受限流体热/动力学性质的分子模拟和密度泛函理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
受限流体的热力学和动力学性质与主体相流体存在着显著差异。本文应用密度泛函理论和分子模拟方法对固体表面、狭缝孔道和ZSM-5分子筛中流体的吸附、相平衡和传递性质进行了研究。
     基于改进的基本度量理论描述的硬球项,对吸引Helmholtz自由能泛函在零主体密度处进行二阶Taylor展开,对相关的Helmholtz自由能泛函采用权重密度近似结合MBWR状态方程表述,提出了一种新的权重密度泛函理论。精确预测了Ar在CO_2固体表面上的薄厚膜转变点、润湿温度和表面临界温度。
     应用GEMC方法研究了具有共沸点的L-J混合流体和CH_4/N_2/CO_2二元体系在狭缝孔道中的相平衡。壁面选择性增加可以使共沸体系的共沸点组成发生严重偏移甚至消失,可以改善体系的汽液相变选择性;孔宽对共沸点组成几乎没有影响但狭缝变窄使体系的相变选择性变差。非选择性狭缝中,壁面势的增强使各CH_4/N_2/CO_2二元体系p-x相图上移、汽化热降低、相变选择性变差且更容易超临界;狭缝变窄在强/弱吸引狭缝中带来不同影响:强吸引狭缝中体系的饱和蒸汽压和汽相密度减小而弱吸引狭缝中恰好相反。修正了吸附热统计方法并对超临界L-J流体在狭缝孔道中的吸附进行了GCMC模拟。结果发现:T*=1.5的L-J流体在吸引狭缝中还会出现汽液相变现象,且狭缝越窄、壁面势越强相变现象越明显。
     采用调整了电荷参数的Compass力场,模拟了NH_3在H-ZSM-5中的吸附和传递性质。吸附等温线和吸附热结果均与实验吻合良好。NH_3的吸附机理为:H~+附近>孔道交叉位置>孔道其它位置。温度升高和浓度增加使NH_3扩散系数变大且均有利于H~+附近的NH_3分子摆脱束缚。
     开发了适用于ZSM-5分子筛的力场并对NH_3和烷烃在H(Ag、Cu)-ZSM-5中的吸附进行了模拟。吸附等温线和吸附热均与实验吻合良好。在H-ZSM-5中,甲烷和乙烷在交叉位置外的孔道中密度略高,吸附热约为NH_3的1/6~1/4。烷烃和NH_3在H-ZSM-5中同时吸附时,烷烃对NH_3吸附的促进作用随碳链增长先加强后减弱直至变为阻碍作用;NH_3的吸附热随烷烃碳链加长和含量增加而变大;NH_3主要吸附在H~+附近,烷烃主要吸附在H~+附近外的孔道中但在之字型孔道中的吸附随碳链加长逐渐减少直至消失。NH_3在Ag(Cu)-ZSM-5中也主要吸附在离子周围,但一个离子可以存在多个吸附区域,即Ag-或Cu-ZSM-5中存在更多的活性位点。
There are significant differences of the thermodynamic and kinetic propertiesbetween the confined and the bulk fluids. In this work, density functional theory andmolecular simulation are used to study the adsorption, phase equilibrium and transportproperties of fluid confined on planar solid, in slit-like pore and in ZSM-5.
     A new weighted density functional theory is proposed based on a modifiedfundamental measure theory for the hard-core repulsion, a second-order Taylorexpansion around zero-bulk-density for attraction, and a correlation term evaluated bythe weighted density approximation combined with Modified Benedict-Webb-Rubinequation of state. For the Ar/CO_2system,the thin-thick film transition,the wettingtemperature and the surface critical temperature are predicted accurately.
     The Gibbs Ensemble Monte Carlo(GEMC) simulation is used to investigate thevapor-liquid phase equilibrium of a binary Lennard-Jones(L-J) mixture with azeotropicpoints and the CH_4/N_2/CO_2binary mixtures. With the enhancement of the wallselectivity, the azeotropic point is shifted drastically and almost disappeared, theselectivity of the vapor-liquid phase equilibrium can be improved. The narrowing of thepore width almost has no influence on the location of the azeotropic point, but causesthe decreasing of the vapor-liquid phase selectivity. In unselectively slit-like pores, thestrengthening of wall-fluid interactions brings the up-shifting of thepressure-composition(p-x) phase diagram and the easier reaching of supercritical statefor each CH_4/N_2/CO_2binary mixture, and it also makes the vaporization enthalpy andthe vapor-liquid phase selectivity decrease. The narrowing of the pore width influenceson the phase behavior of confined mixture in different ways according to the wall-fluidinteractions: the p-x phase diagram shifts up and the density of vapor phase decreases instrong attractive slit-like pores, while that changes inversely in weak attractive slit-likepores. Grand Canonical ensemble Monte Carlo (GCMC) simulations are carried outfor supercritical L-J fluid, with a modified equation for the statistic of adsorptionenthalpy, and it is found that: at a reduced temperature T*1.5, a vapor-liquid phasetransition could be observed, which becomes more apparent with the narrowing of thepore width and the strengthening of the wall-fluid interaction.
     Using Compass force field with charge parameters modified by us, the adsorption and transport properties of NH_3in H-ZSM-5are simulated. The predicted adsorptionisotherm and adsorption enthalpy show good agreements with those from experiment.The mechanism of NH_3adsorption in H-ZSM-5is: locations around H~+>the cross pointsof the pores>other positions of the pores. Both temperature rising and concentrationincreasing make the diffusion coefficient of NH_3increase and are benefit for thebreaking the strong interaction between H~+and NH_3.
     A new force field for ZSM-5has been developed, and the adsorption properties ofNH_3and alkanes in H(Ag,Cu)-ZSM-5are simulated with it. Good agreements areachieved between the simulated adsorption isotherm and adsorption enthalpy andcorresponding experimental data. The adsorption concentration of methane and ethanein pores beyond the cross point is a little higher, and their adsorption enthalpy is about1/6~1/4of that of NH_3. When alkanes and NH_3are adsorbed in H-ZSM-5simultaneously, the promotion of alkanes on the adsorption of NH_3firstly increases andthen decreases as the length of the chains grows. But when the lenght of alkane exceedsheptane, the promotion effect changes into hindrance effect. The lengthening of thecarbon chain and the increasing of the alkane concentration both cause an increasing ofthe adsorption enthalpy of NH_3. The NH_3are mainly adsorbed around H~+, while thealkanes are adsorbed in other positions of the pores and their adsorption in zigzag poresdecreases continuously with the lengthening of carbon chain until disappears. InAg(Cu)-ZSM-5, NH_3are also mainly adsorbed around metal ions. Several locationregions could be found around a metal ions, and it means that there are more active sitesin Ag-or Cu-ZSM-5when compared to that in H-ZSM-5.
引文
[1] Gelb L D, Gubbins K, Radhakrishnan R, et al. Phase separation in confined systems. Reportson Progress in Physics,1999,62(12):1573-1659.
    [2] Nicholson D, Parsonage N G. Computer simulation and the statistical mechanics of adsorption.New York:Academic Press,1982.
    [3] Zarragoicoechea G J, Kuz V A. Critical shift of a confined fluid in a nanopore. Fluid phaseequilibria,2004,220(1):7-9.
