花生黄曲霉抗性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
以花生(Arachis hypogaea L.)汕油523种子为材料,研究其蛋白酶抑制剂和2S清蛋白的基本性质及其对黄曲霉的作用,并探讨MJ和黄曲霉菌细胞壁激发子对花生悬浮细胞抗性相关酶活性的影响。
     采用凝胶层析、离子交换层析和电泳等方法,分别从花生种子醋酸提取液和磷酸缓冲液提取液中分离纯化胰蛋白酶抑制剂和2S清蛋白。研究表明,PI和2S清蛋白在花生中的含量很低,PI的最后得率为6%,2S的最后得率为1.2%,经PAGE、SDS-PAGE和HPLC分析表明,最后得到的PI为纯品,它是由一个单体组成的,2S清蛋白由5种低分子量的亚基组成,且部分以聚合体的形式存在。经SDS-PAGE和激光质谱测定其分子量,PI为7.07kDa,2S中含有与PI分子量相同的亚基(命名为2S-1)。PI的等电点为5.8,2S各组分的等电点相似,约为4.1,PI和2S都具有很高的热稳定性和酸碱稳定性,两者经100℃处理10min其抑制活性无明显变化,在pH2~11之间,活性也不发生改变。PI对胰蛋白酶、内肽酶和黄曲霉的生长具有较强的抑制作用,2S清蛋白在SDS处理前对胰蛋白酶、内肽酶和黄曲霉的生长无明显的抑制作用,但经SDS处理后其抑制活性大大增强。2S中含有对胰蛋白酶具有抑制作用的组分,具有与PI相似的性质,但蛋白N端序列和氨基酸分析表明,它可能属于一种病程相关蛋白,与PI不同。
     用MJ和黄曲霉菌细胞壁激发子处理花生悬浮培养细胞,然后测定其抗病相关酶活性及抗病相关物质的含量。结果表明,MJ对苯丙氨酸解胺酶、脂氧酶-1、胰蛋白酶抑制活性、几丁质外切酶、几丁质内切酶具有较强的促进作用、对β-1,3葡聚糖苷酶、脂氧酶-3具有轻微的促进作用,略微抑制过氧化氢酶的活性,对活性氧含量无明显影响;激发子对苯丙氨酸解胺酶、胰蛋白酶抑制活性、几丁质外切酶、几丁质内切酶具有较强的促进作用,对活性氧含量具有轻微的促进作用,对脂氧酶-1、过氧化氢酶具有轻微的抑制作用,对β-1,3葡聚糖苷酶、脂氧酶-3无明显影响。MJ和激发子共同作用对不同的抗病相关物质的作用效果不同。因此可以认为,在MJ和激发子诱导的抗性相关物质的过程中,对不同的物质具有不同的作用方式和途径,它们之间既存在相互联系又相互独立。
Peamil(Arachis hypogaea L.Shanyou523)seeds were chosen as materials in this thesis to study the general characteristics of the natural proteinaceous protease inhibitors from them, and the effect of MJ and elicitor on the activities of some enzymes about resistance were investigated.
    the crude PI and 2S fraction was separated from peanut seeds and purificated by Sephadex G-100 and DEAE cellulose(DE-32) chromatography . the properties of purified PI and 2S was determinded. The result showed that the content of PI and 2S in peanut seeds is very low and their last quantity is 6% and 1.2%seperately. PAGE, SDS-PAGE and HPLC analysis showed that the PI we gained are pure, which is a single polypetide with a molecular weight of 7.07kDa by SDS-PAGE and laser mass spectrum and a isoelectric point at pH5.8; The 2S protein is consist of five polypeptides with low molecular weight and the approximate isoelectric point at pH4.1and partly hang together, one of which has the same molecular weight as PI(named 2S-1).PI and 2S were stable below 100℃and between pH2.0-ll. PI can inhibite strongly proteinaceous protease,endopeptidase and A.flavus, while 2S before treatment had little inhibition on proteinaceous protease,endopeptidase and A.flavus, but after treatment, it had strong inhibition on proteinaceous protease,endopeptidase and A.flavus. Some of 2S had inhibiton on proteinaceous protease, which had the same properties as PI, but amino acid sequence and amino acid content analysis showed that it is different from PI.
    Suspension cells of peanut were treated with MJ and elicitor to determine the activities of phenylalanine ammonialyase (PAL), # 1,3-glucanase, polyphenol oxidase, chitinase, lipoxygenase(LOX-l,LOX-3), catalase(CAT), inhibition activity and active oxygene. The result showed that MJ largely increased the activities of PAL, LOX-1, inhibition activity, chitinase and slightly increased the activities of # 1,3-glucanase and LOX-3 while it slightly inhibited the activity of CAT and had no effect on the activities of inhibition; while elicitor largely increased the activities of PAL, inhibition activity, chitinase and slightly increased the activities of active oxygene, while it slightly inhibited the activity of LOX-land CAT and have no effect on the activities of LOX-3 and # 1,3-glucanase .
    
