小肠缺血再灌注后远隔器官次级损伤的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
小肠缺血再灌注后可引起小肠组织一系列病理生理改变如血管内皮细胞肿胀和破坏,氧自由基的产生,微血管收缩,血小板及中性粒细胞粘附聚集,血流的降低等,其中氧自由基的改变,可激活相关酶系统及凋亡相关基因,诱导细胞凋亡,造成组织细胞功能和形态上的损伤。有研究表明小肠缺血再灌注除引起肠组织本身损伤外,还可引起远隔脏器的次级损伤。我们通过建立大鼠小肠缺血再灌注模型,对血中一氧化氮和超氧化物歧化酶的改变,心、肾、肝、肺组织中Bax,Bcl-2,P53的表达情况及电镜下各组织超微结构的变化进行研究,探讨小肠缺血再灌注损伤后对于远隔器官的次级损害,为研究各种原因引起的缺血再灌注造成远隔器官的次级损害的机制和防治建立基础。
     研究目的 研究大鼠小肠缺血再灌注后血中NO、SOD的浓度变化,肺、肝、心、肾组织中Bax,Bcl-2,P53的表达以及电镜下超微结构的改变,探讨小肠缺血再灌注后对各远隔器官的损伤。
     研究方法 建立大鼠小肠缺血再灌注模型,分对照组,再灌注后0、30min,1、2h,1、3、7d共8组,于各时点检测血中NO、SOD的浓度,用免疫组织化学SP法观察肺、肝、心、肾组织中Bax,Bcl-2,P53的表达,透射电镜下观察各组织超微结构的改变。
     研究结果 大鼠小肠缺血再灌注后NO浓度0min明显升高,再灌注2h时降低,随后升高,再灌注7d时达高峰。SOD浓度再灌注0min明显下降,再灌注2h时升高,随后下降,再灌注7d时达最低水平。再灌注0min,肺、肝、心、肾组织中Bax,Bcl-2,p53阳性细胞率增多,再灌注30min时Bax,Bcl-2,p53阳性细胞率均升高,bcl-2表达高于Bax,两者差别显著(p<0.01)。再灌注2h时Bax,Bcl-2,p53阳性细胞率降低,其后升高,再灌注7d时阳性细胞率达
    
     第四军医大学硕士毕业论文
    最高水平,Bax表达明显高于 bclZ,两者差别显著中<0刀 1人透射电镜显示
    各组织细胞染色质浓缩边集,线粒体异常等超微结构明显损伤改变。
    结论 大鼠小肠缺血再灌注后血中NO,SOD的浓度明显变化、Bax,Bcl毛,
    P53阳性细胞在心、肾、肝、肺组织中的表达的显著性改变以及各组织细胞超
    微结构的改变说明小肠缺血再灌注后可引起远隔器官组织细胞次级损伤。
It might be a series of small intestin tissue pathophysiological processes such as swelling and destruction of vascular endothelial cell, prodution of oxygen-derived free radidicals, microvasoconstriction, assembling of platelet and neutrophil, reduction of blood flow after small intestine IR. The change of oxygen-derived free radidicals may active correlative enzyme system and apoptosis gene, induce cell apoptosis then result in morphologic tissue injuries. Researches have shown that small intestine IR not only injure bowl itself but also induce remote organ second injuries. Via building small intestine IR modles, we exame the concentration of NO and SOD in the blood, observe the expression of Bax, bcl-2, P53 and the change of ultrastructure in the remote organ of the lung, liver, heart and keydney to study IR-induced remote organ second injuries and to protect remote organ from IR-induced second injury for various reasons.
    Abstract
    AIM: To study the change of concentration of NO and SOD in the blood, the expression of Bax, bcl-2, P53, the change of ultrastructure in the remote organ of the lung, liver, heart and keydney and try to find out the small intestine IR-induced remote organ second injuries of the rat. The change of ultrastructure was observed by transmission electron microscopy.
    
    
    METHODS: To make models of ischemia-reperfusion of small intestine at 0, 30min, 1, 2h, 1, 3, 7d after reperfusion, the concentration of NO, SOD in the blood was examed, the expression of Bax, bcl-2, Psa in the remote organ was observed by the immunohistochemical SP method. Remoe organ ultrastructures were observed by transmission electron microscopy.
    RESULTS: The concentration of NO increased apparently after I/R 0 minute, but decreased significantly after I/R 2 hours, then increased gradually to a peak after 7 days. For SOD, the concentration decreased after I/R 0 minute, increased significantly after I/R 2 hours, and decreased gradually to the lowest level after I/R 7 days. The positive cells were observed. The ratio of positive cells of Bax, bcl-2, P53 increased after I/R 30 min, the ratio of positive cells of bcl-2 was higher than that of Bax (p<0.01) , after I/R two hours it decreased apparently, then increased after I/R seven days, and the ratio of Bax was higher than that of bcl-2 (p<0.01 ) .Remoe organ ultrastructures were serious injured observed by transmission electron microscopy such as chromatin concintration and mitochondria
    disorder.
    CONCLUSION: The change of concentration of NO and SOD in blood, the expression of positive cells of Bax, bcl-2, P53 as well as the change of Remoe organ ultrastructures show that it might cause apoptosis and injuries in the remote organ after IR of small intestine of rat.
引文
1. Weinberg JiM. The cell biology of ischemic renal injury. Kidney Int. 1991; 39(2):476-491
    2. Zimmerman BJ, Gragner DN. Mechanisms of reperfusion injury. Am J Med. Sci.1994;307(4): 284-296
    3. Grace PA. Ischaemia-reperfusion injury. Br J Surg. 1994;81(4): 637-645
    4. Shoskes DA, Halloran, PF. Delayed graft function in renal transplantation: Etiology, management and long-term significance. J Urol. 1996;155(1):1831-1841
    5. Reilly PM, Schiller HJ, Bulkley, GB. Pharmacological approach to tissue injury mediated by free radicals and other reactive oxygen metabolites. Am. J. Surg. 1991;161(6):488-451
    6. Weight SC, Bell PR, Nicholson ML. Renal ischaemia-reperfusion injury. Br.J. Surg. 1996; 83(3):162-170
    7. Land W, Messmer K. The impact of ischemia/reperfusion injury on specific and nonspecific, early and late chronic events after organ transplantation. Transplant. Rev. 1996;10(1): 108-115
    8. Granger DN, Korthuis RJ. Physiologic mechanisms of postichemic tissue injury. Annu. Rev. Physiol. 1995; 57(3): 311-322
    9. Wink DA, Mitchell JB. Chemical biology of nitric oxide: Insights into regulatory cytotoxic, and cytoprotective mechanisms of nitric oxide. Free Radicals Biol. Med.1998;25(6): 434-442
    10. Gragner DN. Role of xathine oxidase and granulocytes in ischemia-reperfusion injury. Am. J. Physiol. 1988; 255(2): H1269-1279
    11. Tyler DD. Polarographic assay and intracellular distribution of superoxide dismutase in rat liver. Biochem. J. 1975;147(3): 493-511
    12. Halliwell B, Gutteridge JM, Cross E. Free radicals, antioxidants, and human disease: Where are we? J. Lab. Clin. Med. 1992;119(5): 598-608
    13. Halliwell B, Gutteridge JM. Biologically relevant metal ion-dependent hydroxil radical generation. An update. FEBS Lett. 1992;307(4): 108-119
    14. Wink DA, Wink CB, Nims R., et al. Oxidizing intermediates generated in the Fenton reagent: Kinetic arguments against the intermediacy of the hydroxyl radical. Environ. Health Perspect. 1994;102(7): 11-23
    15. Halliwell B, Clement MV, Ramalingan J, Long LH. Hydrogen peroxyde. Ubiquitous in cell culture and in vivo? IUBMB Life. 2000;50(3): 251-266
    16. Halliwell B, Clement MV, Long LH. Hydrogen peroxide in the human body. FEBS Lett. 2000; 486(5):10-25
    17.吴希美.一氧化氮与肝细胞氧化应激,国外医学.生理病理科学与临床分
    