    [4] Vishnyakov A, Piotrovskaya E M, Brodskaya E N, et al. Critical properties of Lennard-Jonesfluids in narrow slit-shaped pores. Langmuir,2001,17(14):4451-4458.
    [5] Neimark A V, Ravikovitch P I. Capillary condensation in MMS and pore structurecharacterization. Microporous and Mesoporous Materials,2001,44:697-707.
    [6] Peng Bo, Yu Yangxin. A density functional theory with a mean-field weight function:applications to surface tension, adsorption, and phase transition of a lennard-jones fluid in aslit-like pore. Journal of Physical Chemistry B,2008,112(48):15407-15416.
    [7] Miyata T, Endo A, Yamamoto T, et al. Gibbs ensemble Monte Carlo simulation of LJ fluid incylindrical pore with energetically heterogeneous surface. Molecular Simulation,2004,30(6):353-359.
    [8] Hohenberg P, Kohn W. Inhomogeneous electron gas. Phys. Rev,1964,136(3B): B864-B871.
    [9] Saam W, Ebner C. Density-functional theory of classical systems. Physical Review A,1977,15:2566-2568.
    [10] Ebner C, Saam W, Stroud D. Density-functional theory of simple classical fluids. I. Surfaces.Physical Review A,1976,14(6):2264.
    [11] Yang A J M, Fleming P D, Gibbs J H. Molecular theory of surface tension. The Journal ofchemical physics,1976,64:3732.
    [12] Rowlinson J S, Widom B. Molecular theory of capillarity. New York: Dover Publications,2002.
    [13] Evans R. The nature of the liquid-vapour interface and other topics in the statistical mechanicsof non-uniform, classical fluids. Advances in physics,1979,28:143-200.
    [14] Fleming P D, Yang A J M, Gibbs J H. A molecular theory of interfacial phenomena inmulticomponent systems. The Journal of chemical physics,1976,65:7.
    [15] Bongiorno V, Scriven L, Davis H. Molecular theory of fluid interfaces. Journal of Colloid andInterface Science,1976,57(3):462-475.
    [16] Oxtoby D W, Haymet A. A molecular theory of the solid-liquid interface. II. Study of bcccrystal-melt interfaces. The Journal of chemical physics,1982,76(12):6262-6272.
    [17] Ramakrishnan T, Yussouff M. First-principles order-parameter theory of freezing. PhysicalReview B,1979,19(5):2775.
    [18] Rosenfeld Y. Free-energy model for the inhomogeneous hard-sphere fluid mixture anddensity-functional theory of freezing. Physical review letters,1989,63(9):980-983.
    [19] Curtin W, Ashcroft N. Density-functional theory and freezing of simple liquids. Physicalreview letters,1986,56(26):2775-2778.
    [20] Tarazona P. Free-energy density functional for hard spheres. Physical Review A,1985,31(4):2672.
    [21] Nordholm S, Haymet A. Generalized van der Waals theory. I. Basic formulation andapplication to uniform fluids. Australian Journal of Chemistry,1980,33(9):2013-2027.
    [22] Tarazona P, Evans R. A simple density functional theory for inhomogeneous liquids.Molecular Physics,1984,52(4):847-857.
    [23] Curtin W, Ashcroft N. Weighted-density-functional theory of inhomogeneous liquids and thefreezing transition. Physical Review A,1985,32(5):2909.
    [24] Meister T, Kroll D. Density-functional theory for inhomogeneous fluids: Application towetting. Physical Review A,1985,31(6):4055.
    [25] Groot R, Van der Eerden J. Renormalized density-functional theory for inhomogeneousliquids. Physical Review A,1987,36(9):4356.
    [26] Percus J. One-dimensional classical fluid with nearest-neighbor interaction in arbitraryexternal field. Journal of Statistical Physics,1982,28(1):67-81.
    [27] Kierlik E, Rosinberg M. Free-energy density functional for the inhomogeneous hard-spherefluid: Application to interfacial adsorption. Physical Review A,1990,42(6):3382.
    [28] Phan S, Kierlik E, Rosinberg M, et al. Equivalence of two free-energy models for theinhomogeneous hard-sphere fluid. Physical Review E,1993,48(1):618.
    [29] Yu Yangxin, Wu Jianzhong. Structures of hard-sphere fluids from a modifiedfundamental-measure theory. The Journal of chemical physics,2002,117:10156.
    [30] Tarazona P. Fundamental measure theory and dimensional interpolation for the hard spheresfluid. Physica A: Statistical Mechanics and its Applications,2002,306:243-250.
    [31] Tarazona P. Density functional for hard sphere crystals: A fundamental measure approach.Physical review letters,2000,84(4):694-697.
    [32] Wadewitz T, Winkelmann J. Articles-surfaces, interfaces, and materials-application of densityfunctional perturbation theory to pure fluid liquid-vapor interfaces. Journal of ChemicalPhysics,2000,113(6):2447-2455.
    [33] Winkelmann J. The liquid-vapour interface of pure fluids and mixtures: application ofcomputer simulation and density functional theory. Journal of Physics: Condensed Matter,2001,13:4739-4768.
    [34] Frenkel D, Smit B. Understanding molecular simulation: from algorithms to applications.California: Academic Press,2002.
    [35] Panagiotopoulos A. Direct determination of phase coexistence properties of fluids by MonteCarlo simulation in a new ensemble. Molecular Physics,1987,61(4):813-826.
    [36] Alder B, Wainwright T. Molecular dynamics by electronic computers. Transport Processes inStatistical Mechanics, ed. I. Prigogine,1958:97-131.
    [37] Andersen H C. Molecular dynamics simulations at constant pressure and/or temperature. TheJournal of chemical physics,1980,72:2384.
    [38] Nose S. A molecular dynamics method for simulations in the canonical ensemble. MolecularPhysics,1984,50(2):255-268.
    [39] Nose S, Klein M. Constant pressure molecular dynamics for molecular systems. MolecularPhysics,1983,50(5):1055-1076.
    [40] Kresge C, Leonowicz M,Roth W, et al. Ordered mesoporous molecular sieves synthesized bya liquid-crystal template mechanism. Nature,1992,359(6397):710-712.
    [41] Beck J, Vartuli J, Roth W, et al. A new family of mesoporous molecular sieves prepared withliquid crystal templates. Journal of the American Chemical Society,1992,114(27):10834-10843.
    [42] Cahn J W. Critical point wetting. The Journal of chemical physics,1977,66(8):3667-3672.
    [43] Ebner C, Saam W. New phase-transition phenomena in thin argon films. Physical reviewletters,1977,38(25):1486-1489.
    [44] Sullivan D E, Telo da Gama M M. Fluid Interfacial Phenomena. New York: Willey,1986.
    [45] Dietrich S. In phase transitions and critical phenomena. New York: Academic Press,1988.
    [46] Freasier B, Nordholm S. The generalized van der Waals theory of wetting; non-local entropyand oscillatory structures. Molecular Physics,1985,54(1):33-54.
    [47] van Swol F, Henderson J. Wetting and drying transitions at a fluid-wall interface:Density-functional theory versus computer simulation. Physical Review A,1989,40(5):2567.
    [48] Bruno E, Caccamo C, Tarazona P. Wetting transitions for the Ar/CO2interface:Modified-hypernetted-chain and density-functional-theory results. Physical Review A,1987,35(3):1210.
