferritin ratio. The pH, ionic strength, and peptide types were also influencing factors. This study demonstrated that the electrostatic force could be controlled to fabricate the hierarchical assembly of supramolecular protein cages.
     3. To brodern the hierarchical assembly of ferritin cages, urea with low concentrations was used to expand the local position of the4-fold channel by taking advantage of the flexibility of protein channels. The initial rate of iron release (vo) influenced by urea was detected;10.0mM of urea was chosen to expand the4-fold channel of rmSSF. We found that rmSSF could self-assemble into2D square arrays through channel-directed electrostatic interactions with PLL15at pH7.0in the presence of urea, and the PLL15-ferritin binding ratio was3:1. Structurally, protein cages were aligned along their common4-fold symmetry axis, imposing a fixed disposition of neighboring ferritins. To explore the application of this strategy for positioning inorganic nanomaterial, reconstituted holo rmSSF_H193E/H197E with a loading of600iron atoms per shell was prepared, followed by treatment with PLL15in a3:1ratio. It revealed that the resulted Fe (Ⅲ) cores within ferritins arrayed regularly with distances of about10.0nm between centers of neighboring component, in accordance to the protein lattices. Thus, the thinking behind this strategy was that the inner cavity of apoferritin could provide an ideal, spatially restricted, and chemical reaction chamber within which nanoparticles could be accurately positioned. Such2D assembly can be utilized as a scaffold for various functionalities by manipulating three distinct interfaces (the exterior surface, the interior surface, and the interface between subunits) of each protein cage.
引文
Abbott, A. Biology's new dimension. Nature,2003,424:870-872
    Allen, M., Willits, D., Young, M., et al. Constrained Synthesis of Cobalt Oxide Nanomaterials in the 12-Subunit Protein Cage from Listeria innocua. Inorganic Chemistry,2003,42: 6300-6305
    Andrew, S. C., Robinson, A. K., and Rodriguez-Quinones, F. Bacterial iron homeostasis. FEMS Microbiology Reviews,2003,7:215-237
    Arosio, P., Ingrassia, R., and Cavadini, P. Ferritins:A family of molecules for iron storage, antioxidation and more. Biochimica et Biophysica Acta,2008,1790:589-599
    Atsushic, S., Tooru, N., Severino, M., et al. Quartz Crystal Microbalance Odor Sensor Coated with Mixed-Thiol-Compound Sensing Film. Japanese Journal of Applied Physics,1998,37: 2849-2852
    Beck, S. J., Vartuli, J. C, Roth, W. J., et al.A new family of mesoporous molecular sieves prepared with liquid crystal templates.Journal of the American Chemical Society,1992,114: 10834-10843
    Bou-Abdallah, F., Papaefthymiou, G. C, Scheswohl, D. M., etal.μ-1,2-Peroxobridged di-iron(Ⅲ) dimer formation in human H-chain ferritin. Biochemical Journal,2002,364:57-63
    Bou-Abdallah, F., Zhao, G. H., Biasiotto, G., et al. Facilitated Diffusion of Iron (II) and Dioxygen Substrates into Human H-Chain Ferritin. A Fluorescence and Absorbance Study Employing the Ferroxidase Center Substitution Y34W.Journal of the American Chemical Society,2008, 130:17801-17811
    Bou-Abdallah, F., Zhao, G., Biasiotto, G., et al. Facilitated diffusion of iron (Ⅱ) and dioxygen substrates into human H-chain ferritin. A fluorescence and absorbance study employing the ferroxidase center substitution Y34W. Journal of the American Chemical Society,2008,130: 17801-17811
    Briat, J. F., Cellier, F., and Gaymard, F. Ferritins and iron accumulation in plant tissues. In:Barton, L., Abadia, J., eds. Iron nutrition in plants and rhizospheric microorganisms. Berlin:Springer, 2006,345-361
    Brodin, J. D., Ambroggio, X. I., Tang, C, et al. Metal-directed, chemically-tunable assembly of one-, two-and three-dimensional crystalline protein arrays. Nature Chemistry,2012,4(5): 375-382.
    Bulte, J. W. M., Douglas, T., Mann, S., et al. Magnetoferritin:biomineralization as a novel molecular approach in the design of iron-oxide-based magnetic resonance contrast agents. Radiology,1994,29:214-216
    Carlson, J. C. T., Jena, S. S., Flenniken, M., et al. Chemically Controlled Self-Assembly of Protein Nanorings. Journal of the American Chemical Society,2006,128,7630-7638
    Carrondo, M. A. Ferritins, iron uptake and storage from the bacterioferritin viewpoint. EMBO Journal,2003,22:1959-1968
    Chang, H. J., Ha, N. Y., Kim, A., et al. Characterization of e-lectro-optic properties of self-assembled monolayer by at-tenuated total reflection. Optical Materials,2003,21(1-3): 413-416.