    Treatment with MJ and elicitor had different effect on different substance about resistance. It is inferred that there were various pathways in different substances on resistance induced by MJ and elicitor,which are both relateted and indenpendent
引文
1.乌鲁木齐正大畜牧有限公司品管部.AF污染原料的处理.中国饲料,1999,(18):7~9
    2.文方德,傅家瑞.花生种子蛋白酶抑制剂及其生理功能.植物生理学通讯,1997,33(1):1~9
    3.王妮妍,蒋德安.茉莉酸及其甲酯与植物诱导抗病性.植物生理学通讯,2002,38(3):279~283
    4.王建康,盖钧镒,秦泰辰等.利用杂种F2世代鉴定数量性状主基因-多基因混合遗传模型并评估遗传效应.遗传学报,1997,24(5):432~440
    5.王金生.分子植物病理学.中国农业出版社,1998,北京
    6.冯启理,潘瑞炽.NAA、GA_3和BA对离体花生子房结荚的影响.植物生理学报,1989,15(2):111~116
    7.刘春明,朱祯,周兆斓等.虹豆胰蛋白酶抑制剂抗虫转基因烟草的获得.科学通报,1992,37(18):1694~1697
    8.刘爱新,梁元存,李华等.烟草抗赤星病诱导中激发子对烟草几丁质酶和β-1,3葡聚糖苷酶的诱导作用.烟台师范学院学报(自然科学版),1998,14(4):292~295
    9.吕锋洲.东南亚地区之霉菌毒素污染.食品工业,1976,17(11):8~13
    10.庄炳昌.中国野生大豆生物学研究.科学出版社,1999,北京
    11.朱新生,朱玉贤.抗虫植物基因工程研究进展.植物学报,1997,39:282~288
    12.江玲,周燮.茉莉酸类在植物生长发育和对伤害反应中的作用.生命科学,1998,10(1):18~21
    13.汤淑英.食品中的黄曲霉毒素与肝癌.食品工业,1978,10(4):18~30
    14.宋风鸣,郑重,葛秀春.活性氧及膜脂过氧化在植物-病原物互作中的作用.植物生理学通讯,1996,32(5):377~385
    15.张长河,梅兴国,余龙江.茉莉酸与植物抗性相关基因的表达.生命的化学,2000,20(3):118~120
    16.张正光,王源超,郑小波.棉疫病菌90Kd胞外蛋白激发子诱导烟草过敏性反应的研究.植物病理学报,2003,33(1):72~76
    