    [49] Velasco E, Tarazona P. Wetting and drying at a solid-fluid interface. The Journal of chemicalphysics,1989,91(12):7916-7924.
    [50] Velasco E, Tarazona P. Comment on“Prewetting at a solid-fluid interface via Monte Carlosimulation”. Physical Review A,1990,42:2454-2457.
    [51] Ancilotto F, Toigo F. First-order wetting transitions of neon on solid CO from densityfunctional calculations. The Journal of chemical physics,2000,112(10):4768-4772.
    [52] Sweatman M. Weighted density-functional theory for simple fluids: Prewetting of aLennard-Jones fluid. Physical Review E,2001,65(1):011102.
    [53] Snook I, Van Megen W. Solvation forces in simple dense fluids. I. The Journal of chemicalphysics,1980,72(5):2907-2913.
    [54] Van Megen W, Snook I. Solvation forces in simple dense fluids. II. Effect of chemicalpotential. The Journal of chemical physics,1981,74(2):1409-1412.
    [55] Nitra T, Nozawa M, Hishikawa Y. Monte Carlo simulation of adsorption of gases incarbonaceous slitlike pores. Journal of chemical engineering of Japan,1993,26(3):266-272.
    [56] Jiang S, Rhykerd C, Gubbins K. Layering, freezing transitions, capillary condensation anddiffusion of methane in slit carbon pores. Molecular Physics,1993,79(2):373-391.
    [57] Matranga K R, Myers A L, Glandt E D. Storage of natural gas by adsorption on activatedcarbon. Chem Eng Sci,1992,47(7):1569-1579.
    [58] Cao Dapeng, Wang Wenchuan. Grand canonical ensemble Monte Carlo simulation fordetermination of pore size of activated carbon. Chemical Journal of ChineseUniversities-Chinese,2002,23(5):910-914.
    [59]曹达鹏,高广图,汪文川.巨正则系综Monte Carlo方法模拟甲烷在活性炭孔中的吸附存储.化工学报,2000,51(01):23-30.
    [60] Ravikovitch P I, Vishnyakov A, Russo R, et al. Unified approach to pore size characterizationof microporous carbonaceous materials from N2, Ar, and CO2adsorption isotherms. Langmuir,2000,16(5):2311-2320.
    [61] Feng-Qi You, Yang-Xin Yu, Guang-Hua Gao. Structures and adsorption of binary hard-coreYukawa mixtures in a slitlike pore: grand canonical Monte Carlo simulation anddensity-functional study. Journal of Chemical Physics,2005, vol.123, no.11:114705.
    [62] Finn J, Monson P. Monte Carlo studies of selective adsorption on solid surfaces: adsorptionfrom vapour mixtures. Molecular Physics,1991,72(3):661-678.
    [63] Cracknell R F, Nicholson D, Quirke N. Grand canonical Monte-Carlo study of Lennard-Jonesmixtures in slit pores;2: Mixtures of two centre ethane with methane. Molecular Simulation,1994,13(3):161-175.
    [64] McGrother S C, Gubbins K E. Constant pressure Gibbs ensemble Monte Carlo simulations ofadsorption into narrow pores. Molecular Physics,1999,97(8):955-965.
    [65] Magda J, Tirrell M, Davis H. Molecular dynamics of narrow, liquid-filled pores. The Journalof chemical physics,1985,83(4):1888-1902.
    [66] Sokolowski S, Fischer J. Lennard-Jones mixtures in slit-like pores: a comparison ofsimulation and density-functional theory. Molecular Physics,1990,71(2):393-412.
    [67] Peterson B, Gubbins K. Phase transitions in a cylindrical pore. Molecular Physics,1987,62(1):215-226.
    [68] Panagiotopoulos A. Adsorption and capillary condensation of fluids in cylindrical pores byMonte Carlo simulation in the Gibbs ensemble. Molecular Physics,1987,62(3):701-719.
    [69] Peterson B K, Heffelfinger G S, Gubbins K E, et al. Layering transitions in cylindrical pores.The Journal of chemical physics,1990,93(1):679-685.
    [70] Maddox M, Gubbins K. Molecular simulation of fluid adsorption in buckytubes and MCM-41.International journal of thermophysics,1994,15(6):1115-1123.
    [71] Maddox M, Olivier J, Gubbins K. Characterization of MCM-41using molecular simulation:heterogeneity effects. Langmuir,1997,13(6):1737-1745.
    [72] Gelb L D, Gubbins K. Pore size distributions in porous glasses: a computer simulation study.Langmuir,1999,15(2):305-308.
    [73] Ravikovitch P I, Vishnyakov A, Neimark A V. Density functional theories and molecularsimulations of adsorption and phase transitions in nanopores. Physical Review E,2001,64(1):011602.
    [74] Neimark A V, Ravikovitch P I, Vishnyakov A. Adsorption hysteresis in nanopores. PhysicalReview E,2000,62(2):1493-1496.
    [75] Vishnyakov A, Neimark A V. Monte Carlo simulation test of pore blocking effects. Langmuir,2003,19(8):3240-3247.
    [76] Lan Jianhui, Cheng Daojian, Cao Dapeng, et al. Silicon nanotube as a promising candidate forhydrogen storage: From the first principle calculations to grand canonical Monte Carlosimulations. The Journal of Physical Chemistry C,2008,112(14):5598-5604.
    [77] Papadopoulou A, Van Swol F, Marconi U M B. Pore-end effects on adsorption hysteresis incylindrical and slitlike pores. The Journal of chemical physics,1992,97(9):6942-6952.
    [78] Votyakov E, Tovbin Y K, MacElroy J, et al. A theoretical study of the phase diagrams ofsimple fluids confined within narrow pores. Langmuir,1999,15(18):5713-5721.
    [79] Heffelfinger G, van Swol F, Gubbins K. Liquid-vapour coexistence in a cylindrical pore.Molecular Physics,1987,61(6):1381-1390.
    [80] Heffelfinger G S, van Swol F, Gubbins K E. Adsorption hysteresis in narrow pores. TheJournal of chemical physics,1988,89(8):5202-5205.
    [81] Coasne B, Pellenq R J M. Grand canonical Monte Carlo simulation of argon adsorption at thesurface of silica nanopores: Effect of pore size, pore morphology, and surface roughness. TheJournal of chemical physics,2004,120(6):2913-2922.
    [82] Puibasset J. Capillary condensation in a geometrically and a chemically heterogeneous pore:A molecular simulation study. The Journal of Physical Chemistry B,2005,109(10):4700-4706.
    [83] Puibasset J. Thermodynamic characterization of fluids confined in heterogeneous pores bymonte carlo simulations in the grand canonical and the isobaric-isothermal ensembles. TheJournal of Physical Chemistry B,2005,109(16):8185-8194.
    [84] Puibasset J. Generalized isobaricaisothermal ensemble: application to capillary condensationand cavitation in heterogeneous nanopores. Molecular Physics,2006,104(19):3021-3032.
    [85] Puibasset J. Influence of surface chemical heterogeneities on adsorption/desorption hysteresisand coexistence diagram of metastable states within cylindrical pores. The Journal ofchemical physics,2006,125(7):074707.
    [86] Tan Z, Gubbins K E. Adsorption in carbon micropores at supercritical temperatures. Journalof Physical Chemistry,1990,94(15):6061-6069.