    Chasteen, N. D., and Harrison, P. M. Mineralization in ferritin:An efficient means of iron storage. Journal of Structural Biology,1999,126:182-194
    Cho, J., Heuzey, M. C., Begin, A., et al, Viscoelastic properties of chitosan solutions:Effect of concentration and ionic strength. Journal of Food Engineering,2006,74:500-515
    Colombo, G., Soto, P. and Gazit, E. Peptide self-assembly at the nanoscale:a challenging target for computational and experimental biotechnology. Trends Biotechnology,2007,25:211-218
    Cordas, C. M., Viana, A. S., Leupold, S., et al. Self-assembled monolayer of an iron III porphyrin disulphide derivative on gold. Electrochemistry Communications,2003,5:36-41
    Corinne, L. D. Estimating the Efficiency of Self-Assemblies. Journal of Supramolecular Chemistry,2001,1:39-52
    Crichton, R. R., and Bryce, C. F. A. Subunit interactions in horse spleen apoferritin. Biochemical Journal,1973,133:289-299
    Crichton, R. R., Herbas, A., Chavez-Alba, O., et al. Identification of catalytic residues involved in iron uptake by L-chain ferritinsJournal of Inorganic Biochemistry,1996,1:567-574
    Dannenberger, O., Wolff, J. J., and Buck, M. Solvent Dependence of the Self-Assembly Process of an Endgroup-ModifiedAlkanethiol. Langmuir,1998,1417:4679-4682
    Deming, T. J. Synthetic polypeptides for biomedical applications. Progress in Polymer Science, 2007,32:858-875
    Deng, J., Liao, X., Yang, H., et al. Role of H-1 and H-2 Subunits of Soybean Seed Ferritin in oxidative deposition of iron in protein. The Journal of Biological Chemistry,2010,285: 32075-32086
    DeSimonea, J. M., and Keipera J. S. Surfactants and self-assembly in carbon dioxide. Current Opinion in Solid State and Materials Science,2001,5:333-341
    Dobrynin, A. V. Effect of Counterion Condensation on Rigidity of Semiflexible Polyelectrolytes. Macromolecules,2006,39:9519-9527
    Dobrynin, A. V. Electrostatic Persistence Length of Semiflexible and Flexible Polyelectrolytes. Macromolecules,2005,38:9304-9314
    Dong, W. F., Ferri, J. K., Adalsteinsson, T., et al. Influence of Shell Structure on Stability, Integrity, and Mesh Size of Polyelectrolyte Capsules:Mechanism and Strategy for Improved Preparation. Chemistry of Materials,2005,17(10):2603-2611
    Dotan, N., Arad, D., Frolow, F., et al. Self-Assembly of a Tetrahedral Lectin into Predesigned Diamondlike Protein Crystals. Angewandte Chemie-International Edition,1999,38: 2363-2366
    Douglas, S. M., Dietz, H., Liedl, T., et al. Self-assembly of DNA into nanoscale three-dimensional shapes. Nature,2009,459:414-418
    Douglas, T., and Stark, V. T. Nanophase cobalt oxyhydroxide mineral synthesized within the protein cage of ferritin. Inorganic Chemistry,2000,39:1828-1830
    Ducharme, Y., and Wuest, J. D. Use of hydrogen bonds to control molecular aggregation. Extensive, self-complementary arrays of donors and acceptors. Inorganic Chemistry,1988, 53:5787-5789
    Everhart, D. S. Using self-assembling monolayers for sensors. Chemtech,1999,29(4):30-37
    Fu, X. P., Deng, J. J., Yang, H. X., et al. A novel EP-involved pathway for iron release from soya bean seed ferritin. Biochemical Journal,2010,427:313-321
    Gaetan, J. R. D., Paul C. S., Jean-Pierre, B., et al., Adult cell therapy for brain neuronal damages and the role of tissue engineering. Biomaterials,2010,31:2105-2020
    Ghanaati, S., Webber, M. J., Unger, R. E. et al. Dynamic in vivo biocompatibility of angiogenic peptide amphiphile nanofibers. Biomaterials,2009,30:6202-6012
    Gider, S., Awschalom, D. D., Douglas, T., et al. Classical and quantum magnetic phenomena in natural and artificial ferritin proteins. Science,1995,268:77-80