    册,1997;17(3):279-284;
    18. Jassem W, Roake J. The molecular and cellular basis of reperfusion injury following organ transplantation. Transplant. Rev. 1998; 12(5): 14-26
    19. Szabo C, Billiar TR. Novel roles of nitric oxide in hemorrhagic shock. Shock 1999;12(2):1-15
    20. Hotter G, Closa D, Gelpi E, et al. Role of xanthine oxidase and eicosanoids in development of pancreatic aschemiareperfusion injury. Inflammation. 1995;19(1):469-478
    21. Kusumoto K, Morimoto T, Minor T, et al. Allopurinol effects in rat liver transplantation on recovery of energy metabolism and free radical induced damage. Eur. Surg. Res. 1995;27(3): 285-296
    22. McCord JM. Oxygen derived free radicals in postischemic tissue injury. N. Engl. J. Med. 1985;312(7): 159-166
    23. Lopez-Neblina F, Toledo-Pereyra LH, Suzuki S, et al. Protective effect of combined allopurinol and verapamil given at reperfusion in severe renal ischemia. J. Invest. Surg. 1995;8(3): 57-71
    24. Green CJ, Healing G, Simpkin S, et al. Allopurinol inhibits lipid peroxidation in warm ischaemic and reperfused rabbit kidneys. Free Radicals Res. Commun. 1989;6(2): 329-338
    25. Vaughan DL, Wickramasinghe YA, Russell GI, et al. Is allopurinol beneficial in the prevention of renal ischaemiareperfusion injury in the rat? Evaluation by near-infrared spectroscopy. Clin. Sci. 1995;88(3): 359-370
    26. Smeets HJ, Camps J, van Milligen de Wit AW, et al. Influence of low dose allopurinol on ischaemia-reperfusion injury during abdominal aortic surgery. Eur. J. Vasc. Endovasc. Surg. 1995;9(4): 162-178
    27. Korthuis RJ, Granger DN, Townsley M I, et al. The role of oxygen-derived free radicals in ischemia-indiced increases in canine skeletal muscle vascular permeability. Circ. Res. 1985;57(3): 599-612
    28. Moorehouse PC, Grootveld M, Halliwell B, et al. Allopurinol and oxypurinol are hydroxyl radical scavengers. FEBS Lett. 1987;213(2): 23-38
    29. Sun SC, Greenstein SM, Schechner RS, et al. Importance of protection of cold-stored small intestine against oxygen free-radical-induced injury during the initial period of reperfusion. Transplant. Proc. 1993;25(6): 1674-1687
    30. O'Farrell D, Chen LE, Seaber AV, et al. Efficacy of recombinant human manganase superoxide dismutase compared to allopurinol in protection of ischemic skeletal muscle against "no-reflow". J Reconstr Microsurg. 1995;11(4): 207-219
    31. Kodo S, Segawa T, Tanaka K, et al. Mannosylated superoxide dismutase inhibits hepatic reperfusion injury in rats. J. Surg. Res. 1996;60(2): 36-51
    32. Jolly SR, Kane WJ, Bailie MB, et al. Canine myocardial reperfusion injury: Its reduction
    
    by the combined administration of superoxide dismutase and catalase. Circ. Res. 1984;54(1): 277-291
    33. Shlafer M, Kane PF, Kirsh MM. Superoxide dismutase plus catalase enhances the efficacy of hypothermic cardioplegia to protect the globally ischemic, reperfused heart. J. Thorac. Cardiovasc. Surg. 1982;83(4): 830-845
    34. Adkinson D, Hollwarth ME, Benoit JN, et al. Role of free radicals in ischemia-reperfusion injury to the liver. Acta Physiol. Scand. 1986;548(Suppl.): 101-117
    35. Simpson R, Alon R, Kobzik L, et al. Neutrophil and nonneutrophil-mediated injury in intestinal ischemiareperfusion. Ann. Surg. 1993;218(3): 444-454,.
    36. Menasche P, Pasquier C, Bellucci S, et al. Deferoxamine reduces neutrophil-mediated free radical production during cardiopulmonary bypass in man. J. Thorac. Cardiovasc. Surg. 1988;96(2): 582-595
    37. Menasche P, Antebi H, Alcindor LG, et al. Iron chelation by deferroxamine inhibits lipid peroxidation during cardiopulmonary bypass in humans. Circulation 1990;82(5): 390-414
    38. Green CJ, Healing G, Simpkin S, et al. Reduced susceptibility to lipid peroxidation in cold ischemic rabbit kidneys after addition of desferrioxamine, mannitol, or uric acid to the flush solution. Cryobiology. 1986;23(2): 358-363
    39. Haraldsson G, Sorensen V, Nilsson U, et al. Effect of pretreatment with desferrioxamine and mannitol on radical productionand kidney function after ischaemia-reperfusion: A study on rabbit kidneys. Acta Physiol. Scand. 1995;154(6): 461-475
    40. Radi R, Beckman JS, Bush KM, et al. Peroxynitriteinduced membrane lipid peroxidation: The cytotoxic potential of superoxide and nitric oxide. Arch. Biochem. Biophys. 1991 ;288(1):481-497
    41. Green CJ, Gower JD, Healing G, et al. The importance of iron, calcium, and free radicals in reperfusion injury: An overview of studies in ischaemic rabbit kidneys. Free RadicalsRes. Commun. 1989;7(6): 255-268
    42. Green CJ, Healing G, Simpkin S, et al. Desferrioxamine reduces susceptibility to lipid peroxidation in rabbit kidneys subjected to warm ischaemia and reperfusion. Comp. Biochem.Physiol. 1986;B 85:113-125
    43. Amersi F, Dulkanchainun T, Neslson SK, et al. A novel iron chelator in combination with a P-selectin antagonist prevents ischemia/reperfusion injury in a rat liver model. Transplantation. 2001;71(3): 112-123
    44. Land W, Schneeberger H, Schleibner S, et al. The benefi-cial effect of human recombinant superoxide dismutase on acute and chronic rejection events in recipients of cadaveric renal transplants. Transplantation. 1994;57(3): 211-224
    45. Negita M, Ishii T, Kunikata S, et al. Prevention of posttransplant acute tubular necrosis in kidney graft by perioperative superoxide dismutase infusion. Transplant. Proc. 1994;26(4):2123-2135
    