    [87] Aoshima M, Suzuki T, Kaneko K. Molecular association-mediated micropore filling ofsupercritical Xe in a graphite slit pore by grand canonical Monte Carlo simulation. ChemicalPhysics Letters,1999,310(1-2):1-7.
    [88] Zhou Jian, Wang Wenchuan. Adsorption and diffusion of supercritical carbon dioxide in slitpores. Langmuir,2000,16(21):8063-8070.
    [89]刘丽丽.超临界流体在多孔膜中的渗透[硕士学位论文].天津:天津大学,2004.
    [90] Kofke D A. Direct evaluation of phase coexistence by molecular simulation via integrationalong the saturation line. The Journal of chemical physics,1993,98(5):4149-4162.
    [91] Kofke D. Gibbs-Duhem integration: a new method for direct evaluation of phase coexistenceby molecular simulation. Molecular Physics,1993,78(6):1331-1336.
    [92] Mehta M, Kofke D. Molecular simulation in a pseudo grand canonical ensemble. MolecularPhysics,1995,86(1):139-147.
    [93] Wilding N B. Critical end point behavior in a binary fluid mixture. Physical Review E,1997,55(6):6624-6631.
    [94] Potoff J J, Panagiotopoulos A Z. Critical point and phase behavior of the pure fluid and aLennard-Jones mixture. The Journal of chemical physics,1998,109(24):10914.
    [95] Valleau J. Density-scaling: a new Monte Carlo technique in statistical mechanics. Journal ofComputational Physics,1991,96(1):193-216.
    [96] Moller D, Fischer J. Vapour liquid equilibrium of a pure fluid from test particle method incombination with NpT molecular dynamics simulations. Molecular Physics,1990,69(3):463-473.
    [97] Vrabec J, Lotfi A, Fischer J. Vapour liquid equilibria of Lennard-Jones model mixtures fromthe NPT plus test particle method. Fluid phase equilibria,1995,112(2):173-197.
    [98] Fitzgerald M, Picard R, Silver R. Canonical transition probabilities for adaptive Metropolissimulation. Europhysics Letters,1999,46(3):282-287.
    [99] Fitzgerald M, Picard R, Silver R. Monte Carlo transition dynamics and variance reduction.Journal of Statistical Physics,2000,98(1):321-345.
    [100] Shen V K, Errington J R. Determination of fluid-phase behavior using transition-matrixMonte Carlo: Binary Lennard-Jones mixtures. The Journal of chemical physics,2005,122(6):064508.
    [101] Schoen M, Rhykerd C L, Cushman J H, et al. Slit-pore sorption isotherms by thegrand-canonical monte-carlo method-manifestations of hysteresis. molecular physics,1989,66(6):1171-1182.
    [102] Kierlik E, Fan Y, Monson P, et al. Liquid-liquid equilibrium in a slit pore: Monte Carlosimulation and mean field density functional theory. The Journal of chemical physics,1995,102:3712.
    [103] Coasne B, Pellenq R J M. A grand canonical Monte Carlo study of capillary condensation inmesoporous media: Effect of the pore morphology and topology. The Journal of chemicalphysics,2004,121:3767.
    [104] Do D, Do H. Effects of potential models in the vapor-liquid equilibria and adsorption ofsimple gases on graphitized thermal carbon black. Fluid Phase Equilibria,2005,236(1-2):169-177.
    [105] Evans R, Marconi U M B, Tarazona P. Capillary condensation and adsorption in cylindricaland slit-like pores. Chem. Soc. Faraday Trans. II,1986,82:1763-1787.
    [106] Lastoskie C, Gubbins K E, Quirke N. Pore size heterogeneity and the carbon slit pore: adensity functional theory model. Langmuir,1993,9(10):2693-2702.
    [107] Tan Z, Swol F, Gubbins K. Lennard-Jones mixtures in cylindrical pores. Molecular Physics,1987,62(5):1213-1224.
    [108] Kozak E, Soko owski S. Wetting transitions and capillary condensation in slit-like pores:comparison of simulation and density functional theory. Journal of the Chemical Society,Faraday Transactions,1991,87(20):3415-3422.
    [109] Ravikovitch P I, Neimark A V. Density functional theory model of adsorption on amorphousand microporous silica materials. Langmuir,2006,22(26):11171-11179.
    [110] Ravikovitch P I, Haller G L, Neimark A V. Density functional theory model for calculatingpore size distributions: pore structure of nanoporous catalysts. Advances in colloid andinterface science,1998,76:203-226.
    [111] Neimark A V, Ravikovitch P I, Grun M, et al. Pore size analysis of MCM-41type adsorbentsby means of nitrogen and argon adsorption. Journal of Colloid and Interface Science,1998,207(1):159-169.
    [112] Kornev K G, Shingareva I K, Neimark A V. Capillary condensation as a morphologicaltransition. Advances in colloid and interface science,2002,96(1-3):143-167.
    [113] Zhang Xianren, Cao Dapeng, Wang Wenchuan. The effect of discrete attractive fluid-wallinteraction potentials on adsorption isotherms of Lennard-Jones fluid in cylindrical pores. TheJournal of chemical physics,2003,119(23):12586-12592.
    [114] Zhang Xianren, Wang Wenchuan, Chen Jianfeng, et al. Characterization of a sample ofsingle-walled carbon nanotube array by nitrogen adsorption isotherm and density functionaltheory. Langmuir,2003,19(15):6088-6096.
    [115] Bucior K, Patrykiejew A, Pizio O, et al. Capillary condensation of a binary mixture in slit-likepores. Journal of Colloid and Interface Science,2003,259(2):209-222.
    [116] Bucior K. Capillary condensation of a model binary mixture in slit-like pores. Colloids andSurfaces a-physicochemical and engineering aspects,2003,219(1-3):113-124.
    [117] Bucior K. Capillary condensation of a model binary mixture in slit-like pores with differentlyadsorbing walls. Colloids and Surfaces a-physicochemical and engineering aspects,2004,243(1-3):105-115.
    [118] Peng B, Yu Y X. A density functional theory for lennard-jones fluids in cylindrical pores andits applications to adsorption of nitrogen on MCM-41materials. Langmuir,2008,24(21):12431-12439.
    [119] Smit B. Phase-diagrams of Lennard-Jones fluids. Journal of Chemical Physics,1992,96(11):8639-8640.
    [120] Chen B, Siepmann J I, Klein M L. Direct Gibbs ensemble Monte Carlo simulations forsolid-vapor phase equilibria: Applications to Lennard-Jonesium and carbon dioxide. Journalof Physical Chemistry B,2001,105(40):9840-9848.
    [121] Vega L, de Miguel E, Rull L F, et al. Phase equilibria and critical behavior of square-wellfluids of variable width by Gibbs ensemble Monte Carlo simulation. The Journal of chemicalphysics,1992,96(3):2296-2305.
    [122] Green D G, Jackson G, Demiguel E, et al. Vapor-liquid and liquid-liquid phase-equilibria ofmixtures containing square-well molecules by gibbs ensemble monte-carlo simulation.Journal of Chemical Physics,1994,101(4):3190-3204.
    [123] Benavides A L, Lago S, Garzon B, et al. Liquid-vapour equilibrium of multipolar square-wellfluids. Gibbs ensemble simulations and equation of state. Molecular Physics,2005,103(24):3243-3251.