    Harrison, P. M., and Arosio, P. Ferritins:molecular properties, iron storage function and cellular regulation. Biochimica et Biophysica Acta-Bioenergetics,1996,1275:161-203
    Harrison, P. M., Hoy, T. G., Macara, I. G., et al. Ferritin iron uptake and release. Biochemical Journal,1974,143:445-451
    Hoerke, M., Schwieger, C., Kerth, A., et al. Binding of cationic pentapeptides with modified side chain lengths to negatively charged lipid membranes:Complex interplay of electrostatic and hydrophobic interactions. Biochimica et Biophysica Acta,2012,1818:1663-1672
    Huang, H., Lin, Q., Kong, B., et al. Role of phosphate and kinetics characteristics of complete iron release from native pig spleen ferritin-Fe. Journal of Protein Chemistry,1999,18:497-504
    Huang, H., Xu, L., Zang, F., et al. H2-uptake activity, spectra, reduction potentials, and kinetics of iron release on the surface of iron core from Azobacter vinelandii bacterial ferritin. Journal of Protein Chemistry,1998,17:45-52
    Hynes, M. J., and Coinceanainn, M.ó. Investigation of the release of iron from ferritin by naturally occurring antioxidants. Journal of Inorganic Biochemistry,2002,90:18-21
    Hyun, J., and Tae, G Self-assembled and nanostruetured hydrogels for drug delivery and tissue engineering. Nano Today,2009,4:429-437
    Iordanova, B., and Ahrens, E. T. In vivo magnetic resonance imaging of ferritin-based reporter visualizes native neuroblast migration. Neurolmage,2012,59:1004-1012
    Iwahori, K., Yoshizawa, K., Muraoka, M., et al. Fabrication of ZnSe nanoparticles in the apoferritin cavity by designing a slow chemical reaction system. Inorganic Chemistry,2005, 44:6393-6400
    Judkins, C. M., Bohannan, E. W., Herbig, A. K., et al. Self-assembly and catalytic properties of 1.1'-bridged-2,2'-dipyridinium amphiphiles. Journal of Electroanalytical Chemistry,1998, 451:39-47
    Kang, S., Oltrogge, L. M., Broomell, C. C. et al. Controlled assembly of bifunctional chimeric protein cages and composition analysis using noncovalent mass spectrometry, Journal of the American Chemical Society,2008,130:16527-16529
    Kasaga, T., Hiramatsu, M., Hosen,A., et al, Formation of titanium oxide nanotube, Langmuir, 1998,14:3160-3163
    Kayitmazer, A. B., Seyrek, E., Dubin, P. L., et al. Influence of Chain Stiffness on the Interaction of Polyelectrolytes with Oppositely Charged Micelles and Proteins. The Journal of Physical Chemistry B,2003,107:8158-8165
    Keyes-Baig, C, Duhamel, J., Fung S., et al. Self-assembling peptide as a potential carrier of hydrophobic compounds. Journal of the American Chemical Society,2004,126:7522-7532
    Kikuchi, M., Itoh, S., Ichinose, S., et al. Self-organization mechanism in a bone-like hydroxyapatite/collagen nanocomposite synthesized in vitro and its biological reaction in vivo. Biomaterials,2001,22(13):1705-1711
    Kim, H., Hartgerink, J. D., and Ghadiri, M. R. Oriented Self-Assembly of Cyclic Peptide Nanotubes in Lipid Membranes. Journal of the American Chemical Society,1998,120: 4417-4424
    Kim, J. W., Choi, S. H., Lillehei, P. T., et al. Cobalt oxide hollow nanoparticles derived by bio-templating. Chemical Communications,2005,28:4101-4103
    Kim, S. E., Ahn, K. Y. Park, J. S., et al. Fluorescent ferritin nanoparticles and application to the aptamer sensor. Angewandte Chemie International Edition,2011,83:5834-5843
    Kim, S. H. Design of TiO2 namoparticle self-assembles aromatic polyamide thin-film-composite (TFC) membrane as an approach to solve biofouling problem. Journal of Membrane Science, 2003,211:157-165
    Kramer, R. M., Li, C, Carter, D. C, et al. Engineered protein cages for nanomaterial synthesis. Journal of the American Chemical Society,2004,126:13282-13286