    
    17.张志良.植物生理学实验指导,高等教育出版社,1990,第二版,北京
    18.张政,王转花,林汝法等.苦荞种子胰蛋白酶抑制剂的分离纯化及部分性质研究.中国生物化学与分子生物学报,1999,15(2):247~251
    19.张崇本,吴显荣.我国大豆种子中球蛋白2S组分的分离纯化及部分性质的研究.生物化学杂志,1991,7(2):320~326
    20.李云,周应揆,曹玉等.AF产毒菌株的快速筛选法.云南大学学报(自然科学版),1999,21(2) 13~15
    21.李光星.花生抗黄曲霉侵染研究初报.福建农业科技,1981,(6):8~10
    22.李严,宗晖,黄小莺等.中国野生大豆胰蛋白酶抑制剂的初步研究.复旦学报(自然科学版),1999,38(5):529~532
    23.李玲,潘瑞炽.植物生长调节剂提高花生产量和增强抗旱性研究.花生科技,1996,1:1~6
    24.杨晓泉,文方德,张水华等.花生胰蛋白酶抑制剂的纯化及钝化研究.营养学报,1998,20(3):337~341
    25.杨晓泉,张水华,黎茵等.花生2S蛋白的提取分离及部分性质研究.华南理工大学学报(自然科学版),1998,26(4):1~4
    26.周先碗,胡晓倩.生物化学仪器分析与实验技术.化学工业出版社,2003,北京
    27.周桂元,梁炫强,李一聪等.抗黄曲霉花生种皮纹理超微结构的研究.中国油料作物学报,1999,21(1):17~19
    28.周淼平,陆维忠.植物几丁质酶及其在抗真菌基因工程中的应用.江苏农业学报,1998,14(3):183~187.
    29.林国煌,董其昌,谢忆芳.花生油及其他花生制品中A.flatoxin之调查.台湾医学会杂志,1968,67(7):309~314
    30.贺立红.硕士毕业论文.华南师范大学.2001.广州
    31.罗建平,牛炳韬,贾光植.云南红豆杉培养细胞系的建立.生物工程学报,1997,13(3):326~330
    32.俞顺章,梁任祥,韦忠亮等.广西扶绥县原发性肝癌病例对照研究(摘要).中华预防医学杂志,1999,32(1):18
    33.昭赫,张国柱,宋苗菊.真菌毒素研究进展.人民卫生出版社,1979,北京
    
    
    34.洪忠,张永忠,陈虎保等.天然生物活性物质茉莉酸及其甲酯的生理作用.化学合成, 2000,39(5):8~11
    35.胡景江,刘志龙,文建雷.溃汤病菌低聚糖激发子诱导杨树细胞抗病机制的初步研究.西北农林科技大学学报(自然科学版),2003,31 (4):145~148
    36.赵志强.花生中AF的预防与去除.花生科技,1995,2:30~32
    37.赵赣,陈鑫磊.生物化学实验指导.江西科学技术出版社,2000,江西
    38.卿中全,于炎湖.AF对家禽生产性能和健康的影响.中国饲料,2000,3:35~36
    39.夏洪燕,郭顺星.密环菌激发子诱导猪苓细胞产生活性氧及其相关酶的变化.微生物学通报,2001,28(3):22~26
    40.宾金华, 姜胜,黄胜琴. 茉莉酸甲酯诱导烟草幼苗抗炭疽病与PAL活性及细胞壁物质的关系.植物生理学报,2000,26(1):1~6
    41.宾金华,潘瑞炽.茉莉酸甲酯对烟草幼苗抗炭疽病的影响.热带亚热带植物学报,1997, 5 (4):21~26
    42.宾金华,潘瑞炽.茉莉酸甲酯的生理生化及在植物抗病中的作用.植物学通报,1995,12(4):17~21
    43.桑玉英,胡金勇,曾英.常规聚丙烯酰胺颍胶电泳检测胰蛋白酶抑制剂的方法.云南植物研究,2001,23(2):236~238
    44.郭风英,沙广乐.蛋白酶抑制剂研究进展.河南职技师院学报(自然科学版),1997,25 (4):5~7
    45.郭尧君.蛋白质电泳实验技术.科学出版社,1999,北京
    46.戚正武.丝氨酸蛋白酶抑制剂的结构和功能.生物化学与生物物理进展,1988,15 (5):322~329
    47.曹宗巽,周阮宝,赵毓桔.其他植物生长调节物质.见:余叔文,汤章城主编.植物生理与分子生物学.科学出版社,1998,北京
    48.曹慧,王永章,杜俊杰等.脂氧合酶研究进展.安徽农业大学学报(自然科学版),2001,28 (2):219~222
    49.梁炫强,周桂元,潘瑞炽.花生种子受黄曲霉侵染后若干生化成分的变化及其与抗性的关系.中国油料作物学报,2001,23(2):26~30
    50.梁炫强,潘瑞炽,周桂元.活性氧及膜质过氧化与花生抗黄曲霉侵染的关系.中
    
