弹性铰链康复机构刚度特性与动力学研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
相对于传统的刚性机构,柔性机构具有很多方面的优点。弹性铰链机构作为柔性机构的一种,可应用于众多领域。本论文将三种弹性铰链机构应用于医疗康复领域,分别对这三种机构进行了运动学、刚度、动力学方面的研究。
     基于已应用的膝关节康复CPM机,将弹性移动、转动铰链分三种方式加入CPM机中,构成不同的生物融合机构。分别对原CPM机和含有不同弹性铰链的单闭环弹性铰链机构进行运动学求解,得到不同机构下膝关节角度变化关系图,对比结果证明了弹性铰链对康复运动可起到缓冲保护作用。基于影响系数对单闭环双弹性铰链机构进行柔度建模,得到其柔度特性图,结合膝关节康复需要分析了该机构的柔度特性。
     针对人腿关节与机械机构运动副不重合情况构造出了双环弹性铰链膝关节康复机构。基于螺旋理论分析了机构自由度,结合影响系数和虚功原理推导出刚度表达式,得到机械分支速度图以及相应的刚度特性图。经过分析得出当人腿与机构产生一定的偏离时,该机构仍然能够利用弹性铰链的优势服务于膝关节康复患者。
     将3-RRR弹性铰链并联机构应用于人体下肢小范围康复训练中。对机构影响系数进行求解,基于动力学普遍方程建立了机构的动力学模型,并在此基础上建立了机构的动刚度模型。采用有限元和数据分析软件拟合动刚度曲线,结合下肢康复需求分析机构的动刚度特性。
     通过软件仿真对比了3-RRR非弹性铰链和弹性铰链并联机构的运动学和动力学特性,结合人体下肢康复预期康复范围以及康复过程平稳、安全等要求,分析出3-RRR弹性铰链并联机构应用于下肢康复训练的可行性。
     本论文将弹性铰链融入到康复机器人机构中,对新机构的运动学、静刚度和动力学,特别是动刚度进行了研究,该工作的完成对生物融合式康复机器人的研制有重要的理论指导意义。
Compared to traditional rigid mechanism, the flexible mechanism has the advantageof many aspects. As a kind of flexible mechanism, the elastic hinge mechanism can beapplied to many other fields. This paper conducts research on kinematics, stiffness,dynamics of three kinds of elastic hinge mechanism used in the field of medicalrehabilitation.
     Based on the CPM knee rehabilitation mechanism, we join the translational elastichinge, rotational elastic hinge to it in three ways, coming into being different biologicalintegration mechanisms. Kinematics of the original CPM mechanism and single closedloop elastic hinge mechanisms with different elastic hinges is researched, and knee anglediagrams in different mechanisms are made. By comparison buffer protective effect onrehabilitation exercise of the elastic hinge is proved. Based on influence coefficient,flexibility model of single loop double elastic hinge mechanism and the actual analysis ofcompliance characteristic diagrams made by programming is made.
     For the joint of human legs and the kinematic pair of mechanical mechanisms do notcoincide, we construct the bicyclic elastic hinge knee rehabilitation mechanism. Based onscrew theory, the degree of freedom is given. Combining with the influence coefficientand the principle of virtual work, we derive the expression of stiffness. We make thevelocity diagram of the mechanical branch and the corresponding stiffness characteristicdiagram. By analysis, we obtained when the leg and mechanism have some deviation, themechanism is still able to use the advantages of the elastic hinge to serve kneerehabilitation patients with convenience.
     Then, the 3-RRR elastic hinge parallel mechanism is used in the human lower limbrehabilitation of small-scale training. Influence coefficient of this mechanism is evaluated.Based on the general equation of dynamics, this paper establishes the dynamic model ofthe mechanism, and on this basis, the dynamic stiffness model is established. We use thefinite element method and data analysis software to fit the dynamic stiffness curve, andanalyze the dynamic stiffness characteristics combining with lower limb rehabilitation needs.