    Kresge, C. T., Leonowicz, M. E., Roth, W. J., et al. Ordered mesoporous molecular sieves synthesized by a liquid-crystal template mechanism, Nature,1992,359:710-712
    Laulhere, J. P., Laboure, A. M., and Briat, J. F. Mechanism of the transition from plant ferritin to phytosiderin. The Journal of Biological Chemistry,1989,264:3629-3635
    Lawson, D. M., Artymiuk, P. J., and Yewdall, S. J.Solving the structure of human H ferritin by genetically engineering intermolecular crystal contacts. Nature,1991,349:541-544
    Lawson, D. M., Artymiuk, P. J., Yewdall, S. J., et al. Solving the structure of human H-ferritin by genetically engineering intermolecular crystal contacts, Nature,1991,349:541-544
    Lee, H. J., Hong, J. K., Goo, H. C, et al. Improved blood compatibility and decreased VSMC proliferation of surface-modified metal grafted with sulfonated PEG or heparin. Journal of Biomaterials Science-Polymer Edition,2002,13 (8):939-952
    Lee, S., Lee, K. H., Ha, J. S., et al. Small-molecule-based nanoassemblies as inducible nanoprobes for monitoring dynamic molecular interactions inside live cells. Angewandte Chemie International Edition,2011,50:8709-8713
    Lehn, J. M. Toward self-organization and complex matter. Science,2002,295(29):2400-2403
    Levi, S., Yewdall, S. J., Harrison, P. M., et al. Evidence of H- and L-chains have co-operative roles in the iron-uptake mechanism of human ferritin. Biochemical Journal,1992,288:591-596
    Li, B., Cao, T., Cao, W., et al., Self-assembly of single-walled carbon nanotube based on diazoresin.Synthetic Metals,2002,132:5-8
    Li, C., Fu, X., Qi, X., et al. Protein association and disassociation regulated by ferric ion. A novel pathway for oxidative deposition of iron in pea seed ferritin. The Journal of Biological Chemistry,2009,284:16743-16751
    Li, C., Hu, X., and Zhao, G. Two different H-type subunits from pea seed (Pisum sativum) ferritin that are responsible for fast Fe (Ⅱ) oxidation. Biochimie,2009,91:230-239
    Li, H., Park, S., Reif, J. H., et al. DNA-Templated Self-Assembly of Protein and Nanoparticle Linear Arrays, Journal of the American Chemical Society,2004,126:418-419
    Li, Hanying., Park, S. H., Reif, J. H., et al. DNA-Templated Self-Assembly of Protein and Nanoparticle Linear Arrays. Journal of the American Chemical Society,2004,126:418-419
    Li, M., Viravaidya, C., and Mann, S. Polymer-mediated synthesis of ferritin-encapsulated inorganic nanoparticles. Small,2007,3:1477-1481
    Li, M., Yun, S., Yang, X., et al. Stability and iron oxidation properties of a novel homopolymeric plant ferritin from adzuki bean seeds:a comparative analysis with recombinant soybean seed H-1 chain ferritin. Biochimica et Biophysica Acta,2013,1830,2946-2953
    Lin, X., Xie, J., Zhu, L., et al. Hybrid ferritin nanoparticles as activatable probes for tumor imaging. Angewandte Chemie International Edition,2011,50:1569-1572
    Liu, G., Wang, J., Lea, S. A., et al. Bioassay labels based on apoferritin nanovehicles. ChemBioChem,2006,7:1315-1319
    Liu, G., Wu, H., Wang, J., et al. Apoferritin-templated synthesis of metal phosphate nanoparticle labels for electrochemical immunoassay. Small,2006,2:1139-1143
    Liu, X., Jin, W., Theil, E. C. Opening protein pores with chaotropes enhances Fe reduction and chelation of Fe from the ferritin biomineral. Proceedings of the National Academy of Sciences, USA,2003,100:3653-3658
    Liu, Y., and Guo, R. Aggregation properties of aqueous casein hydrolysate solutions at different pH. International Dairy Journal,2008,18:1022-1027
    Lligima, S. Helical microtubules of graphitic carbon. Nature,1991,354:56-58