    国油料作物学报,2002, 24(4):20~23
    51.梁炫强,潘瑞炽,宾金华.花生抗黄曲霉侵染机理的研究进展.中国油料作物学报,2000,22(3):77~80
    52.梁炫强,潘瑞炽,宾金华.影响花生收获前黄曲霉感染因素的研究概况.中国油料作物学报,2000,22(4)67~70
    53.梅兴国,张舟宁,苏湘鄂等.水扬酸对红豆杉细胞的诱导作用.生物技术,2000,10(6):18~20
    54.黄上志,傅家瑞.花生种子的发育与贮藏蛋白质的合成和积累.植物生理学报,1992,18(2):142~150
    55.黄上志,傅家瑞.花生种子贮藏蛋白质与活力的关系及其在萌发时的降解模式.植物学报,1992,34(7):543~550
    56.曾仲奎,谢文胜,鲍锦库等.水稻巯基蛋白酶抑制剂的纯化及其性质研究.生物化学杂志,1996,12(6):703~708
    57.蓝海燕,陈正华.几丁质酶及其研究进展.生命科学研究,1998,2(3):163~169
    58.廖海,杜林方,张年辉.一种快速检测蛋白酶抑制剂电泳活性的染色方法.植物生理学通讯,2002,38(3):257~259
    59.蔡应繁,叶鹏盛,张利等.β-1,3葡聚糖苷酶及其在植物抗真菌病基因工程中的作用.西南农业学报(自然科学版),2001,14(2):78~81
    60.潘瑞炽,豆志杰,叶庆生.茉莉酸甲酯对水份胁迫下花生幼苗SOD活性和膜脂过氧化作用的影响.植物生理学报, 1995, 21(3):221~228
    61.潘瑞炽.植物组织培养.广东高等教育出版社,2000,广州
    62.潭迎华.植物抗病物质及其作用.沈阳师范学院学报,2000,18(2):64~67
    63.黎穗临.花生品种资源对黄曲霉的抗性鉴定.中国油料,1992,(4):74~75
    64. Aada K, Takahashi M. Production and scavenging of active oxygen in hotosynthesis, Elsevier Science Publishers, Amsterdam, 1987, 227~287
    65. Abou Z A M, Production, purification and characterization of an extracellular alpha-amylase enzyme isolated from Aspergillus flavus. Microbios, 1997, 89(358): 55~56
    
    
    66. Agamah G E, Langcakr D P. Two novel stibene phytoalexin from Arachics hypogaea L. Phytochemistry .1983, 20:1381~1388
    67. Ahmed E M, Applewhite J A. Characterization of trypsin inhibitor in florunner peanut seeds(Arachishypogaea L.). Peanut Science, 1988, 15: 81~84
    68. Ahmed N E, Younis Y M E, Malk K M. Aspergillus flavus colonization and aflatoxin contem ination of groundnut. Proceedings of the International Workshop. India. Patancheru:ICRISAT, 1989
    69. Alarcon J J. The influence of plant age on woundinduction of proteinase inhibitors in tomato. Physiol Plant, 1995, 95:423~427
    70. Altabella T, Chrispeels M J. Tobacco plants transformed with the bean a ai gene express an inhibitor of insect α-mylase in their seeds. Plant Physiol, 1990, 93:805~810
    71. Amaya F J, Young C T, Nordon A J. Chemical screening for Aspergillus flavus resistance in peanut. Olcagincux, 1990, 35(5): 255~259
    72. Azaizeh A K, Petit R E, Taber R A. Influence of tannin-related compounds on the growth of Aspergillus parasititus and aflatoxin producing. Proceedings of the American Peanut Reaearch and Education Society. 1987, 19:35
    73. Azaizeh A K, Pettit R E. Influence of tannin-related compounds from peanut seed coats and cotyledons on Asperillus parasititus growth and aflatoxin production. Phytopathology, 1987, 77(12): 1703
    74. Azaizeh A K, Waniska R D, Pettit R E. Isolation and characterization of phenolic acid in mature peanut seed coats from twenty-three peanut genotypes. Proceedings of the American Peanut Research and Education Society. 1988, 20:27
    75. Baker C L, Orlandi E W. Active oxygen in plant pathogenesis. Annu Rev Phytopathol, 1995, 33:299~321
    76. Basa S M. A phytoalexin and aflatoxin producing peanut seed culture system.
    