    
    46. Schneeberger H, Illner WD, Abendroth D, et al. First clinical experiences with superoxide dismutase in kidney transplantation-results of a double-blind randomized study. Transplant. Proc. 1989;21(5): 1245-1260
    47. Schneeberger H, Schleinbner S, Schilling M, et al. Prevention of acute renal failure after kidney transplantation by treatment with rh-SOD: Interim analysis of a double-blind placebo-controlled trial. Transplant. Proc. 1990;22(2): 2224-2236
    48. Kerwin JFJ, Heller M. The arginine-nitric oxide pathway: a target for new drugs. Med Res Rev. 1994;14:23
    49. Szabolcs M, Michler RE, Yang X, et al. Apoptosis of cardiac myocytes during cardiac allograft rejection. Relation to introduction of nitric oxide synthase. Circulation,1996;94(5): 1665-1679
    50. Wildhirt SM, Dudek RR, Suzuki H, et al. Immunohistochemistry in the identification of nitric oxide synthase isoenzymes in myocardial infarction. Cardiovasc Res. 1995;29(7):526-538
    51. Cai B, Roy DK, Sciacca R, et al. Effects of immunosuppressive therapy on expression of inducible nitric oxide synthase during cardiac allograft rejection. Int J Cardiol. 1995;50(2):243-256
    52. Stuehr DJ. Mammalian nitric oxide synthases. Biochim. Biophys. 1999;1411(5): 217-229
    53. Nathan C, Xie QW. Nitric oxide synthases: Roles, tolls, and controls. Cell 1994;78(3):915-926
    54. Michel T, Feron O.Nitric oxide synthase: Which, where, how, and why? J. Clin. Invest. 1997; 100(5): 2146-2158
    55. Liaduet L, Garcia-Soriano F, Szabo C. Biology of nitric oxide signaling. Crit. Care Med. 2000;28(2): 37-47
    56. Ma XL, Tsao PS, Viehman GE, Lefer AM. Nuetrophil-mediated vasocontraction and endothelial dysfunction in low-flow perfusion-reperfused cat coronary artery. Circ. Res. 1991;69(1): 95-106
    57. Kugiyama K, Yasue H, Okumura K, et al. Nitric oxide activity is deficient in spasm arteries of patients with coronary spastic angina. Circulation. 1996;94(5): 266-280
    58. Gauthier TW, Davenpeck KL, Lefer AM. Nitric oxide attenuates leukocyte-endothelial interaction via Pselectin in splachnic ischemia-reperfusion. Am. J. Physiol. 1994;267(4):G562-583
    59. Kishimoto TK, Jutila M, Berg EL, et al. Neutrophil MAC-1 and MEL-14 adhesion proteins inversely regulated by chemotactic factors. Science. 1989;245(7): 1238-1241
    60. Barnes PJ. Nuclear factor-kB. Int. J. Biochem. Cell. Biol. 1997;29(3): 867-880
    61. Blackwell TS, Christman JW. The role of nuclear factor-kB in cytokine gene regulation.Am. J. Respir. Cell. Mol. Biol. 1997;17(6): 3-15
    62. Lander HM, Sehajpal P, Levine DM., Novogrodsky A. Activation of human peripheral
    
    blood mononuclear cells ny nitric oxide-generating compounds. J. Immunol. 1993;150(2):1509-1517
    63. Grisham MB, Jourd'Heuil D, Wink DA. Nitric oxide. I. Physiological chemistry of nitric oxide and its metabolites: Implications in inflamation. Am. J. Physiol. 1999;276(6):G315-326
    64. Szabo C. Alterations in nitric oxide production in various forms of circulatory shock. New Horizons 1995;3(3): 2-15
    65. Guo JP, Murohara T, Buerke M, et al. Direct measurement of nitric oxide release from vascular endothelial cells. J. Appl. Physiol. 1996;81 (6): 774-786
    66. Lefer AM, Lefer D. J. The role of nitric oxide and cell adhesion molecules on the microcirculation in ischemiareperfusion. Cardiovasc. Res. 1996;32(4): 743-755
    67. Grisham MB, Granger DN, Lefer DJ. Modulation of leukocyte-endothelial interactions by reactive metabolites of oxygen and nitrogen: Relevance to ischemic heart disease. Free Radicals Biol. Med. 1998;25(3): 404-416
    68. Ma XL, Weyrich AS, Lefer DJ, Lefer AM. Dimished basal nitric oxide release after myocardial ischemia and reperfusion promotes neutrophil adherence to corollary endothelium. Circ. Res. 1993;72(2): 403-411
    69. Margaret AA, Douglas BS, Ryuji F, et al. Cytokine-mediated qpoptosis in cardiac myocytes:The role of inducible nitric oxide synthase inducation and peroxynitrite generation[J].Circulation Research, 1999;85(1):829-840;
    70. Peralta C, Hotter G, Closa D, et al. The protective role of adenosine in inducing nitric oxide synthesis in rat liver ischemia preconclitioning is mediated by adenosine A2receptors[J]. Hepatology, 1999;29(1): 126-129;
    71. Clemens MG, McDonagh RF, Chaudry IH, et al. Hepatic microcirculatory failure afteer ischemia and reperfusion:improvement with ATP-MgC12 treatment[J].Am J Physiol. 1985;248(5):H804-H811;
    72. Genaro AM, Hortelano S, Alvarez A, et al. Splenic B lymphocyte programmed cell death is prevented by nitric oxide release through mechanisms involving sustained Bcl-2 levels[J].J Clin Invest. 1995 Apr;95(4):1884-1890;
    73. Albina JE, Cui S, Mateo RB, et al. Nitric oxide-mediated apoptosis in murine peritoneal macrophages[J]. J Immunol. 1993 Jun 1; 150(11): 5080-5085;
    74. Matthys P, Froyen G, Verdot L, et al. IFN-gamma receptor-deficient mice are hypersensitive to the anti-CD3-induced cytokine release syndrome and thymocyte apoptosis. Protective role of endogenous nitric oxide[J]. J Immunol. 1995 Oct 15;155(8):3823-3829:
    75. Melkova Z, Lee SB, Rodrigeuz D, et al. Bcl-2 prevents nitric oxide-mediated apoptosis and poly(ADP-ribose)polymerase cleavage [J]. FEBS Lett, 1997; 403(4):273-278;
    76. Sata M, Kakoki M, Nagata D, et al. Adrenomedullin and nitric oxide inhibit human
    
    endothelial cell apoptosis via a cyclic GMP-independent mechanism[J]. Hypertension, 2000;36(3):83-88;
    77. Murad F. Signal transduction using nitric oxide and cyclic guanosine monophosphate[J].JAMA,1996;276(6):1189-1192;
    78. Sinz EH, Kochanek PM, Dixon CE, et al. Inducible nitric oxide synthase is an endogenous neuroprotectant after traumatic brain injury in rats and mice[J]. J Clin Invest. 1999; 104(3):647-656;
    79. Goran RD, Ferrari FK, Kisper PH. Nitric oxide and nitric oxide-generating compounds inhibit hepatocyte protein synthesis[J]. FASEB J. 1991; 5(6): 2085-2092;
    80. Aoki N, Johnson G, Lefer AM. Beneficial effects of two forms of NO administration in feline splachnic artery occlusion shock. Am. J. Physiol. 1990;258(7): G275-286
    81. Johnson G, Tsao PS, Lefer AM. Cardioprotective effects of authentic nitric oxide in myocardial ischemia with reperfusion. Crit. Care Med. 1991;19(3): 244-256
    82. Frostell C, Fratacci MD, Wain JC, et al. Inhaled nitric oxide: A selective pulmonary vasodilator reversing pulmonary vasoconstriction. Circulation. 1991;83 (6): 2038-2045
    83. Fox-Robichaud A, Payne D, Hasan SU, et al. Inhaled nitric oxide as a viable antiadhesive therapy for ischemia/ reperfusion injury of distal microvascular beds. J. Clin. Invest. 1998;101(4):2497-2509
    84. Kubes P, Granger DN. Nitric oxide modulates microvascular permeability. Am. J. Physiol.1992;262(4): H611-621
    85. Kurose I., Wolf R, Grisham MB, Granger DN. Modulation of ischemia/reperfusion-induced microvascular dysfunction by nitric oxide. Circ. Res. 1994;74(5): 376-382
    86. Lopez-Neblina F, Toledo-Pereyra LH, Mirmiran R, Paez-Rollys AJ. Time dependence of Na-nitroprusside administration in the prevention of nuetrophil infiltration in the rat ischemic kidney. Transplantation. 1996;61(1): 179-191
    87. Seekamp A, Mulligan MS, Till GO, et al. Requirements for neutrophil products and L-arginine in ischemia-reperfusion injury. Am. J. Pathol. 1993; 142(5):1217-1222
    88. Wainwright CL, Martorana PA. Pirsidomine, a novel nitric oxide donor, supresses ischemic arrhythmias in anesthetized pigs. J. Cardiovasc. Pharmacol. 1993;22(6): S44-58
    89. Carey C, Siegfried MR, Ma SL, et al. Antishock and endothelial protective actions of a NO donor in mesenteric ischemia and reperfusion. Circ. Shock. 1992;38(3): 209-218
    90. Lopez-Neblina F, Paez AJ, Toledo AH, Toledo-Pereyra LH. Role of nitric oxide in ischemia/reperfusion of the rat kidney. Circ. Shock. 1994;44(5): 91-105
    91. Gaboury J, Woodman RC, Granger DN, et al. Nitric oxide prevents leukocyte adherence: Role of superoxide. Am. J. Physiol. 1993;265(3): H862-875
    92. Kubes P, Suzuki M, Granger DN. Nitric oxide: An endogenous modulator of leukocyte adhesion. Proc. Natl. Acad. Sci. USA. 1991 ;88(5): 4651-4662
    