    Lobreaux, S., and Briat, J. F. Ferritin accumulation and degradation in different organs of pea (Pisum sativum) during development. Biochemical Journal,1991,274:601-606
    Lowry, O. H., Rosebrough, N. J., Farr, A. L., et al. Protein measurement with the Folin-Phenol reagents. The Journal of Biological Chemistry,1951,193:265-275
    Macedo, S., Romao, C. V., Mitchell, E., et al.The nature of the di-iron site in the bacterioferritin from Desulfovibrio desulfuricans. Nature Structural Biology,2003,10:285-290
    Mar, R. J., Osborne, R. D., Stevens, M., et al. Peptide-based stimuli-responsive biomaterials. Royal Society of Chemistry,2006,2:822-835
    Maruyama, A., Ishihara, T., Kim, J. et al. Nanoparticle DNA Carrier with Poly(L-lysine) Grafted Polysaccharide Copolymer and Poly(D,L-lactic acid), Bioconjugate Chem.,1997,8:735-742
    Marentes, E., and Grusak, M. A. Iron transport and storage within the seed coat and embryo of developing seeds of pea (pisum sativum L.). Seed Science Research,1998,8:367-375
    Masuda, T., Goto, F., and Yoshihara, T.A novel plant ferritin subunit from soybean that is related to a mechanism in iron release. The Journal of Biological Chemistry.2001,276: 19575-19579
    Masuda, T., Goto, F., Yoshihara, T., et al. Construction of homo-and heteropolymers of plant ferritin subunits using an in vitro protein expression system. Protein Expression and Purification,2007,56:237-246
    Masuda, T., Goto, F., Yoshihara, T., et al. Crystal Structure of Plant Ferritin Reveals a Novel Metal Binding Site That Functions as a Transit Site for Metal Transfer in Ferritin. The Journal of Biological Chemistry,2010,28:4049-4059
    Matsui, T., Matsukawa, N., Iwahori, K., et al. Realizing a two-dimensional ordered array of ferritin molecules directly on a solid surface utilizing carbonaceous material affinity. Langmuir,2007,23:1615-1618
    Meldrum, F. C., Heywood, B. R., and Mann, S. Magnetoferritin:in vitro synthesis of a novel magnetic protein. Science,1992,257:522-523
    Meldrum, F. C., Wade, V. J., Nimmo, D. L., et al. Synthesis of inorganic nanophase materials in supramolecular protein cages. Nature,1991,349:684-687
    Mikawa, T., Masui, R., Ogawa, T., et al. N-terminal 33 amino acid residues of Escherichia coli RecA protein contribute to its self-assembly. Journal of molecular biology,1995,250: 471-483
    Mirau, P., Serres, J., and Lyons, M. The Structure and Dynamics of Poly (L-lysine) in Templated Silica Nanocomposites. Chem. Mater.,2008,20:2218-2223
    Nair, L. S., and Laurencin, C. T. Biodegradable polymers as biomaterials. Progress in polymer science,2007,32:762-798
    Niu, Y., Wu, H., Huang, R., et al. Nanorods Formed from a New Class of Peptidomimetics. Macromolecules,2012,45:7350-7355
    Noh, J., Ito, E., Araki, T., et al. Adsorption of thiophene and 2,5-dimethylthiophene on Au (111) from ethanol Solutions. Surface Science,2003,532/535:1116-1120
    Okuda, M., Iwahori, K., Yamashita, I., et al. Fabrication of nickel and chromium nanoparticles using the protein cage of apoferritin. Biotechnology and Bioengineering,2003,84:187-194
    Ouyang, J. M., and Zheng, W. J. XPS study of Langmuir-Blodgett films of N-Octadecyl -8-hydroxy-2-quinoline carboxamide deposited from subphases containing metal ions. Thin Solid Films,1999,340:257-261
    Pang, S. F., and Zhu, D. B. Pronounced hydrogel formation by the self-assembled aggregate of semifluorinated fatty acid. Chemical Physics Letters,2002,358:479-483
    Petkov, N., Mintova, S., Karaghiosoff, K., et al.Fe-containing mesoporous film hosts for carbon nanotubes. Materials Science & Engineering C,2003,23:145-149