    [124] Liu H J, Garde S, Kumar S. Direct determination of phase behavior of square-well fluids.Journal of Chemical Physics,2005,123(17).
    [125] Rudisill E N, Cummings P T. Gibbs ensemble simulation of phase-equilibrium in thehard-core2-yukawa fluid model for the lennard-jones fluid. Molecular Physics,1989,68(3):629-635.
    [126] Lomba E, Almarza N G. Role of the interaction range in the shaping of phase-diagrams insimple fluids-the hard-sphere yukawa fluid as a case-study. Journal of Chemical Physics,1994,100(11):8367-8372.
    [127] Kristof T, Boda D, Liszi J, et al. Vapour-liquid equilibrium of the charged Yukawa fluid fromGibbs ensemble Monte Carlo simulations and the mean spherical approximation. MolecularPhysics,2003,101(11):1611-1616.
    [128] Kristof T, Boda D, Henderson D. Phase separation in mixtures of Yukawa and chargedYukawa particles from Gibbs ensemble Monte Carlo simulations and the mean sphericalapproximation. Journal of Chemical Physics,2004,120(6):2846-2850.
    [129] Caillol J M. A monte-carlo study of the liquid-vapor coexistence of charged hard-spheres.Journal of Chemical Physics1994,100(3):2161-2169.
    [130] Freitas F, Fernandes F, Cabral b. vapor-liquid-equilibrium and structure of methyl-iodideliquid. Journal of Physical Chemistry,1995,99(14):5180-5186.
    [131] Cui S T, Cummings P T, Cochran H D. Configurational bias Gibbs ensemble Monte Carlosimulation of vapor-liquid equilibria of linear and short-branched alkanes. Fluid PhaseEquilibria,1997,141(1-2):45-61.
    [132] Liu A P, Beck T L. Vapor-liquid equilibria of binary and ternary mixtures containing methane,ethane, and carbon dioxide from Gibbs ensemble simulations. Journal of Physical ChemistryB,1998,102(39):7627-7631.
    [133] Siepmann J I, Martin M G. Influence of semifluorinated alkanes on the solubility of alkanes inperfluoroalkanes: A Gibbs-ensemble Monte Carlo study. Abstracts of Papers of the AmericanChemical Society,1998,215(1):162.
    [134] Neubauer B, Boutin A, Tavitian B, et al. Gibbs ensemble simulations of vapour-liquid phaseequilibria of cyclic alkanes. Molecular Physics,1999,97(6):769-776.
    [135] Neubauer B, Delhommelle J, Boutin A, et al. Monte Carlo simulations of squalane in theGibbs ensemble. Fluid Phase Equilibria,1999,155(2):167-176.
    [136] Kettler M, Vortler H L, Nezbeda I, et al. Coexistence properties of higher n-alkanes modelledas Kihara fluids: Gibbs ensemble simulations. Fluid Phase Equilibria,2001,181(1-2):83-94.
    [137] Zhang Zhigang, Duan Zhenhao. Phase equilibria of the system methane-ethane fromtemperature scaling Gibbs Ensemble Monte Carlo simulation. Geochimica et CosmochimicaActa,2002,66(19):3431-3439.
    [138] Carrero-Mantilla J, Llano-Restrepo M. Vapor-liquid equilibria of the binary mixtures nitrogenplus methane, nitrogen plus ethane and nitrogen plus carbon dioxide, and the ternary mixturenitrogen plus methane plus ethane from Gibbs-ensemble molecular simulation. Fluid PhaseEquilibria,2003,208(1-2):155-169.
    [139] Chang J, Sandler S I. Interatomic Lennard-Jones potentials of linear and branched alkanescalibrated by Gibbs ensemble simulations for vapor-liquid equilibria. Journal of ChemicalPhysics,2004,121(15):7474-7483.
    [140] Duan Z H, Moller N, Weare J H. Gibbs ensemble simulations of vapor/liquid equilibriumusing the flexible RWK2water potential. Journal of Physical Chemistry B,2004,108(52):20303-20309.
    [141] Lu B, Denton A R. Phase separation of charge-stabilized colloids: A Gibbs ensemble MonteCarlo simulation study. Physical Review E,2007,75(61).
    [142] Smith W R, Vortler H L. Monte Carlo simulation of fluid phase equilibria in pore systems:square-well fluid distributed over a bulk and a slit-pore. Chemical Physics Letters,1996,249(5-6):470-475.
    [143] Gozdz W T, Gubbins K, Panagiotopoulos A. Liquid-liquid phase transitions in pores.Molecular Physics,1995,84(5):825-834.
    [144] Olson D, Kokotailo G, Lawton S, et al. Crystal structure and structure-related properties ofZSM-5. The Journal of Physical Chemistry,1981,85(15):2238-2243.
    [145] Kokotailo G, Lawton S, Olson D. Structure of synthetic zeolite ZSM-5. Nature,1978,272:437-438.
    [146]于洪,刘慷.选择性催化还原烟气脱硝技术在玉环电厂4×1000MW机组上的应用.电力环境保护,2009,(003):1-3.
    [147] Devadas M. Selective catalytic reduction (SCR) of nitrogen oxides with ammonia overFe-ZSM5[D]. Germany: University Erlangen-Nürenberg Chem. Eng,2006.
    [148] Vetrivel R, Catlow C R A, Colbourn E A. Non-empirical quantum-chemical calculations onZSM-5zeolites I. Bronsted acid sites. Proceedings of the Royal Society of London. A.Mathematical and Physical Sciences,1988,417(1852):81.
    [149] Redondo A, Hay P J. Quantum chemical studies of acid sites in zeolite ZSM-5. The Journal ofPhysical Chemistry,1993,97(45):11754-11761.
    [150] Barone G, Casella G, Giuffrida S, et al. H-ZSM-5modified zeolite: Quantum chemical modelsof acidic sites. The Journal of Physical Chemistry C,2007,111(35):13033-13043.
    [151] Chatterjee A, Chandra A K. Fe and B substitution in ZSM-5zeolites: A quantum-mechanicalstudy. Journal of Molecular Catalysis A: Chemical,1997,119(1-3):51-56.
    [152] Franke M E, Sierka M, Simon U, et al. Translational proton motion in zeolite H-ZSM-5.Energy barriers and jump rates from DFT calculations. Physical Chemistry Chemical Physics,2002,4(20):5207-5216.
    [153] i Gallo V B, i Roure M S. Modelling of adsorption and catalytic processes in H+and Cu+exchanged ZSM-5and CHA zeolites.2003.
    [154] Broclawik E, Datka J, Gil B, et al. The interaction of CO, N2and NO with Cu cations inZSM-5: quantum chemical description and IR study. Topics in Catalysis,2000,11(1):335-341.
    [155] Guo Xiangdan, Huang Shiping, Teng Jiawei, et al. Adsorption of isobutene on Na(n)ZSM-5type zeolite with various Si/Al ratios: Molecular simulation study. Chinese J Chem,2005,23(12):1593-1599.
    [156] Guo Xiangdan, Huang Shiping, Teng Jiawei, et al. Study on the adsorption of water onNa(n)ZSM-5type zeolite: Molecular simulation. Acta Phys-Chim Sin,2006,22(3):270-274.
    [157]李健博.几种气体在ZSM-5分子筛上吸附的模拟与实验研究[硕士学位论文].天津:天津大学,2007.