    
    93. Zingarelle B, Squadrito F, Altavilla D. Evidence for a role of nitric oxide in hypothennic shock. J. Cardiovasc. Pharmacol. 1992;19(7): 982-993
    94. Vromen A, Szabo C, Southan GS, Salzman AI. Effect of S-isopropyl isothiourea, a potent inhibitor of nitric oxide synthase, in hemorrhagic shock. J. Appl. Physiol. 1996;81(3):707-719
    95. Angele MK, Small N, Wang P, et al. L-Arginine restores the depresses cardiac output and regional perfusion after trauma-hemorrhage. Surgery. 1998; 124(3): 394-410
    96. Weyrich AS, Ma XL, Lefer AM. The role of L-arginine in ameliorating reperfusion iniury after myocardial ischemia in the cat. Circulation. 1992;86(4): 279-285
    97. Nakanishi K, Vinten-Johansen J, Leffer DJ, et al. Intracoronary L-arginine during reperfusion improves endothelial function and reduces infarct size. Am. J. Physiol. 1992;263(1): H1650-1660
    98. Pabla R., Buda AJ, Flynn DM, et al. Nitric oxide attenuates neutrophil-mediated myocardial contractile dysfunction after ischemia and reperfusion. Circ. Res. 1996;78(3):65-74
    99. Fei L, Baron AD, Henry DP, Zipes DP. Intrapericardial delivery of L-arginine reduces the increased severity of ventricular arrhythmias during sympathetic stimulation in dogs with acute coronary occlusion: Nitric oxide modulates sympathetic effects on ventricular electrophysiological properties. Circulation. 1997;96(3): 4044-4057
    100. Huk I, Nanobashvili J, Neumayer C, et al. L-Arginine treatment alters the kinetics of nitric oxide and superoxide release and reduces ischemia/reperfusion injury in skeletal muscle. Circulation. 1997;96(3): 667-684
    101. Nilsson B, Yoshida T, Delbro D, et al. Pretreatment with L-arginine reduces ischemia/reperfusion injury of the rat liver. Transplant. Proc. 1997;29(3): 3111-3123
    102. Thiemermann C, Szabo C, Mitchell JA, Vane JR. Vascular hyporeactivity to vasoconstrictor agents and hemodynamic decompensation in hemorrhagic shock is mediated by nitric oxide. Proc. Natl. AcM. Sci. USA. 1993;90(5): 267-285
    103. Harbrecht BG, Wu B, Watkins SC, et al. Inhibition of nitric oxide synthase during hemorrhagic shock increases hepatic injury. Shock. 1995;4(6): 332-350
    104. Matheis G, Sherman MP, Buckberg GD, et al. Role of L-arginine-nitric oxide pathways in myocardial reoxygenation injury. Am. J. Physiol. 1992;262(3): H616-627
    105. Adachi T, Hori S, Miyazaki K, et al. Inhibition of nitric oxide synthesis aggravates myocardial ischemia in hemorrhagic shock in constant pressure model. Shock. 1998;9(7):204-215
    106. Todorovic Z, Prostran MS, Varagic V, et al. The cardiovascular effects of the administration of L-NAME during the early posthemorrhagic period. Gen. Pharmacol. 1998;30(5): 763-780
    107. Rivera-Chavez FA, Toledo-Pereyra LH, Dean RE, et al. Exogenous and endogenous nitric
    
    oxide but not iNOS inhibition improve function and survival os ischemically injured livers. J. Invest. Surg. (in press).
    108. Brandhorst D, Brandhosrts H, Zwolinski A, et al. Prevention of early islet graft failure by selective inducible nitric oxide synthase inhibitors after pig to nude rat intraportal islet transplantation. Transplantation. 2001;71(3): 179-186
    109. Ricciardi R, Foley DP, Quarfordt SH, et al. V-PYRRO/NO: An hepato-selective nitric oxide donor improves porcine liver hemodynamics and function after ischemia reperfusion. Transplantation. 2001;71 (4): 193-208
    110. Russell RC, et al. Reperfusion injury and oxygen free radicals. J Resconstruct Microsurgery. 1989;5(1):79-83
    111. Springer TA. Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm. Cell. 1994;76(2): 301-315
    112. Granger DN, Kubes P. The microcirculation and inflammation: Modulation of leukocyte-endothelial cell adhesion. J. Leukoyte Biol. 1994;55(3): 662-685
    113. Butcher EC. Leukocyte-endothelial cell recognition: Three (or more) steps to specificity and diversity. Cell. 1991;67(3): 1033-1042
    114. Schall TJ, Bacon KB. Chemokines, leukocyte trafficking, and inflammation. Curr. Opin.Immunol. 1994;6(6): 865-876
    115. Carden DL, Smith J K, Korthius RJ. Neutrophil-mediated microvascular dysfunction in postischemic canine skeletal muscle: Role of granulocyte adherence. Circ. Res. 1990;66(5):1436-1448
    116. Weiss SJ. Tissue destruction by neutrophils. N. Engl. J. Med. 1989;320(4): 365-374
    117. Windsor AC, Mullen PG, Fowler AA., et al. Role of the neutrophil in adult respiratory distress syndrome. Br. J. Surg. 1993;80(5): 10-22
    118. Welbourn CR, Goldman G, Paterson IS, et al. Pathophysiology of ischaemia reperfusion injury: Central role of the neutrophil. Br. J. Surg. 1991;78(3): 651-662
    119. Pearl JM, Drinkwater DC, Lasks H, et al. Leukocytedepleted reperfusion of transplanted human hearts: A randomized, double-blind clinical trial. J. Heart Lung Transplant. 1992;11(7): 1082-1093
    120. Simpson PJ, Todd RD, Fantone JC, et al. Reduction of experimental canine myocardial reperfusion injury by a monoclonal antibody (anti-mol, anti-CD11b) that inhibits leukocyte adhesion. J. Clin. Invest. 1988;81(4): 624-635
    121. Moore TM, Khimenko P, Adkins W, et al. Adhesion molecules contribute to ischemia and reperfusion-induced injury in isolated rat lung. J. Appl. Physiol. 1995;78(5): 2245-2258
    122. Martinez-Mier G, Toledo-Pereyra LH, Ward PA. Adhesion molecules in liver ischemia and reperfusion. J. Surg. Res. 2000;94(3): 185-196
    123. Martinez-Mier G, Toledo-Pereyra LH, McDuffie JE, et al. P-selectin and chemokine response after liver ischemia and reperfusion. J. Am. Coll. Surg. 2000;191(2): 395-410
    