     Through software emulation, we contrast the kinematics and dynamics characteristicsof 3-RRR inelastic hinge and elastic hinge parallel mechanisms. And the feasibility of the3-RRR elastic hinge parallel mechanism applied to the lower limb rehabilitation training isanalyzed combining with the rehabilitation range of human lower limb and therequirement of smooth and safety rehabilitation process.
     Elastic hinges are integrated into the rehabilitation mechanism. Research onkinematics, static stiffness, dynamics and dynamic stiffness of those mechanisms, whichhas important theoretical significance for the future development of the bio-syncreticrehabilitation mechanism.
引文
[1]于靖军,裴旭,毕树生,等.柔性铰链机构设计方法的研究进展[J].机械工程学报,2010(13):2.
    [2] L. L. Howell. Compliant Mechanisms[M]. New York:Wiley Interscience,2001:40-100.
    [3]王雯静,余跃庆.基于有限元法的柔顺机构动力学分析[J].机械工程学报,2010,46(9):79-80.
    [4] J. M. Paros,L. Weisbord. How to design flexure hinges[J]. Machine Design,1965,37(27):151-156.
    [5]边辉.生物融合式康复机构理论与应用研究[D].秦皇岛:燕山大学机械电子工程学科博士学位论文,2011:24-25.
    [6]边辉,赵铁石,田行斌,等.生物融合式康复机构及其应用[J].机器人,2010,32(4):470-477.
    [7]边辉,刘艳辉,梁志成,等.并联2-RRR/UPRR踝关节康复机器人机构及其运动学[J].机器人,2010,32(1):6-12.
    [8] E. McEwen,R. L. Miller,et al. Early Bow Design and Construction[J]. Scientific American,1991,264(6):76-82.
    [9]谭坤,宗光华,毕树生,等.大变形柔性铰链的多簧片构型[J].军民两用技术与产品,2007(3):38-40.
    [10] A. Midha,L. L. Howell. On the Nomenclature,Classification and Compliant Mechanism[J].ASME Trans,Mechanical Design,1994,l16(2):270-279.
    [11] G. K. Ananthasuresh,L. L. Howell. Case Studies and a Note on the Degrees-of-Freedom inCompliant Mechanisms[J]. ASME Trans,Transmissions and Automation,1996,182(3):1-12.
    [12] L. L. Howell,A. Midha. A Method for the Design of Compliant Mechanism With Small-LengthFlexural Pivots[J]. ASME Trans,Mechanical Design,1994,116(1):280-289.
    [13] L. L. Howell,A. Midha. Evaluation of Equivalent Spring Stiffness for Use in a Pseudo Rigid BodyModel of Large Deflection Compliant Mechanisms[J]. ASME Trans,Mechanical Design,1996,118(1):126-140.
    [14] L. L. Howell,A. Midha. Parametrie Deflection Approximations for End Loaded Large DeflectionBeams in Compliant Mechanisms[J]. ASME Trans,Mechanical Design,1995,117(3):156-165.
    [15] S. M. Lyon,L. L. Howell,et al. Modeling Flexible Segments with Force and Moment End Loadsvia the Pseudo-Rigid-Body Model[C]. Proceedings of the 2000 Design Engineering TechnicalConferences,2000:124-138.
    [16] L. L. Howell,A. Midha. A Loop-Closure Theory for the Analysis and Synthesis of CompliantMechanisms[J]. ASME Trans,Mechanical Design,1996,118(1):121-125.
    [17] S. X. Ping,S. Henty,et al. Design of Compliant Microleverage Mechanisms[J]. Sensors andActuators,2001,87(3):146-156.
    [18]李海燕.柔顺机构的分析及基于可靠性的优化设计[D].汕头:汕头大学机械电子工程学科硕士学位论文,2004:40-46.
    [19]刘少芳.柔顺机构的动态拓扑优化设计[D].汕头:汕头大学机械电子工程学科硕士学位论文,2004:14-26.
    [20] J. A. Hetrik,S. Kota. An Energy Formulation for Parametric Size and Shape Optimation ofCompliant Mechanisms[J]. ASME Trans,Mechanical Design,1999,121(3):229-233.
    [21] A. H. Slocum. Precision machine design[M]. New York:Prentice-Hall Inc,1992:56-70.