    Peanut Science, 1994,21:103~134
    77. Basha S M. Factors affecting phytoalexin producing in peanut seed. Plant Physiol, 1990, 136:143~148
    78. Blechert S, Brodschelm W, Holder Set al. The octadecanoic pathway: Signal molecule for the regulation of secondary pathway. Proc Natl Acad Sci USA, 1995, 92 : 4099~4105
    79. Bode W, Huber R. National protein proteinase inhibitors and their interaction with proteinases. Eur J Biochem, 1992, 204:433~451
    80. Bowles D J. Defense-related proteins in higher plant. Annu Rev Biochem, 1990, 59:873~907
    81. Bradford M M. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle-dye binding. Anal Biochem, 1976, 72:248~254
    82. Burow G B. Seed lipoxygenase products modulate Aspergillus mycotoxin biosynthesis. Mol Plant-Microbe interactions. 1997, 10(8): 380~387
    83. Chen Z Y, Brown R L, Lax A R et al. Resistance to Aspergillus flavus in corn kernels is assiociated with a 14-kDa protein. Phytopathology, 1998, 88:276~281
    84. Chen Z Y, Brown R L, Russin J S. A Corn trypsin inhibitor with antifungal activity nhibits Aspergillus flavus α-amylase. Phytopathology, 1999, 89: 902~907
    85. Cherry J P. Seed protein degradation by storage fungi. American Chemical Society Symposium Series, 1982, 206:93~107
    86. Chiou R Y. Estimate fungal infection of peanut kernels by determination of free glutamic acid content. Applied Environmental Microbioology. 1997, 63(3): 1083~1087
    87. Cole R J, Sanders T H, Hill R A et al. Mean geocarposphere temperatures that induced preharvest aflatoxin contamination of peanut under drought stress. Mycopathologia, 1985, 91:41~46
    
    
    88. Cole R L, Dorner J W, Blakenship P D. Potential role of phytoalexin in aflatoxin contamination of peanuts. Biotechnology for Crop Protection, ACS symposium series 379, American Chemical Society, Washington, DC, 1988: 74~81
    89. Creelman R A, Tierny M L, Mullet J E. Jasmonic acid/methyl jasmonate accumulate in wounded oybean hypocoty]s and modulate wound gene expression. Proc Natl Acad Sci USA, 1992, 89 : 4938~4941
    90. Croft K P C, Voisey C R, Slusarako A J. Mechanisms of hyper-sensitive cell collapse: correlation of increased lipoxygease activity with membrane damage in leaves of Phaseolus vulgaris inoculated with an avirulent role of Pseudomonas Syringae pv. Syringae. Physiol Mol. Plant Pathol, 1990, 36: 49~62
    91. Cuero R G. Aspergillus-induced chitinases in germinating peanut and corn seed. Eighth International IUPAC Symposium on Mycotoxins and phycotoxins exico, 1992
    92. Daigle D J, Mixon A C, Delucca A J, Coffelt T A. Flawvonoids and Aflavus resistant peanut. Proceedings of the American Peanut Research and Education Society. 1984,16(1): 47
    93. Davidson J I, Hill R A, Cole R J. Field performance of two peanut cultivars relative to AFlatoxin contamination. Peanut Science, 1983, 10(1): 43~47
    94. Dieckert J W, Dieckert C, Pettit R E. Comparison of Aspergillus flavus tolerant and susceptible lines Ⅱ Electronm icroscopy. Proceedings of the American Peanut Research and Education Association, 1973, 136:143~148
    95. Domoney O, Welham T, Sidebottom C. Purification and characterization of Pisum seed trypsin inhibitors. J Exp Bot, 1993, 44(261): 701~709
    96. Fajardo J E. Effect of chitosan and Aspergillus flavus on isozymes related to phenolic compound synthesis and protein profiles of peanut seeds. Food Biotechnology. 1994, 8(2): 213~228
    