    
    124. Martinez-Mier G, Toledo-Pereyra LH, McDuffie E, et al. L-selectin and chemokine response after liver ischemia and reperfusion. J. Surg. Res. 2000;93(6): 156-169
    125. Martinez-Mier G, Toledo-Pereyra LH, McDuffie E, et al. Neutrophil depletion and chemokine response after liver ischemia and reperfusion. J. Invest. Surg. 2001;14(3): 99-110
    126. Rabb H, Mendiola CC, Saba SR, et al. Antibodies to ICAM-1 protect kidneys in severe ischemic reperfusion injury. Biochem. Biophys. Res. Commun. 1995;211 (7): 67-84
    127. Garcia-Criado FJ, Toledo-Pereyra LH., Lopez-Neblina F, et al. Role of P-selectin in total hepatic ischemia and reperfusion. J. Am. Coll. Surg. 1995; 181(5): 327-339
    128. Rivera-Chavez FA, Toledo-Pereyra LH, Nora DT, et al. P-selectin blockade is beneficial after uncontrolled hemorrhagic shock. J. Trauma. 1998;45(1): 404-420
    129. Rivera-Chavez FA, Totedo-Pereyra LH, Bachulis B, et al. Role of L-selectin in liver function and survival in rat after uncontrolled hemorrhagic shock. Surg. Forum 1997;48(3): 103-108
    130. Anaya-Prado R, Toledo-Pereyra LH, Collins JT, et al. Dual blockade of P-selectin and 2-integrin in the liver inflammatory response after uncontrolled hemorrhagic shock. J. Am. Coll. Surg. 1998;186(5): 22-36
    131. Palma-Vargas JM, Toledo-Pereyra LH, Harkema JM, et al. Blockade of _2 and _3 integrins protects ischemic liver from severe inflammatory response. Surg. Forum. 1997;48(3): 184-197
    132. Palma-Vargas JM, Toledo-Pereyra LH, Dean RE, et al. Small molecule selectin inhibitor protects against liver inflammatory response after ischemia and reperfusion. J. Am. Coil. Surg. 1997;185(6): 365-381
    133. Suzuki S, Toledo-Pereyra LH. Monoclonal antibody to intercellular adhesion molecule 1 as an effective protection for liver ischemia and reperfusion injury. Transplant. Proc. 1993;25(2): 3325-3337
    134. Rubio-Avila J, Palma-Vargas JM, Collins JT, et al. Sialyl-Lewisx analog improves liver function by decreasing neutrophil migration after hemorrhagic shock. J. Trauma. 1997;43(3): 313-326
    135. Misawa K, Toledo-Pereyra LH, Phillips ML, et al. Role of Sialyl Lewisx in total hepatic ischemia and reperfusion. J. Am. Coll. Surg. 1996;182(7): 251-266
    136. Kelly KJ, Williams WWJr, Colvin RB, et al. Intercellular adhesion molecule-1-deficient mice are protected against ischemic renal injury. J. Clin. Invest. 1996;97(3): 1056-1062
    137. Soriano SG, Lipton SA, Wang YF, et al. Intercellular adhesion molecule-1-deficient mice are less susceptible to cerebral ischemia-reperfusion injury. Ann. Neurol. 1996;39(4): 618-629
    138. Harris NR, Granger ND. Ischemia/reperfusion injury. In L. H. Toledo~Pereyra (Ed.), Organ Procurements and Preservation for Transplantation, 2nd ed. Springer-Verlag, TX,
    
    1997. Pp. 67-81.
    139. Rhee P, Morris J, Durham R, et al. Recombinant humanized monoclonal antibody against CD18 (rhuMAb CD18) in traumatic hemorrhagic shock: Results of a phase Ⅱ clinical trial. J. Trauma. 2000; 49(3): 611-624
    140. Hourmant M, Bedrossian J, Durand D, et al. A randomized multicenter trial comparing leukocyte function-associated antigen-1 monoclonal antibody with rabbit antithymocyte globulin as induction treatment in first kidney transplantations. Transplantation. 1996;62(6): 1565,.
    141. Haug CE, Colvin RB, Delmonico FL, et al. A phase I trial of immunosuppression with anti-ICAM-1 (CD54) MAb in renal allograft recipients. Transplantation. 1993;55(4): 766-778
    142. LeMauff B, Hourmant M, Rougier JP, et al. Effect of anti-LFA1 (CD11a) monoclonal antibodies in acute rejection in human kidney transplantation. Transplantation. 1991; 52(3): 291-308
    143. Olivetti G, Abbi R, Quaini F, et al. Apopaosis in the failing human heart. N Engl J Med. 1997;336(5):1131-1141
    144. Fliss H, Gattinger DA. Apoptosis in ischemic and reperfused rat myocardium. Cir Res, 1996,79(2):949-956
    145. Schumer M, Colomber MC, Sawczuk IS, et al. MorpHologic, biochemical and molecular evidence of apoptosis during the reperfusion phase after brief periods of renal ischemia .Am J Pathol, 1992; 140(7):831-838
    146. Gottlieb PA, Burleson KO, Kloner PA, et al. Reperfusion injury induces apoptosis in rabbit cardiomyocytes. J Clin Invest, 1994, 94(3): 1621-1628
    147. Li Y, Chopp M, Jiang N, et al. Induction of DNA fragmentation after 10 to 120 minutes of focal cerebral ischemia in rats[J].Stroke, 1995 ;26(7): 1251-1264
    148. Mac Manus JP, Hill IE, Preston E, et al. Differences in DNA fragmentationfollowing transiet cerebral or decapitation ischemia in rats[J]. J Cereb Blood Flow Matab. 1995; 15(3):728-739
    149. Sasaki H, Matsuno T, Tanaka N, et al. Activation of apoptosis during the reperfution phase after rat liver ischemia[J]。Transplan Proc, 1996;28(3): 1908-1920
    150. Buerke M, Murohara T, Skurk C, et al. Cardioprotective effect of insulin-like growth factor in myocardial ischemia followed by reperfusion. Proc Natl Acad Sci USA. 1995;92(3):8031-8035
    151. Saraste A, Pulkki K, Kallajoki M, et al. Apoptosis in human acute myocardial infarction. Circulation, 1997,95(2):320-323
    152. Von Harsdorf R, Li PF, Diietz R, et al. Signaling pathways in reactive oxygen species-induced cardiomyocyte apoptosis. Circulation, 1999, 99(3): 2934-2941
    153. Yang BC, Zander DS, Mehta JL, et al. Hypoxia reoxygenation induced apoptosis in
    