    [158] Hu Yukun, Ding Jing, Peng Xiaofeng, et al. Molecular simulation of characteristics for wateradsorption on ZSM-5type zeolite doped by lithium ion. Journal of the Chinese CeramicSociety,2007:1247-52.
    [159] Chen Xiaoming, Huang Shiping, Wang Wenchuan. Adsorption of benzene-ethylene alkylationsystem in ZSM-5under supercritical condition by molecular simulation. Acta Chim Sinica,2004,62(17):1653-1657.
    [160] Chen Xiaoming, Huang Shiping, Cao Dapeng, et al. Optimal feed ratio of benzene-propylenebinary mixtures for alkylation in ZSM-5by molecular simulation. Fluid Phase Equilibria,2007,260:146-152.
    [161]丁静,胡玉坤,杨晓西,等.水在ZSM-5型分子筛中吸附的Monte Carlo模拟.化工学报,2008,(09):2276-2282.
    [162]刘秀英,王朝阳,唐永建,等.烷烃在ZSM-5型分子筛中吸附的蒙特卡罗模拟.四川大学学报(自然科学版),2008,(05):1217-1220.
    [163] Sethia G, Pillai R S, Dangi G P, et al. Sorption of methane, nitrogen, oxygen, and argon inZSM-5with different SiO2/Al2O3ratios: Grand canonical monte carlo simulation andvolumetric measurements. Industrial&Engineering Chemistry Research,2010,49(5):2353-2362.
    [164] Ahunbay M G. Molecular simulation of adsorption and diffusion of chlorinated alkenes inZSM-5zeolites. Journal of Chemical Physics,2007,127(4):044707.
    [165] Takaba H, Koshita R, Mizukami K, et al. Molecular dynamics simulation of iso-and n-butanepermeations through a ZSM-5type silicalite membrane. Journal of Membrane Science,1997,134(1):127-139.
    [166] Inui T, Nakazaki Y. Simulation of dynamic behaviors of benzene and toluene inside the poresof zsm-5zeolite. Zeolites,1991,11(5):434-437.
    [167] Jianfen F, van de Graaf B, Xiao H M, et al. Molecular dynamics simulation of ethenediffusion in MFI and H-Al-ZSM-5. Journal of Molecular Structure: THEOCHEM,1999,492:133-142.
    [168] Zhang Y, Furukawa S, Nitta T. Computer simulation studies on gas permeation of propane andpropylene across ZSM-5membranes by a non-equilibrium molecular dynamics technique.Sep Purif Technol,2003,32(1-3):215-221.
    [169] Bonn D, Eggers J, Indekeu J, et al. Wetting and spreading. Reviews of Modern Physics,2009,81(2):739-805.
    [170] Nakanishi H, Fisher M E. Multicriticality of wetting, prewetting, and surface transitions.Physical review letters,1982,49(21):1565-1568.
    [171] Finn J, Monson P. Prewetting at a fluid-solid interface via Monte Carlo simulation. PhysicalReview A,1989,39(12):6402-6408.
    [172] Johnson J K, Zollweg J A, Gubbins K E. The Lennard-Jones equation of state revisited.Molecular Physics,1993,78(3):591-618.
    [173] Yu Yangxin. A novel weighted density functional theory for adsorption, fluid-solid interfacialtension, and disjoining properties of simple liquid films on planar solid surfaces. The Journalof chemical physics,2009,131(2):024704.
    [174] Yu Yangxin, Wu Jianzhong, Xin Yuxuan, et al. Structures and correlation functions ofmulticomponent and polydisperse hard-sphere mixtures from a density functional theory. TheJournal of chemical physics,2004,121(3):1535-1541.
    [175] Cotterman R, Schwarz B, Prausnitz J. Molecular thermodynamics for fluids at low and highdensities. Part I: Pure fluids containing small or large molecules. AIChE journal,1986,32(11):1787-1798.
    [176] Yu Yangxin, Wu Jianzhong, You Fengqi, et al. A self-consistent theory for the inter-andintramolecular correlation functions of a hard-sphere-yukawa-chain fluids. Chinese PhysicsLetters,2005,22:246-249.
    [177] Carnahan N F, Starling K E. Equation of state for nonattracting rigid spheres. The Journal ofchemical physics,1969,51(2):635-636.
    [178] Fan Y, Monson P. Further studies of prewetting transitions via Monte Carlo simulation. TheJournal of chemical physics,1993,99(9):6897-6906.
    [179] Mistura G, Ancilotto F, Bruschi L, et al. Wetting of argon on CO2. Physical review letters,1999,82(4):795-798.
    [180] Heuberger M, Z ch M, Spencer N D. Density fluctuations under confinement: When is a fluidnot a fluid?. Science,2001,292(5518):905.
    [181] Puibasset J. Phase coexistence in heterogeneous porous media: A new extension to Gibbsensemble Monte Carlo simulation method. The Journal of chemical physics,2005,122:134710.
    [182] Hamada Y, Koga K, Tanaka H. Phase equilibria and interfacial tension of fluids confined innarrow pores. The Journal of chemical physics,2007,127:084908.
    [183] Kowalczyk P, Holyst R. Efficient adsorption of super greenhouse gas (tetrafluoromethane) incarbon nanotubes. Environmental science&technology,2008,42(8):2931-2936.
    [184]孔瑛,吴庸烈.膜蒸馏分离甲酸―水共沸混合物.应用化学,1993,10(002):35-37.
    [185] Binning R C, James F E. Permeation. A new commercial separation tool. Petrolum Refiner,1958,39:214.
    [186]夏德万,张强,施艳荞,等.渗透汽化膜分离研究的新进展.高分子通报,2007,(009):1-8.
    [187] Shieh J J, Huang R Y M. A pseudophase-change solution-diffusion model for pervaporation.II. Binary mixture permeation. Separation science and technology,1998,33(7):933-958.
    [188] Petropoulos J. Quantitative analysis of gaseous diffusion in glassy polymers. Journal ofPolymer Science Part A2: Polymer Physics,1970,8(10):1797-1801.
    [189] Harismiadis V, Vorholz J, Panagiotopoulos A. Efficient pressure estimation in molecularsimulations without evaluating the virial. J. chem. Phys,1996,105:8469-8470.
    [190] Vortler H L, Smith W R. Computer simulation studies of a square-well fluid in a slit pore.Spreading pressure and vapor-liquid phase equilibria using the virtual-parameter-variationmethod. The Journal of chemical physics,2000,112:5168-5174.
    [191] Panagiotopoulos A, Quirke N,Stapleton M, et al. Phase-eqilibria by simulation in the Gibbsensemble-Alternative derivation, generalization and application to mixture and membraneequilibria. Molecular Physics,1988,63(4):527-545.
    [192] Mehta M, Kofke D A. Coexistence diagrams of mixtures by molecular simulation. Chemicalengineering science,1994,49(16):2633-2645.
    [193]陈庆龄,钱伯章.天然气化工发展现状.现代化工,2002,22(005):1-4.
    [194] Xiao Y, Low BT, Hosseini S S, et al. The strategies of molecular architecture and modificationof polyimide-based membranes for CO2removal from natural gas-A review. Progress inPolymer Science,2009,34(6):561-580.