    
    97. Fajardo J E. Phenolic compounds in peanut seed. Enhanced elicitation by chitosan and effects on growth and aflatoxn B1 producing by Aspergillus falvus. Food Biotechnology. 1994, 8(2): 191~211
    98. Farmer E E, Ryan C A. Octadecanoid precursors of jasmonic acid activate the synthesis of wound-inducible proteinase inhibitors. Plant Cell, 1992, 4:129~134
    99. Feng Q L. In vitro reproductive developent of a diploid wild species(Archis duranensis). Peanut Science, 1994, 21:139~143
    100. Feng Q L. Arachis hypogaea plant recovery through In vitro culture of Peg Tips. Peanut science, 1995, 22:129~135
    101. Frank Z R, Smulevitch, Lisker N. Preharvest kernel invasion in groundnut genotypes by Aspergillus flavus and its relation to the pod surface area. Euphytica, 1994, 75:207~213
    102. Goodrich-Tantikulu. The plant growth regulator methyl jasmonate inhibits AFlatoxin production by Aspergillus flavus. Microbiology, 1995, 141: 2831~2837
    103. Gundlach H, Muller M J, Kutchan T Met al. Jasmoic acid is a signal transducer in elicitor - induced plant cell cultures . Proc Natl Acad Sci USA, 1986, 89:2389~2393
    104. Guo B Z, Russin J S. Cleveland T E. Evidence for cutinase production by Aspergillus flavus and its possible role in infection of of corn kernels. Phytopathology, 1996, 86(8): 824~829
    105. Hahnenberger K M, Kurtz S E. Avoiding protease-mediated resistance Ⅰ herbivorous pest, Tibtech, 1997, 15: 4~6
    106. Huang Z Y, White D G, Payne G A. Corn seed proteins inhibitory to Aspergillus flavus and aflatoxin biosynthesis. Phytopathology, 1997,87: 622~627
    107. Huang Z Y, White D G, Payne G A. Corn seed proteins inhibitory to Asporgillus flavus and aflatoxin biosynthesis. Phytopathology, 1997, 87:
    
    622~627
    108. Imanishi Ⅰ. Differential induction by methyl jasmonate of genes encoding ornithine decarboxylase and other enzymes involved in icotine biosynthesis in tobacco cell cultures. Plant Molecular Biology, 1998, 38: 1101~1111
    109. Inze D, Van Montagu M. Oxdative stress in plants. Curr Opin Biotechnol, 1995, 6: 153~158
    110. Jane K, Koukol J, Conn E E. The metabolism of aromatic compounds in higher plants J Biol Chem, 1961, 236(10): 2692~2698
    111. Keen N T. New stibene phytoalexins from peanut. Phytochemistry, 1976, 15:1794~1795
    112. Keppler L D, Baker C L, Atkinson M M. Active oxygen production during a bacteria induced hypersensitive reaction in tobacco caused by Erwinia amylovora, elicits active oxygen production in suspension cells. Phytopathology, 1989, 79: 974~978
    113. Knauft K N. The effect of facility acid composition on preharvest aflatoxin. Proceedings of the American Peanut Research and Education Society, 1994, 26: 30
    114. Knight P J K, Crickmore N, Ellar D J. The receptor for Bacillus thuringiensis CryIA(c)deltaendotoxin in the brush border membrane of the lepidopteran Manduca Sexta is aminopeptiase N. Mol Microbiol, 1994, 11: 429~436
    115. Kortt A A, Strike P M, De Jersey J. Amino acid sepuence of a crystalline seed albumin(wiged been albumin-l)from Psophocarpus tetragonolobus(L.) DC-sequence similarity with Kunitz-type seed inhibitors and 7S storage globulins. Eur J Biochem, 1989, 181: 403~408
    116. Laemmli U K. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature, 1970, 227:680~685
    117. Laprade J C, Bartz JA, Demuynk T J. Correlation of peanut seed coat surface
    