    cultured adult rat myocytes and the protective effect of platelets and transforming growth factor-beta(1). J PHarmacol Exp Ther. 1999, 291(6): 733-738
    154. Weiland U, Haendeler J, Ihling C, et al. Inhibition of endogenous nitric oxide synthase potentiates ischemia-reperfusion-induced myocardial apoptosis via a caspase-3 dependent pathway. Cardiovasc Res. 2000, 45(7): 671-678
    155. Kerr JFR. Apoptosis: Its Significance Cancer and Cancer Therapy. Cancer. 1994;73(16):2013-2025
    156. Carson DA. Apoptosis and Disease. Lancet. 1993; 341(6):1251-1254
    157. Wyllie AH. Apoptosis cell death in tissue regulation. J Pathol. 1987; 153(8):313-316
    158. Fang M, Zhang H, Xue S, et al. Intracellular calcium distribution in apoptosis of HL-60 cell induced by harringtonine: intranuclear accumulation and regionalization. Cancer Lett. 1998;127(6):113-121
    159. Gorczyca w, Gong J. Detection of DNA strand breaks in individual apoptotic cells by the in situ terminal deoxynucleotidy I transferase and nick translation assays. Cancer Res.1993;53(9):1945-1951
    160. Fan M, Zhang HQ, Xue SB. Differential effects of Ca2+ and Mg2+ on endonuclease activation in isolated promyelocytic HL-60 cell nuclei. Science in china(c). 1998;41(4):351-359
    161. Raff M. Cell suicide for beginners. Nature, 1998; 396:119-122
    162. Adams JM, Cory S. The Bcl-2 protein family: arbiters of cell survival. Science.1998; 281(15):1322-1326
    163. Camilleri Broet S, Vanderwerff E, Caldwell E, et al. Distinec alterations in mitochondrial mass and function characterize different models of apoptosis. Exp Cell Ress. 1998;239(11):277-292
    164. Thomberry NA, Lazebnik Y. Caspase: enemies within. Science. 1998; 281(5):1312-1316
    165. Hockenbery DM, Oltvai ZN, Yin XM, et al. Bcl-2 function in an antioxidant pathway to prevent apoptosis. Cell. 1993;75(2):241-251
    166. Pietenpol JA. Paradoxical inhibiton of solid turner cell grow by Bcl-2. Cancer Res. 1994 ;543 (3):3714-3417
    167. Kitada S. Investigations of antisence oligonucleotides targeted against Bcl-2 RNA. Antisense RES Devlop. 1993;3(13): 157-169
    168. Walton W. Constitutive expression of human Bcl-2 modulates mitgen mustard and camptothecin induced apoptosis. Cancer Res. 1993; 53(7): 1853-1861
    169. Baffy G, Miyashita T, Reed JC, et al. Apoptosis induced by withdrawal of interleukin3(IL-3) form an IL-3-dependent hematopoietic cell line is associated with repartitioning of intracellular calcium and is blocked by enforced Bcl-2 oncoprotein production. J Biol Chem. 1993;268(6):6511-6519
    170. Lain M. Evidenced that Bcl-2 represses apoptosis by regulating endoplasmic
    
    reticulum-associated Ca2+ fluxes. Proc Nail Acad Set. USA. 1994;93(8):6569-6573
    171. Ryan JJ. C-myc and Bcl-2 modulated p53 function by altering p53 subcellular trafficking during the cell cycle. Proc Nail Acad Set. USA, 1994;91(14):5878-5882
    172. Hockembery DM, Oltvai ZN, Xiao-ming Y, et al. Bcl-2 function in an antioxidant pathway to prevent apoptosis. Cell. 1993;75(7):241-251
    173. Oltvai ZN, Milliiman CL, Korsmyer SJ. Bcl-2 heterodimerizes in vivo with a conserved homolog, bax, that accelartes programmed cell death. Cell. 1993; 74(23):609-619
    174. Lam M, Dubyak G, Chen L, et al. Evidence that Bcl-2 represes apotosis by regulating endoplasmic reticulum-associated Ca2+ fluxes. Proc Nail Acad Sei. USA. 1994;91(14):6569-6573
    175. Yang E, Korsmeyer SJ. Molecular apoptosis: a discourse on the Bcl-2 family and cell death. Blood. 1996;88:381-401
    176. Oltavi ZN, Milliman CL. Bcl-2 heterodimerizes in vivo with a conserved homolog bax that accelerates programmed cell death. Cell. 1993; 74:609-619
    177. Guillout C. Dissection of the gene programs of p53-mediated G1 growth arrest and appoptosis. Blood. 1995;85(17):2619-2628
    178. Tan S, McAdams M, Royall J, et al. Endothelial injury from a circulating mediator following rat liver ischemia. Free Radic Biol Mid, 1998 24(3): 427
    179. Pell TJ, Baxter GF, Yellon DM, et al. Renal ischemia preconditions myocardium: role of adenosine receptors and ATP-sensitive potassimn channels. Am J P Physiol. 1998;275(5Pt 2):H1542-47
    180.武旭东,徐成斌,刘秀华,et al.老年大鼠小肠缺血预处理对心脏缺血再灌注损伤的影响.中华老年医学杂志.1998;7(3):37-39
    181. Nilsson B, Friman S, Gustafsson BI, et al. Preconditioning protects against ischemia/reperfusion injury of the liver. J Gastrointest Surg. 2000; 4(1): 44-49
    182. Horie Y, WolfR, Chervenak RP, et al. T-lymphocytes contribute to hepatic leukostasis and hypoxic stress induced by gut ischemia-reperfusion. Microcirculation. 1999; 6(4): 267-280
    183.周君琳,凌亦凌.肢体缺血再灌注继发肺损伤的发生机制.国外医学生理、病理科学于临床分册.2000;20(4):332-35
    184. Kimura N, Muraoka R, Horiuchi T, et al. Intermittent hepatic pedicle clamping reduces liver and lung injury. J Surg Res. 1998; 78(1): 11-7
    185. Sankary HN, Chong A, Foster P, et al. Inactivation of Kupffer cells after prolonged donor fasting improves viability of transplanted hepatic allografts. Hepatology. 1995; 22(4 Pt 1): 1236-42
    186.邓美海,区庆嘉,王洪涛,等。腹主动脉阻断导致内脏缺血再灌注损伤的研究。中华实验外科杂志.1997,16(4):317-18
    187. Koksoy C, Kuzu MA, Ergun H, Demirpence E, Zulfikaroglu B. Intestinal ischemia and
    
    reperfusion impairs vasomotor functions of pulmonary vascular bed. Ann-Surg. 2000 Jan; 231(1): 105-11
    188. Gerkin TM, Oldham KT, Guice KS, et al. Intestine ischemia reperfusion injury causes pulmonary endothelial cell ATP depletion[J]. Ann Surg, 1993; 217(1):48-56
    189. Bathe OF, Chow A WC, Phang PT. Splanchnic oringin of cytokines in a porcine model of mesenteric ischemia-reperfution[J].Surgery. 1998;123(1):79-88
    190. Wanner GA, Muller P, Ertel W, et al. Differential effect of cyclooxygenase metabolites on proinflammatory cytokine release by Kupffer cells after liver ischemia and reperfusion. Am J Surg. 1998; 175(2): 146-151
    191. Marzi I, Zhi ZN, Zimmermann FA, et al. Xanthine and hypoxanthine accumulation during storage may contribute to reperfusion injury following liver transplantation in the rat. Transplant Proc. 1989; 21(1 Pt 2): 1319-1320
    192. Lindstrom TD, Hsnssen BK, Bendele AM. Effects of hepatic ischemia/reperfusion injury of the hepatic mixed function oxidase system in rats. Mol Pharmacol. 1990;38(11):829-835
    193. Paterson IS, Klausner BK, Goldman G, et al. Thromboxane-medaites the ischemia-induced neutrophil oxidative burst. Surgery. 1989; 106(21):224-229
    194. Goldstein JM. Progstaglandins, thromboxanes and polymorphonuclear leukocytes, mediation and modulation. Inflammation. 1997;2(5):309-317
    195. Colletti LM, Kunkel SL, Walz A, et al. Chemokine expression during hepatic ischemia/reperfusion-induced lung injury in the rat. The role of epithelial neutrophil activating protein. J Clin Invest. 1995; 95(1): 134-141
    196. Cerra FB, Mcpherson JP, Konstantinides FN, et al. Enteral nutrition does not prevent multiple organ failure syndrom after sepsis. Surgery 1988; 104(4):727-735
    197. Edimiston CE, Condon RE. Bacterial translocatin. Surg Gyn Obst 1991; 173(5):73-81
    198.赵军.五联悉生大鼠的培育和肠道粘膜菌群分析.中国实验动物学杂志.1992;2(1):17-19
    199. Kagnoff MF. Immunology of the intestinal tract. Gastroenterology. 1993 Nov; 105(5): 1275-1283
    200.于勇.IgA在肠道免疫中的作用及其创伤后的改变.国外医学.创伤与外科基本问题分册.1994;15(1):15-17
    201. Alverdy J, Chi HS, Sheldon GF. The effect of parenteral nutrition on gastrointestinal immunity. The importance of enteral stimulation.Ann Surg. 1985 Dec;202(6):681-690
    202. Koo A, Komatsu H, Tao G; et al. Contribution of no-reflow phenomenon to hepatic injury after ischemia-reperfusion: evidence for a role of superoxide anion. Heptology. 1992; 15:507-514
    203. Fabian MA, Canada AT, Coleman LR; et al. Use of tissue blood flow and high energy content to predict small bowel graft survival. Transplant Proc. 1992;24:1088-1101
    204. Mueller AR, Nalesnik M, Rao PN; et al. Small bowel preservation causes primarily
    