    [22] D. L.Blanding. Exact constraint:Machine design using kinematic principle[M]. New York:ASMEPress,1999:133-138.
    [23] L. C. Hale. Principles and techniques for designing precision machines[D]. Massachusetts:Massachusetts Institute of Technology,1999:101-118.
    [24] S. Awtar,A. H. Slocum. Constant-based design of parallel kinematic XY flexure mechanisms[J].Journal of Mechanical Design,2007,129(8):816-830.
    [25] B. P. Trease,K. J. Lu,S. Kota. Biomimetic compliant system for smart actuator-driven aquaticpropulsion:Preliminary results[C]// 2003 ASME International Mechanical Engineering Congress,Nov. 15-21,2003,Washington D.C,United States. New York:ASME,2003:43-52.
    [26] C. J. Kim. A conceptual approach to the computational synthesis of compliant mechanisms[D].Michigan:University of Michigan,2005:55-60.
    [27] P. Bernardoni,P. Bidaud,C. Bidard,et al. A new compliant mechanism design methodology basedon flexible building blocks[C]// Proceedings of Smart Structures,SPIE Modeling,Sign. Proc.Cont.,66,Mar.15-18,2004,San Diego,USA. SPIE,2004:244-254.
    [28] M. Grossard,C. Rotinat-Libersa. Flexible building blocks method for the optimal design ofcompliant mechanisms using piezoelectric material[C]// 12th IFToMM World Congress,June18-21,2007,Besancon,France,2007:132-135.
    [29] E. Guerinot,S. P. Magleby,L. L. Howell,et al.Compliant joint design principles for highcompressive load situation[J]. Journal of Mechanical Design,2005,127(4):774-781.
    [30]余志伟.基于屈曲的柔性铰链设计方法研究[D].北京:北京航空航天大学机械电子工程学科博士学位论文,2006:5-10.
    [31] J. B. Hopkins,M. L. Culpepper. Synthesis of multi-degree of freedom,parallel flexure systemconcepts via freedom and constraint topology (FACT). Part I:Principles[J]. Precision Engineer-ing,2010,34(2):259-270.
    [32] J. B. Hopkins,M. L. Culpepper. Synthesis of multi-degree of freedom,parallel flexure systemconcepts via freedom and constraint topology (FACT). Part II:Practice[J]. Precision Engineer-ing,2010,34(2):271-278.
    [33] J. B. Hopkins,M. L. Culpepper. Synthesis of multi-axis serial flexure systems[C]// Proc. of the24th Annual Meeting of the American Society for Precision Engineering,October 4-9,2009,Monterey,USA. ASPE,2009:253-260.
    [34] Haijun SU,D. V. Dorozhkin,J. M. Vance. A screw theory approach for the conceptual design offlexible joints for compliant mechanisms[J]. Journal of Mechanisms and Robotics,2009,1(4):1041-1049.
    [35] Jingjun YU,Shouzhong LI,Xu PEI,et al. Type synthesis principle and practice of flexure systemsin the framework of screw theory part I:General methodology[C]// 2010 ASME InternationalDesign Engineering Conference,Aug. 15-18,2010,Montreal,Canada. New York:ASME,2010:201-213.
    [36] O. Sigmund. Design of Multi-Physics Actuators Using Topology Optimization-Part I:One-Mat-erial Structures[J]. Computer. Methods in Applied. Mechanics. Engineering,2001,190(2):6577-6604.
    [37] O. Sigmund. Design of Multi-Physics Actuators Using Topology Optimization-Part II:Two-Mat-erial Structures[J]. Computer. Methods in Applied. Mechanics. Engineering,2001,190(2):6605-6627.
    [38]孙东波.柔顺储能脚的伪刚体建模研究[D].秦皇岛:燕山大学机械电子工程学科硕士学位论文,2010:9.
    [39]李团结.柔性机构的结构拓扑特征及其自由度分析[J].机械科学与技术,2003,22(1):107-109.
    [40]李海燕,张宪民,彭惠青.大变形柔顺机构驱动特性研究[J].机械科学与技术,2004,23(9):1040-1043.