    Phillips, J. J., Millership, C., Main, E. R. Fibrous Nanostructures from the Self-Assembly of Designed Repeat Protein Modules. Angewandte Chemie International Edition,2012,51:1-5
    Puppo, M. C., and Anon, M. C. Effect of pH and Protein Concentration on Rheological Behavior of Acidic Soybean Protein Gels. Journal of Agricultural Food Chemistry,1998,46: 3039-3046
    Radford, R. J., Brodin, J. D., Salgado, E. N., et al. Expanding the utility of proteins as platforms for coordination chemistry. Coordination Chemistry Reviews,2011,255:790-803
    Ragland, M., Briat, J. F., Gagnon, J., et al. Evidence for conservation of ferritin sequences among plants and animals and for a transit peptide in soybean. The Journal of Biological Chemistry, 1990,265:18339-18344
    Rajagopal, K., and Schneider, J. P. Self-assembling peptides and proteins for nanotechnological applications.Current Opinion in Structural Biology,2004,14:480-486
    Richards, T. D., Pitcs, K. R., and Watt, G. D.A kinetics study of iron release from Azotobacter vinelandii bacterial ferritin. Journal of Inorganic Biochemistry,1996,61:1-13
    Ringler, P., and Schulz, G. E. Self-Assembly of Proteins into Designed Networks. Science,2003, 302:106-109
    Robert, F. How Far Can We Push Chemical Self-Assembly. Science,2005,309:95
    Rothemund, P. W. K. Folding DNA to create nanoscale shapes and patterns. Nature,2006,440: 297-302
    Salgado, E. N., Faraone-Mennella, J., and Tezcan, F. A. Controlling Protein-Protein Interactions through Metal Coordination:Assembly of a 16-Helix Bundle Protein. Journal of the American Chemical Society,2007,129:13374-13375
    Sato, S., Yao, H., and Kimura, K. Equilibrium growth of three-dimensional gold nanoparticle supelattices. PhysicaE,2003,17:521-522
    Sawaguchi, T., MiZutani, F., Yoshimoto, S., et al. Voltammetric and in situ STM studies on self-assembled monolayers of 4-mercaptopyridine,2-mercaptopyridine and thiophenol on Au(III) electrodes. Electrochimica Acta,2000,45:2861-2867
    Schierbaum, K. D., Weiss, T., van Velzen, E. U. T., et al. Molecular Recognition by Self-Assembled Monolayers of Cavitand Receptors. Science,1994,265 (2):1413-1415
    Sinapi, F., Forget, L., Delhalle J., et al.Self-assembly of (3-mercaptopropyl) trimethoxysilane on polycrystalline zinc substrates towards corrosion protection.Applied Surface Science.2003, 212:464-471
    Sinclair, J. C., Davies, K. M., Venien-Bryan, C., et al. Generation of protein lattices by fusing proteins with matching rotational symmetry. Nature nanotechnology,2011,6:558-562
    Sun, J., Zheng Q., Wu, Y., et al. Culture of nucleus Pulposus cells from intervertebral disc on self-assembling KLD-12 peptide hydrogel scaffold. Materials Science and Engineering:C, 2010,30:975-980
    Sun, S. Recent advances in chemical synthesis, self-assembly, and applications of FePt nanoparticles. Advanced Materials,2006,18:393-404
    Sun, S., Arosio, P., Levi, S., et al. Ferroxidase kinetics of human liver apoferritin, recombinant H-chain apoferritin and site directed mutants. Biochemistry,1993,32:9362-9369
    Symonds, P., Murray, J. C., Hunter, A. C., et al. Low and High Molecular Weight Poly(L-lysine)s/poly(L-lysine)-DNA Complexes Initiate Mitochondrial-mediated Apoptosis Differently. FEBS Letters,2005,579:6191-6198
    Taton, K. S., and Guire, P. E. Photore active self-assembling polyethers for biomedical coatings. Colloids and Surfaces B:Biointerfaces.2002,24 (2):123-132
    Tew, G. N., Pralle, M. U., and Stupp, S. I. Supmmoleclar Materials from Triblock Rodcoil Molecuks Containing Phenylene Vinylene. Journal of the American Chemical Society,1999, 121:9852-9866
    Tobe, Y., Sasaki, S., Hirose, K., et al. Novel self-assembly of m-xylylene type dithioureas. Tetrahedron Letters,1997,38 (27):4791-4794