    basement membrane and endothelial rather than epithelial cell injury. Transplantation. 1993; 56:1499-1510
    205. Schwarz-B, Salak-N, et al. Intestinal ischemic reperfusion syndrome: pathophysiology, clinical significance, therapy. Wien-Klin-Wochenschr. 1999 Jul 30; 111(14): 539-548
    206.郑江,郑瑞丹,屠伟峰,陈军,肖光夏.大鼠肠道缺血再灌注损伤后肠源性细菌内毒素移位的初步研究[J].第三军医大学学报.2000;22(5):424-426
    207. Hierholzer C, Kalff JC, Audolfsson G, Billiar TR, Tweardy DJ, Bauer AJ. Molecular and functional contractile sequelae of rat intestinal ischemia/reperfusion injury. Transplantation. 1999 Nov 15; 68(9): 1244-1254
    208. Kobayashi E. Graft-versus-host disease after organ transplantation: donor and host factors. Nippon-Geka-Gakkai-Zasshi. 1998 Feb; 99(2): 118-123
    209. Lo CC, Chen JC, Chen HM, Shyr MH, Lau YT, Lin JN, Chen MF. Aminoguanidine attenuates hemodynamic and microcirculatory derangement in rat intestinal ischemia and reperfusion. J-Trauma. 1999 Dec; 47(6): 1108-1113
    210. Pillai SB, Hinman CE, Luquette MH, Nowicki PT, Besner GE. Heparin-binding epidermal growth factor-like growth factor protects rat intestine from ischemia/reperfusion injury. J-Surg-Res. 1999 Dec; 87(2): 225-231
    211. Koltuksuz U, Ozen S, Uz-E, Aydinc M, Karaman A, Gultek A, Akyol O, Gursoy-MH, Aydin-E. Caffeic acid phenethyl ester prevents intestinal reperfusion injury in rats. J-Pediatr-Surg. 1999 Oct; 34(10): 1458-1462
    212. Wolfard A, Vangel R, Szalay L, Kaszaki J, Haulik L, Balogh A, Nagy S, Boros M. Endothelin-A receptor antagonism improves small bowel graft perfusion and structure after ischemia and reperfusion. Transplantation. 1999 Nov 15; 68(9): 1231-1238
    213. Payne D, Kubes P. Nitric oxide donors reduce the rise in reperfusion-induced intestinal mucosal permeability. Am J Physiol 1993; 265(12):G189-198
    214. Andrews FJ. Protection against gastric ischemia-reperfusion injury by nitric oxide generator. Dig Dis Sci. 1994;39(2):366-378
    215. Rubanyi GM, Elena H, Cantor EH, et al. Cytoprotective function of nitric oxide:Inactivation of superoxide radical produced by human leukocytes. Biochem Biophys Res Commun. 1991;181(7):1392-1408
    216. Hutcheson JR, Whittle BJR, Boughton-Smith NK. Role of nitric oxide in maintaining vascular integrity in enditoxin-induced acute intestinal damage in the rat. Br J Pharmacol. 1990; 101(11): 815-828
    217. Wright CE, Rees DD, Moncada S. Protective and pathological roles of nitric oxide in endotoxin shock. Cardiovasc Res. 1992; 26(23): 48-61
    218. Kubes P. Nitric oxide modulates epithelial permeability in the feline small intestine. Am J Physiol. 1992;262(25): G1138-1142
    219. Zingarelli B, Squadrito F, Altavilla D, et al. Evidence for a role of nitric oxide in
    
    hypovolemic hemorrhagic shock. J Cardiovasc Pharmacol. 1992; 19(13):982-996
    220. Rees DD, Palmer RMJ, Moncada S. Role of endothelium derived nitric oxide in the regulation of blood pressure. Proc Natl Acad Sci USA. 1989; 86(3): 3375-3387
    221. RG Fiddian-Green. Hypotension, splachnic hypoxia and arterial acidosis in ICU patients. Circ. Shock. 1987;21(3):326-333
    222. R Saydjari, GI Beerthuizen, CM Townsend, DN Herndon, JC Thompson. Bacterial translocation and its relationship to visceral blood flow, gut mucosal ornithine decarboxylase activity, and DNA in pigs. J Trauma. 1991; 31(13): 639-643
    223. EA Deitch, Q Lu, DZ Xu, RD Specian. Effect of local and systemic burn microenvironment on neutrophil activation as assessed by complement receptor expression and morphology. J Trauma. 1990;30(23):259-268.
    224. MB Grisham, LA Hemandez, DN Granger. Xanthine oxidase and neutrophil infiltration in intestinal ischemia. Am. J. Physiol. (Gastrointest. Liver Physiol. 1987;251(14): G567-G574.
    225. LA Hernandez, MB Grisham, B Twohig, KE Arfors, JM Harlan, DN Granger. Role of neutrophils in ischemia-reperfusion induced microvascular injury. Am. J. Physiol. (Heart Circ. Physiol.) 1987;253(22): H699-H703.
    226.胡森.创伤后多系统器官功能衰竭(MSOF)动物模型的实验研究[J].中华整形烧伤外科杂志.1992;8(1):2-3
    227. B Fontes, FA Moore, EE Moore, K Koike, F Kim, CE Trew, VN Peterson. Gut ischemia induces bone marrow failure and increases risk of infection. J Surg Res. 1994;57(11):505-509.
    228. DL Carden, JA Young, DN Granger. Pulmonary microvascular injury after intestinal ischemia-reperfusion: role of P-selectin. J Appl Physiol. 1993;75(6): 2529-2534.
    229. J Hill, T Lindsay, CR Valeri, D Shepro, B Herbbert, HB Hechtman. A CD18 antibody prevents lung injury but not hypotension after intestinal ischemia-reperfusion. J Appl Physiol. 1993;74(22):659-664.
    230. RS Poggetti, FA Moore, EE Moore, K Koeike, A Banerjee. Simultaneous liver and lung injury following gut ischemia is mediated by xanthine oxidase. J Trauma. 1992;32(a): 723-728.
    231. RS Poggetti, FA Moore, EE Moore, DD Bensard, BO Anderson, A Banerjee. Liver injury is a reversible neutrophilmediated event following gut ischemia. Arch Surg. 1992;127(b):175-179.
    232. Y Horie, R Wolf, J Russell, TP Shanley, DN Granger. Role of Kupffer cells in gut ischemia-reperfusion-induced hepatic microvascular dysfunction in mice. Hepatology. 1997;26(a): 1499-1505.
    233. Y Horie, R Wolf, M Miyasaka, DC Anderson, DN Granger. Leukocyte adhesion and the hepatic microvascular responses to intestinal ischemia-reperfusion. Gastroenterology.
    