    wax accumulations with tolerance to colonization by Aspergillus flavus. Proceedings of the American Peanut Research and Education Association, 1973, 5(1): 89~94
    118. Laskowski M J, Kato I. Protein inhibitors of proteinases, Anu Rev Biochem, 1980, 49: 59
    119. Limas G G, Salines M, Moneo I et al. Purification and characterization of ten new rice NaCl-soluble proteins:Identificaation of four protein-synthesis inhibitors and two immunoglobulin-binding proteins. Planta, 1990, 181:1~9
    120. Liu W, Hildebrand D F, Moore P J. Expression of desiccation-induced and lipoxygenase genes during the transition from the maturation to the germination phases in soybean somatic embryos. Planta, 1994, 194: 69~76
    121. McConn M, Creelman R A, Bell E et al. Jasmonte is essential for insect defense in Arabidopsis. Proc Natl Acad Sci USA, 1997, 94:5473~5477
    122. Mehan V K, Mcdonald D. The groundnut aflatoxin problem review and literature database, International Crops Research Institute for the semi-Arid Tropics, Patancheru, Andhra, India, 1991
    123. Mellon J E, Cotty P J. Purification and partial characterization of an elastinolytic proteinase from Aspergillus flavus culture filtrates. Applied Microbiology and Biotechnology, 1996, 46(2): 138~142
    124. Mixon A C. Developing groundnut with resistance to seed colonisant by toxin-producing strains of Aspergillus flavus species, Proc Natl Acad Sci USA, 1979, 25(4): 394~400
    125. Mohanty B. Variation in phytoalexin producing by peanut seeds from several genotypes. Peanut Science, 1991, 18:19~22
    126. Norioka N, Hara S, Ikenaka T et al. Distribution of the kunitz and the Bowman-Birk family proteinase inhibitors in leguminous seeds. Agric Biol Chem, 1988, 52(5): 1245~1252
    
    
    127. Norioka S, Ikenaka T. Amino acid sequences of Trypsin-Chymotrypsin inhibitors(A-Ⅰ ,A- Ⅱ ,B-Ⅰ ,B- Ⅱ)from peanut(Arachis Hypogaea): A discussion on the molecular evolution of legume Bowman-Wirk type inhibitors. J Biochem, 1983, 94:589~599
    128. Norioka S, Omichi K, Ikenaka T. Purification and characteriztion of protease inhibitors from peanuts(Arachis hypogaea). J Biochem, 1982, 91: 1427~1434
    129. Palanisami A. Fungus aflatoxin producing in relation to post harvest pracgices in groundnut. Madrea Agricultural Journal, 1990, 77(1): 26~31
    130. Parchmann S. Induction of 12-Oxo-Phytodienoic acid in wounded plants and elicited plant cell cultures. Plant Physiol. 1997,115:1057~1064
    131. Pattee H E, Sesson S L. Relation between Aspergillus flavus growth, fat acidity and Aflatoxin content in peanut. Journal of the American Oil Chemist's Society, 1967, 44: 61~63.
    132. Peng J H, Black L L. Increased proteinase inhibitor activity in response to infection of resistant tomato plants by Phytophthora infestans 1976, 66(8): 958~963
    133. Perre J, Escriche B, Bel Y. Biochemistry and genetics of insect resistance to Bacillus thuringiensis insecticidal crystal proteins. FEMS Microbiol Lett, 1995, 132:1~7
    134. Pettit R E, Azaizeh H A, Taber R A et al. Screening groundnut cultivars for resistance to Aspergillus Aspergillus parasiticus and aflatoxin contamination . ICRISAT, 1989, 291~304
    135. Philippe R, Auzame G, Kalarthee Pet al. Olitotalacturonide defense signals in plants: Large fragments interact with the plasma membrance in vitro. Proc Nat1Acad Sci USA, 1995, 92:4145~4149
    136. Rayes-Duarte P, Beron D, Nielsen S S. Screening of heat-stable trypsin inhibitors in dry beans and their partial purification from great
    