    Tonomura, B., Nakatani, H., Ohnishi, M., et al. Test reactions for a stopped-flow apparatus-reduction of 2,6-dichlorophenolindopenol and potassium ferricyanide by 1-ascorbic-acid. Analytical Biochemistry,1978,84:370-383
    Toussaint, L., Bertrand, L., Hue, L., et al. High-resolution X-ray structures of human apoferritin H-chain mutants correlated with their activity and metal-binding sites. Journal of Molecular Biology,2007,365:440-452
    Toyoki, K. Self-assembly of polymers. Current Opinion in Colloid & Interface Science,2001,6: 1-2
    Treffry, A., Bauminger, E. R., Hechel, D., et al. Defining the roles of the threefold channels in iron uptake, iron oxidation and iron-core formation in ferritin:a study aided by site-directed mutagenesis, Biochemical Journal,1993,296:721-728
    Tsuboi, A., Izumi, T., Hirata, M., et al. Complexation of Proteins with a Strong Polyanion in an Aqueous Salt-free System. Langmuir,1996,12:6295-6303
    Turgeon, S. L., Beaulieub, M., Schmittb, C., et al. Protein-polysaccharide interactions: phase-ordering kinetics, thermodynamic and structural aspects. Journal of Colloid and Interface Science,2003,8:401-414
    Uchida, M., Kang, S., Reichhardt, C., et al. The ferritin superfamily:Supramolecular templates for materials synthesis. Biochimica et BiophysicaActa,2010,1800:834-845
    Ueno, T., Suzuki, M., Goto, T., et al. Size-selective olefin hydrogenation by a Pd nanocluster provided in an apo-ferritin cage. Angewandte Chemie International Edition,2004,116: 2581-2584
    Wang, X. Y., Wang, Y. W., Ruengruglikit, C., et al. Effects of Salt Concentration on Formation and Dissociation of β-Lactoglobulin/Pectin Complexes. Journal of Agricultural and Food Chemistry,2007,55:10432-10436
    Warne, B., Kasyuich, O. I., Mayes, E. L. et al. Self-assembled nanoparticulate Co:Pt for data storage applications. IEEE Transactions on Magnetics,2000,36:3009-3011
    Weinbreck, F., de Vries, R., Schrooyen, P., et al. Complex coacervation of whey proteins and gum Arabic. Biomacromolecules,2003,4:293-303
    Whiteside, G M., Mathias, J. P., Seto, C. T. Molecular self-assembly and nanochemistry:a chemical strategy for the synthesis of nanostructures. Science,1991,254:1312-1319
    Winfree, E., Liu, F. R., Wenzler, L. A., et al. Design and self-assembly of two-dimensional DNA crystals. Nature,1998,394:539-544
    Wong, K. W., and Mann, S. Biomimetic synthesis of cadmium sulfide-ferritin nanocomposites. Advanced Materials,1996,8:928-932
    Woolfson, D. N., and Mahmoud, Z. N. More than just bare scaffolds:towards multi-component and decorated fibrous biomaterials. Chemical Society Reviews,2010,39:3464-3479
    Wuytswinkel, O. W., Savino, G., and Briat, J. F. Purification and characterization of recombinant pea-seed ferritins expressed in Escherichia coli:influence of N-terminus deletions on protein solubility and core formation in vitro, Biochemical Journal,1995,305:253-261
    Xu, B., and Chasteen, N. D. Iron oxidation chemistry in ferritin.Increasing Fe/O2 stoichiometry during core formation. The Journal of Biological Chemistry,1991,266:19965-19970
    Yamashita, I., Yoshizawa, K., and Hara, M. Bio-template synthesis of uniform CdSe nanoparticles using cage-shaped protein, apoferritin. Chemistry Letters,2004,33:1158-1159
    Yang, H. X., Fu, X. P., Li, M. L., et al. Protein association and dissociation regulated by extension peptide:a mode for iron control by phytoferritin in seeds. Plant Physiology,2010,154: 1481-1491
    Yang, H., Fu, X., Li, M., et al. Protein association and dissociation regulated by extension peptide: a mode for iron control by phytoferritin in seeds. Plant Physiology,2010,154:1481-1491