    [195] Li Yanhao, Ma Peisheng, Wang Yanru. Potential parameter for Lennard-Jones (12-6) potentialby gas viscosity. Chemical Engineering(China),2003,31(1):53-56.
    [196] Cuadros F, Cachadina I, Ahumada W. Determination of Lennard-Jones interaction parametersusing a new procedure. Molecular Engineering,1996,6:319-325.
    [197] Tchouar N, Benyettou M, Kadour F O. Thermodynamic, structural and transport properties ofLennard-Jones liquid systems. A molecular dynamics simulations of liquid helium, neon,methane and nitrogen. International Journal of Molecular Sciences,2003,4(12):595-606.
    [198] Mecke M, Winkelmann J, Fischer J. Molecular dynamics simulation of the liquid-vaporinterface: Binary mixtures of Lennard-Jones fluids. Journal of Chemical Physics,1999,110(2):1188-1194.
    [199] Steele W A. The interact ion of gases with solid surfaces. Oxford: Pergamon Press,1974.
    [200] Al-Sahhaf T A, Kidnay A J, Sloan E D. Liquid+Vapor Equilibria in the N2+CO2+CH4System. Industrial&Engineering Chemistry Fundamentals,1983,22(4):372-380.
    [201] Jin Zhangli, Liu Kunyuan, Sheng Wangwang. Vapor-Liquid-Equilibrium in Binary andTernary Mixtures of Nitrogen, Argon, and Methane. Journal of Chemical&Engineering Data,1993,38(3):353-355.
    [202] Mraw S C, Hwang S C, Kobayashi R. Vapor-Liquid-Equilibrium of CH4-CO2System atLow-Temperatures. Journal of Chemical&Engineering Data,1978,23(2):135-139.
    [203] Semenova S, Ohya H, Higashijima T, et al. Separation of supercritical CO2and ethanolmixtures with an asymmetric polyimide membrane. Journal of membrane science,1992,74(1-2):131-139.
    [204] Sarrade S, Guizard C, Rios G. Membrane technology and supercritical fluids: chemicalengineering for coupled processes. Desalination,2002,144(1-3):137-142.
    [205] Chiu Y W, Tan C S. Regeneration of supercritical carbon dioxide by membrane at near criticalconditions. The Journal of Supercritical Fluids,2001,21(1):81-89.
    [206] Sarrade S, Rios G, Carles M. Supercritical CO2extraction coupled with nanofiltrationseparation: Applications to natural products. Separation and purification technology,1998,14(1-3):19-25.
    [207] Islam N M, Chatterjee M, Ikushima Y, et al. Development of a Novel Catalytic MembraneReactor for Heterogeneous Catalysis in Supercritical CO2. International Journal of MolecularSciences,2010,11(1):164-172.
    [208] Pomier E, Delebecque N, Paolucci-Jeanjean D, et al. Effect of working conditions onvegetable oil transformation in an enzymatic reactor combining membrane and supercriticalCO2. The Journal of Supercritical Fluids,2007,41(3):380-385.
    [209]高翔,刘丽丽,刘秀凤,等.加压和超临界流体在多孔膜中的渗透.高校化学工程学报,2005,19(005):577-582.
    [210]李志义,刘学武,张晓冬,等.超临界流体与膜过程的耦合技术.过滤与分离,2003,13(004):16-19.
    [211]银建中,周丹,商紫阳,等.超临界流体技术中的膜过程研究.化工装备技术,2009,30(005):1-8.
    [212]王方群,杜云贵,刘艺,等.国内燃煤电厂烟气脱硝发展现状及建议.中国环保产业,2007,(001):18-22.
    [213]马垠.中国燃煤电厂烟气脱硝工艺的选择[硕士学位论文].河北:华北电力大学,2005.
    [214]高婕,王禹,张蓓.我国大气氮氧化物污染控制对策.环境保护科学,2004,30(005):1-3.
    [215]熊蔚立,张国斌.火电厂氮氧化物(NOx)的危害和防治.湖南电力,2002,22(001):61-62.
    [216]李群.电厂烟气脱硝技术分析.华电技术,2008,30(9):1-3.
    [217]朱文斌.燃煤电厂SCR烟气脱硝装置的冷模实验和CFD数值计算研究[硕士学位论文].上海:上海交通大学,2008.
    [218]环境保护部.火电厂氮氧化物防治技术政策[N].中国环境报(006),2010-04-14.
    [219]赵毅,朱洪涛,安晓玲,等.燃煤电厂SCR烟气脱硝技术的研究.电力环境保护,2009,(001):7-10.
    [220] Delahay G, Ayala Villagomez E, Ducere J M, et al. Selective catalytic reduction of NO byNH3on Cu-Faujasite catalysts: An experimental and quantum chemical approach.ChemPhysChem,2002,3(8):686-692.
    [221] Byrne J,Chen J, Speronello B. Selective catalytic reduction of NOXusing zeolitic catalysts forhigh temperature applications. Catalysis today,1992,13(1):33-42.
    [222] Stevenson S A,Vartuli J C, Brooks C F. Kinetics of the selective catalytic reduction of NOover HZSM-5. Journal of Catalysis,2000,190(2):228-239.
    [223] Sanchez-Escribano V, Montanari T. Low temperature selective catalytic reduction of NOXbyammonia over H-ZSM-5: an IR study. Applied Catalysis B: Environmental,2005,58(1-2):19-23.
    [224] Wallin M, Karlsson C J, Skoglundh M, et al. Selective catalytic reduction of NOx with NH3over zeolite H-ZSM-5: influence of transient ammonia supply. Journal of Catalysis,2003,218(2):354-364.
    [225] Eng J, Bartholomew C H. Kinetic and Mechanistic Study of NOxReduction by NH3overH-Form Zeolites. Journal of catalysis,1997,171(1):27-44.
    [226] Zhang Y, Flytzani-Stephanopoulos M. Hydrothermal stability of cerium modified Cu-ZSM-5catalyst for nitric oxide decomposition. Journal of catalysis,1996,164(1):131-145.
    [227] Zhang Q L, Qiu C T, Xu H D, et al. Activity of Monolith Cu-ZSM-5Catalyst for SelectiveCatalytic Reduction of NO with NH3. Chinese Journal of Catalysis,2010,31(11):1411-1416.
    [228] Ma A Z, Grunert W. Selective catalytic reduction of NO by ammonia over Fe-ZSM-5catalysts.Chemical Communications,1999,(1):71-72.
    [229] Suzuki K, Haneda M, Sasaki M, et al. Effect of Organics on Activity of Cu/ZSM-5Catalystfor Selective Reduction of NO with NH3. Journal of the Japan Petroleum Institute,2010,53(6):355-358.
    [230] Sjovall H, Olsson L, Fridell E, et al. Selective catalytic reduction of NOx with NH3overCu-ZSM-5-The effect of changing the gas composition. Applied Catalysis B: Environmental,May2,2006,64(3-4):180-188.
    [231] Long R, Yang R. Catalytic performance of Fe-ZSM-5catalysts for selective catalyticreduction of nitric oxide by ammonia. Journal of catalysis,1999,188(2):332-339.
    [232] Chen H Y, Voskoboinikov T, Sachtler W M H. Reduction of NOx over Fe/ZSM-5Catalysts:Adsorption Complexes and Their Reactivity toward Hydrocarbons1. Journal of catalysis,1998,180(2):171-183.