    [41]李团结,曹炎,李世俊,等.平面双稳态柔性微机构的优化设计[J].机械科学与技术,2004,23(6):709-711.
    [42]马履中,尹小琴,杨廷力.新型3{R//R//C}三平移并联机器人机构的特殊位形分析[J].江苏大学学报(自然科学版),2002,23(2):43-45.
    [43]尹小琴,马履中,杨启志,等. 3-RRC全柔性机构中柔性铰链刚度矩阵建立[J].江苏大学学报(自然科学版),2003,24(4):6-8.
    [44]潘旺.足关节康复机器人系统设计与开发[D].秦皇岛:燕山大学机械电子工程学科硕士学位论文,2008:25-34.
    [45]鲍素珍,马清亮. CPM用于膝关节周围骨折术后的护理体会[J].现代中西医结合杂志,2006,15(8):1112-1113.
    [46]张小花.持续被动康复器在全膝关节置换术后的应用[J].暨南大学学报,2003,24(3):122-124.
    [47]张恩祥,孙建东,李春旺,等.被动式多功能下肢康复训练器[J].中国康复医学杂志,2008(6):78-79.
    [48] D.Bradley,C.Acosta-Marquez,M.Hawley,et al. NeXOS-The design,development and ev-aluation of a rehabilitation system for the lower limbs[J]. Mechatronics,2009,19:247-257.
    [49]黄真.并联机器人机构学理论及控制[M].北京:机械工业出版社,1997:72-88.
    [50]黄真,赵永生,赵铁石.高等空间机构学[M].北京:高等教育出版社,2006:170-200.
    [51]北京积水潭医院运动医学中心.膝关节前交叉韧带重建术后康复计划[DB/OL]. [2012-03-25].www.jst-hosp.com.cn/1/rehabilitation.html.
    [52]师丽菊.三自由度弹性铰链机器人静刚度与动力学研究[D].秦皇岛:燕山大学机械电子工程学科硕士学位论文,2006:3-4.
    [53] J.S.Dai,T.S.Zhao. Stiffness Characteristics and Kinematics Analysis of Two Link ElasticUnderactuated Manipulators[J]. Journal of Robotic Systems,2002,19(4):169-176.
    [54]赵延治,赵铁石,师丽菊.弹性铰平面闭环六杆机构刚度特性研究[J].中国机械工程,2008,19(5):509-513.
    [55]赵延治,张洁,赵铁石.弹性铰平面并联三自由度机器人连续刚度映射研究[J].燕山大学学报,2008,32(4):283-289.
    [56]周玉林,高峰. 3-RRR 3自由度球面并联机构静刚度分析[J].机械工程学报,2009,45(4):25-32.
    [57]金振林,高峰.一种新型6自由度正交并联机器人机构的柔度分析[J].机械设计与研究,2001,17(2):38-40.
    [58]金振林,赵现朝.新型并联机床的柔度指标及其在工作空间内分布研究[J].中国机械工程,2002,13(3):184-186.
    [59]陈增响.特种疲劳振动试验机的结构动态响应分析[D].无锡:江南大学机械设计及理论学科硕士学位论文,2009:35-55.
    [60]梅凤翔.非完整系统力学基础[M].北京:北京工业学院出版社,1985:50.
    [61]高云凯,汪翼,林典,等.白车身质量块安装点动刚度分析与优化[J].中国机械工程,2010,21(6):722-723.
    [62]高云凯,邓有志,崔玲,等.客车车身前围动刚度分析及优化[J].机械设计与制造,2011(1):10-12.
    [63]李玲玲,王克明.某型航空发动机后支承动刚度的有限元计算[J].沈阳航空工业学院学报,2007,24(3):5-7.
    [64]石清鑫,袁奇,胡永康. 250吨高速动平衡机摆架的动刚度分析[J].机械工程学报,2011,47(1):76-78.
    [65]石亦平,周玉蓉. ABAQUS有限元分析实例详解[M].北京:机械工业出版社,2006:10.
    [66]李军,邢文军等. ADAMS实例教程[M].北京:北京理工大学出版社,2002:1-3.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700