    Yang, H., Zhang, T., Masuda, T., et al. Chitinase III in pomegranate seeds (Punica granatum Linn.):a high-capacity calcium-binding protein in amyloplasts. The Plant Journal,2011,68: 765-776
    Yang, R., Chen, L., Yang, S., et al.2D square arrays of protein nanocages through channel-directed electrostatic interactions with poly(a, L-lysine). Chemical Communications, 2014,50:2879-2882
    Yang, R., Chen, L., Zhang, T., etal. Self-assembly of ferritin nanccages into linear chains induced by poly(a, L-lysine). Chemical Communications,2014,50,481-483
    Yang, X., Chen-Barrett, Y., Arosio, P., et al. Reaction paths of iron oxidation and hydrolysis in horse spleen and recombinant human ferritins.Biochemistry,1998,37:9743-9750
    Yang, Z., Wang, X., Diao, H., et al. Encapsulation of platinum anticancer drugs by apoferritin. Chemical Communications,2007,33:3453-3455
    Zhang, S., Holmes, T. C, Dipersio, C. M., et al. Self-complementary oligopeptide matrices support mammalian cell attachment. Biomaterials,1995,16:1385-1393
    Zhang, S., Holmes, T., Lockshin, C. et al. Spontaneous assembly of a self-complementary oligopeptide to form a stable macroscopic membrane. Proceedings of the National Academy of Sciences, USA,1993,90:3334-3338
    Zhao, G. Phytoferritin and its implications for human health and nutrition. Biochimica et BiophysicaActa,2010,1800:815-823
    Zhao, G, Arosio, P., and Chasteen, N. D. Iron (Ⅱ) and Hydrogen Peroxide Detoxification by H-chain ferritin. Biochemistry,2006,45:3429-3436
    Zhao, G., Bou-Abdallah, F., Arosio, P., et al. Multiple pathways for mineral core formation in mammalian apoferritin.The role of hydrogen peroxide. Biochemistry,2003,42:3142-3150
    Zhao, G., Ceci, P., Ilari, A., et al. Iron and hydrogen peroxide detoxification properties of DNA-binding protein from starved cells.A ferritin-like DNA-binding protein of Escherichia coli. The Journal of Biological Chemistry,2002,277:27689-27696
    Zheng, J., Birktoft, J. J., Chen, Y., et al. From molecular to macroscopic via the rational design of a self-assembled 3D DNA crystal. Nature,2009,461:74-77
    hlp_yy,透射电子显微镜.http:/baike.baidu.com/view/310296.htm?fr=aladdin,2014-03-09
    蔡新霞,崔大付,韩泾鸿,等.一种快速响应的压电晶体生物亲和传感器.仪表技术与传感器,1997,(8):11~14
    蔡元霸和梁玉仓.纳米材料的概述制备及其结构表征.结构化学,2001,20:425~438
    陈婷,卢婷利,王韵晴,等.多肽自组装及其在生物医学中的应用.材料导报A,2011,25:90~95
    陈元维,张昌中,李天全,等.多肽分子自组装研究进展.生物医学工程学杂志,2006,23:209~211
    崔晓莉和江志裕.自组装膜技术在金属防腐蚀中的应用研究.腐蚀与防护,2001,22:335~339
    哈恩华,寇开昌,颜录科,等.分子自组装体系的影响因素及其在纳米材料中的应用.材料科学与工程学报,2004,3:457-460
    胡菊,廖夏云,邓建军,等.黄豆铁蛋白提取新方法及其与豌豆铁蛋白活性比较.高等学校化学学报,2009,30:2003~2008
    黄河清,张凤章,林庆梅,等.马脾铁蛋白释放铁的反应级数和速率相数的转换.动物学报.1999,42:170-177
    黄毅,黄金花,谢青季,等.糖-蛋白质相互作用.化学进展,2008,20:942~950
    雷虹,孙艳波,何堃,等.ε-多聚赖氨酸的研究进展.中国食品添加剂,2005,4:14~17
    刘海林,马晓燕,袁莉,等.分子自组装研究进展.材料科学与工程学报,2004,22:308~311
    马如飞,李铁虎,庄强,等.静电自组装碳纳米管/壳聚糖复合材料.炭素技术,2009,28(2): 9~12
    潘冰,董申,闫永达,等.原子力显微镜在分子自组装研究中的应用.研究探索,2006,5:68~70.
    蒲利春和崔旭梅.自组装技术及其影响因素分析.化工新型材料,2004,32:18~20
    孙乔玉,张校刚,李晓红,等.溶剂对自组装单分子膜电化学行为的影响.高等学校化学学报,2001,22:1693~1696
    王栋,万立骏,王琛,等.纳米科学研究中的扫描探针显微学.过程工程学报,2002,2(4):291~294.
    王慧庆,朱长健,陈松林,等.两亲嵌段自组装模板法制备结构可控纳米杂化材料.材料导报,2009,23(18):110~112
    王毓德,马春来,孙晓丹,等.分子自组装及其在传感器中的应用.高技术通讯,2002,10:102~106
    谢磊,闫永达,曹永智,等.基于微探针加工技术的分子自组装过程实验研究.机械工程师,2009,8:18~20
    杨静和张成.DNA自组装技术的研究进展及难点.计算机学报,2008,12:2138~2148
    张俊苓,杨芳,郑文杰,等.自组装单分子膜及其表征方法.化学进展,2005,1:203-208
    张思亭和张笑一.分子自组装技术及表征方法.贵州师范大学学报,2008,26:106~112
    张修华,王升富.邹其超.2-巯基乙醇自组装膜电极的制备及其电化学性质应用化学.应用化学,2002,19(7):657~661
    张学群和韦钰.自组装膜.东南大学学报,199,24:1~7
    钟煜,刘传芳,常文贵.分子自组装及超分子自组装体的研究进展.枣庄学院学报,2005,22,80~84
    周灵德,阎玉华,戴红莲,等.生物分子自组装.生命的化学,2006,26:9~11

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700