    [233] Brandenberger S, Casapu M, Krocher O, et al. Hydrothermal deactivation of Fe-ZSM-5catalysts for the selective catalytic reduction of NO with NH3. Applied Catalysis B:Environmental,2011,101(3-4):649-656.
    [234] Li J H, Zhu R H, Cheng Y S, et al. Mechanism of Propene Poisoning on Fe-ZSM-5forSelective Catalytic Reduction of NOXwith Ammonia. Environmental science&technology,2010,44(5):1799-1805.
    [235] Sjovall H, Blint R J, Olsson L. Detailed kinetic modeling of NH3SCR over Cu-ZSM-5.Applied Catalysis B: Environmental,2009,92(1-2):138-153.
    [236] Sjovall H, Blint R J, Ollsson L. Detailed Kinetic Modeling of NH3and H2O Adsorption, andNH3Oxidation over Cu-ZSM-5. Journal of Physical Chemistry C,2009,113(4):1393-1405.
    [237] Olsson L, Sjovall H, Blint R J. Detailed kinetic modeling of Nox adsorption and NOoxidation over Cu-ZSM-5. Applied Catalysis B-Environment,2009,87(3-4):200-210.
    [238] Long R, Yang R. Characterization of Fe-ZSM-5catalyst for selective catalytic reduction ofnitric oxide by ammonia. Journal of catalysis,2000,194(1):80-90.
    [239] Long R Q, Yang R T. Reaction mechanism of selective catalytic reduction of NO with NH3over Fe-ZSM-5catalyst. Journal of catalysis,2002,207(2):224-231.
    [240] Huang H,Long R, Yang R. Kinetics of selective catalytic reduction of NO with NH3onFe-ZSM-5catalyst. Applied Catalysis A: General,2002,235(1-2):241-251.
    [241] Sun Q, Gao Z X, Chen H Y, et al. Reduction of NOx with ammonia over Fe/MFI: Reactionmechanism based on isotopic labeling. Journal of catalysis,2001,201(1):88-99.
    [242] Feng X, Keith Hall W. FeZSM-5: A durable SCR catalyst for NOx removal from combustionstreams. Journal of catalysis,1997,166(2):368-376.
    [243] Delahay G, Valade D, Guzman-Vargas A, et al. Selective catalytic reduction of nitric oxidewith ammonia on Fe-ZSM-5catalysts prepared by different methods. Applied Catalysis B:Environmental,2005,55(2):149-155.
    [244] Sobolev V, Panov G, Kharitonov A, et al. Catalytic properties of ZSM-5zeolites in N2Odecomposition: the role of iron. Journal of catalysis,1993,139(2):435-443.
    [245] Voskoboinikov T V, Chen H Y, Sachtler W M H. On the nature of active sites in Fe/ZSM-5catalysts for NOx abatement. Applied Catalysis B: Environmental,1998,19(3-4):279-287.
    [246] Joyner R, Stockenhuber M. Preparation, characterization, and performance of Fe-ZSM-5catalysts. The Journal of Physical Chemistry B,1999,103(29):5963-5976.
    [247] Skalska K, Miller J S, Ledakowicz S. Trends in NOx abatement: A review. Science of theTotal Environment,2010,408(19):3976-3989.
    [248] Sun H. COMPASS: An ab initio force-field optimized for condensed-phase applicationsoverview with details on alkane and benzene compounds. The Journal of Physical ChemistryB,1998,102(38):7338-7364.
    [249] Materials Studio. Version4.3,(Accelrys Inc.2008).
    [250] Richter M, Eckelt R, Parlitz B, et al. Low-temperature conversion of NOx to N2byzeolite-fixed ammonium ions. Applied Catalysis B: Environmental,1998,15(1-2):129-146.
    [251] Roberge D, Raj A, Kaliaguine S, et al. Selective catalytic reduction of NO under ambientconditions using ammonia as reducing agent and MFI zeolites as catalysts. Applied CatalysisB: Environmental,1996,10(4):237-243.
    [252] Pongsai S. Combination of the Metropolis Monte Carlo and Lattice Statics method forgeometry optimization of H(Al)-ZSM-5. Journal of Computational Chemistry,2010,31(10):1979-1985.
    [253] Eigenmann F, Maciejewski M, Baiker A. Gas adsorption studied by pulse thermal analysis.Thermochimica acta,2000,359(2):131-141.
    [254]朱文涛.物理化学(上).北京:清华大学出版社,1995:174.
    [255] Gilot P, Guyon M, Stanmore B R. A review of NOx reduction on zeolitic catalysts underdiesel exhaust conditions. Fuel,1997,76(6):507-515.
    [256] Campa M C, De Rossi S, Ferraris G, et al. Catalytic activity of Co-ZSM-5for the abatementof NOx with methane in the presence of oxygen. Applied Catalysis B: Environmental,1996,8(3):315-331.
    [257] Yogo K, Umeno M, Watanabe H, et al. Selective reduction of nitric oxide by methane onH-form zeolite catalysts in oxygen-rich atmosphere. Catalysis letters,1993,19(2):131-135.
    [258] Ogura M, Sugiura Y, Hayashi M, et al. Reduction of nitric oxide with methane onPd/Co/H-ZSM-5catalysts: cooperative effects of Pd and Co. Catalysis letters,1996,42(3):185-189.
    [259] Bell A T. Experimental and theoretical studies of NO decomposition and reduction overmetal-exchanged ZSM-5. Catalysis today,1997,38(2):151-156.
    [260] Dunne J A, Rao M, Sircar S, et al. Calorimetric heats of adsorption and adsorption isotherms.2. O2, N2, Ar, CO2, CH4, C2H6, and SF6on NaX, H-ZSM-5, and Na-ZSM-5Zeolites. Langmuir,1996,12(24):5896-5904.
    [261] Dubbeldam D, Calero S, Vlugt T, et al. Force field parametrization through fitting oninflection points in isotherms. Physical review letters,2004,93(8):88302.
    [262] Zhang L, Siepmann J I. Development of the trappe force field for ammonia. Collection ofCzechoslovak Chemical Communications,2010,75(5):577-591.
    [263] Handy B E, Sharma S B, Spiewak B, et al. A Tian-Calvet heat-flux microcalorimeter formeasurement of differential heats of adsorption. Measurement Science and Technology,1993,4:1350.
    [264] Talu O, Myers A L. Reference potentials for adsorption of helium, argon, methane, andkrypton in high-silica zeolites. Colloids and Surfaces A: Physicochemical and EngineeringAspects,2001,187:83-93.
    [265] Choudhary V, Mayadevi S. Adsorption of methane, ethane, ethylene, and carbon dioxide onhigh silica pentasil zeolites and zeolite like materials using gas chromatography pulsetechnique. Separation Science and Technology,1993,28(13-14):2197-2209.
    [266] Dunne J, Mariwala R, Rao M, et al. Calorimetric heats of adsorption and adsorption isotherms.1. O2, N2, Ar, CO2, CH4, C2H6, and SF6on silicalite. Langmuir,1996,12(24):5888-5895.
    [267] Bolis V, Bordiga S, Palomino G T, et al. Calorimetric and spectroscopic study of thecoordinative unsaturation of copper (I) and silver (I) cations in ZSM-5zeolite: Roomtemperature adsorption of NH3. Thermochimica acta,2001,379(1-2):131-145.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700