    northernbeans(Phaseolus vulgaris)using anhydrotrypsin-sephrose affinity chromatography. J Agric Food chem, 1992,40:32~42
    137. Rusterucci C, Atallaert V, Milat M. Relationship between active oxygen species, lipid peroxidation, necrosis, and phytoxlexin production induced by eliciting in Nicotiana. Plant Physiol, 1996, 111:885~891
    138. Ryan C A. Protease inhibitors in plants:genes for improving defenses against insects and pathogens. Annu Rev Phytopathol, 1990,28:425~449
    139. Sanders T H, Mixon A C. Effect of peanut tannin on seed colonization and in vitro growth by Aspergillus parasiticus. Mycopathologia, 1978, 63(3): 169~173
    140. Sano H, Seo S, Koizumi Net al. Regulation by cytokinins of endogenous levels of jasmonic and salicylic acids in mechanically wounded tobacco plants. Plant ce11,1996, 37:762~769
    141. Schroeder H W and Ashworth J R. Aflatoxin in spanish peanuts in relation to pod and kernel conduction. Phytopathology, 1965, 55:464~465
    142. Sembdner G, Parthier B. The biochemistry and the physiological and molecular actions of jasmonates. Plant Mol Biol, 1993, 44 : 569~589
    143. Shirp J K, Valent B, Albersheim P. Purification and partial characterization of β -glucan fragment that elicits phytolexin accumulation in soybean J Biol Chen, 1984, 259(11): 312~320
    144. Smith C, Megen W V, Hitchcock C. The determination of trypsin inhibitor levels in foodstuffs. Sci Food Agric, 1992, 33:165
    145. Souza V L F D, Amaya F J. A correction between the amounts of soluble amino compounds in the test of peanuts and colony development of inoculated Aspergillus flavus. Proceedings of the American Peanut Research and Education Society, 1978, 10(1): 66
    146. Stout M J, Workman K V, Bostock R Met al. Stimulation and attenuation of induced resistance by elicitors and inhibitors of chemical induction in tomato (Lycopersion esculentum) foliage. Entomol Exp Appl, 1998,
    
    86 : 267~279
    147. Suzuki A, Tsunogae Y, Tanaka Iet al. The structure of Bowman-Birk type protease inhibitor A-Ⅱ from peanut(Arachis hypogaea)at 3.3i resolution. J Biochem, 1987, 101: 267~274
    148. Szerszen J B. Change of isozymes of Aspergillus group spp. Infected peanut cotyledon from plants grown under drought stress. American Peanut Research Education Society. 1990, 21: 23
    149. Szerszen J B. Isozymes varieties in peanut cotyledons during early stages of infection by Aspergillus flavus and A.parasticus. American Peanut Research Education Society. 1988, 20: 31
    150. Tallury P L. In vitro culture of Jrachis hypogaea peg tips. Plant Science, 1992, 19: 78~82
    151. Tan-Wilson A L, Rightmire B R, Wilson K A. Different rates of metabolism of soybean proteinase inhibitors during germination. Plant Physiol, 1982, 70:493~497
    152. Tasneem M, Cornford C A, McManus M T. Characterization of serine proteinase inhibitors in dry seeds of cultivated pasture grass species. Seed Sci Res, 1994, 4:335
    153. Terras F R G, Schools H M E. Analysis of twonovel class of antifungal proteins from radish seeds. Biol. Chem, 1992,267:2228~2233
    154. Vadlamudi R K, Weber E, Ji I. Cloning and expression of a receptor for an insecticidal toxin of Bacillus thuringiensis. J Biol Chem, 1995, 270: 5490~5494
    155. Wooton H R, Strange R N. Increased susceptibility and reduced phytoalexin accumulation in drought stressed peanut. Applied and Environmental Microbiology, 1987, 53:270~273
    156. Wu C, Whitaker J R. Purification and partial characterization of four trypsin/chymotrypsin inhibitors from red kidney beans(Phaseolus vulgaris, var. Linden).J Agric Food chem.,1990, 38:1523~1529
    
    
    157. Wu Y V, Sessa D J. Conformation of Bowman-Birk inhibitor. J Agric Food chem, 1994, 42:2136~2138

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700