    1996;111(12): 666-673.
    234. Y Horie, R Wolf, DC Anderson, DN Granger. Hepatic leukostasis and hypoxic stress in adhesion molecule-deficient mice after gut ischemia-reperfusion. J Clin Invest. 1997;99(b): 781-788.
    235. RH Turnage, KM Kadesky, SI Myers, KS Guice, KT Oldham. Hepatic hypoperfusion after intestinal reperfusion. Surgery. 1996; 119(a): 151-160.
    236. RH Turnage, KS Guice, KT Oldham. The effects of hypovolemJa on multiple organ injury following intestinal reperfusion. Shock. 1996;6(b):408-413
    237. RL Engler, GW Schmid-Schoenbein, RS Pavelec. Leukocyte capillary plugging in myocardial ischemia and reperfusion in the dog. J Am Pathol. 1983; 111 (5):98-111
    238. RJ Korthuis, MB Grisham, DN Granger. Leukocyte depletion attenuates vascular injury in postischemic skeletal muscle. Am J Physiol. (Heart Circ. Physiol). 1988; 254(23):H823-H827.
    239. I Kurose, DC Anderson, M Miyasaka, T Tamatani, JC Paulson, RF Todd, JR Rusche, DN Granger. Molecular determinants of reperfusion-induced leukocyte adhesion and vascular protein leakage. Circ Res. 1994;74(a) 336-343
    240. HA Lehr, A Guhlmann, D Nolte, D Keppler, K Messmer, Leukotrienes as mediators in ischemia-reperfusion injury in a microcirculation model in the hamster. J Clin Invest. 1991; 87(10): 2036-2041
    241. MG Oliver, RD Specian, MA Perry, DN Granger. Morphologic assessment of leukocyteendothelial cell interactions in mesenteric venules subjected to ischemia and repeffusion. Inflammation. 1991; 15(12):331-346.
    242. MS Chintala, V Bemardino, JS Chiu. Cyclic GMP but not cyclic AMP prevents renal platelet accumulation after ischenia reperfusion in anethetized rats. J Pharmacol Exp Ther. 1994;271(7): 1203-1208.
    243. S Kanwar, P Kubes. Mast cells contribute to ischemia-reperfusion- induced granulocyte infiltration and intestinal dysfunction. Am J Physiol. 1994;267(6): G316-G321
    244. H Jaeschke, A Farhood. Neutrophil and Kupffer cell-induced oxidant stress and ischemia/reperfusion injury in rat liver. Am J Physiol. 1991; 260(12): G355-G362
    245. H Jaeschke, AP Bautista, Z Spolarics, JJ Spitzer. Superoxide generation by neutrophils and Kupffer cells during in vivo reperfusion after hepatic ischemia in rats. J Leukoc Biol. 1992;52 (a)377-382
    246. Y Shiratori, H Kiriyama, Y Fukushi, T Nagura, H Takada, K Hai, K Kamii. Modulation of ischemia-reperfusion-induced hepatic injury by Kupffer cells. Dig Diseas Sci. 1994;39(7): 1265-1272
    247. PA Clavien, CA Camargo, R Gorczynski, MK Washington, GA Levy, PD Greig. Acute reactant cytokines and neutrophil adhesion after warm ischemia in cirrhotic and noncirrhotic human livers. Hepatology. 1996;23(5): 1456-1463
    
    
    248. LM Colletti, DG Remick, DG Burtch, SL Kunkel, RM Stricter, DA Campbell. Role of tumor necrosis factor-alpha in the pathophysiologic alterations after hepatic ischemia/reperfusion injury in the rat. J Clin Invest. 1990;85(12): 1936-1943
    249. S Suzuki, LH Toledo-Pereyra, F Rodrigues, F Lopez. Role of Kupffer cells in neutrophil activation and infiltration following total hepatic ischemia and reperfusion. Circ Shock. 1994;42(13):204-209
    250. DN Granger, MB Grisham, PR Kvietys. Mechanisms of microvascular injury. Physiology of Gastrointestinal Tract. 1994;6(8): 1693-1722
    251. M Inoue. Protective mechamism against reactive oxgen species. Biology and Pathobiology. 1994;6(4):443-459
    252. H Jaeschke, AP Bautista, Z polarics, JJ Spitzer. Superoxide generation by neutrophils and Kupffer cells during in vivo reperfusion after hepatic ischemia in rats. J Leukoc Biol. 1992;52(b):377-382
    253. RJ Korthuis, DC Anderson, DN Granger. Role of neutrophil- endothelial cell adhesion in inflammatory disorders. J Crit Care. 1994;9(12):47-71
    254. H Komatsu, A Koo, E Ghadishah, H Zeng, JF Kuhlenkamp, M Inoue, PH Guth, N Kaplowitz. Neutrophil accumulation in ischemic reperfused rat liver: evidence for a role for superoxide free radicals. Am J Physiol. 1992;262(11): G669-G676.
    255. T Minor, W Isselhard. Role of hepatovasculature in free radical mediated reperfusion damage of the liver. Eur Surg Res. 1993;25(14):287-293
    256. F Romani, M Vertemati, M Frangi, P Aseni, R Monti, A Codeghini, L Belli. Effect of superoxide dismutase on liver ischemia-rperfusion injury in the rat: A biochemical monitoring. Eur. Surg. Res. 1988;20(5):335-340
    257. I Kurose, P Kubes, M Suzuki, R Wolf, DC Anderson, J Paulson, M Miyasaka, DN Granger. Inhibition of nitric oxide production mechanisms of vascular albumin leakage. Circ Res. 1993;73(12):164-171
    258. Z Sun, X Wang, X Deng, A Borjesson, R Wallen, E Hallberg, R Andersson. Phagocytic and intestinal endothelial and epithelial barrier function during the early stage of small intestinal ischemia and reperfusion injury. Shock. 2000; 13(6):209-216
    259. Y Yamagishi, Y Horie, S Kato, M Kajihara, H Tamai, H shii. Ethanol modulates gut ischemia/reperfusion-induced hepatic microvascular dysfunction associated liver injury in rats. Gastroenterology. 2000;118(Suppl. 2):A918-926
    260. MG Caty, KS Guice, KT Oldham, DG Remick, SI Kunkel. Evidence for tumor necrosis factor-induced pulmonary microvascular injury after intestinal ischemia-reperfusion injury. Ann Surg. 1990;212(6):694-700
    261. E Haglind, D Wang, AS Klein. Hepatic reticuloendothelial system dysfunction after intestinal ischemia-repeffusion. Shock. 1996;5(14):72-75
    262. S Moncada, RMJ Palmar, EA Higgs. Nitric oxide: physiology, pathophysiology, and
    
    pharmacology. Pharmacol Rev. 1991; 43(11): 109-142.
    263. MW Radomski, RMJ Palmer, S Moncada. Endogenous nitric oxide inhibits human platelet adhesion to vascular endothelium. Lancet. 1987;2(5):1057-1058

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700