BMI与膝关节软骨滑膜损伤程度之间的联系
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景:
     膝关节内损伤指涉及关节结构的骨、软骨和关节内软组织包括韧带、软骨、滑膜等的急性或慢性损伤。关节内组织受到的机械应力主要有压缩应力,拉伸应力,切应力和流体静压力。膝关节内损伤主要是由于机械应力分布失衡或负载过度引起软骨磨损所致。膝关节镜手术是一种微创有效的外科手段,在关节镜下对软骨及滑膜损伤程度进行的评分,最直接、准确而且全面地反映了关节内部病情发展情况。已有许多实验证实肥胖与膝关节骨关节炎(osteoarthritis, OA)之间存在关联,涉及与OA的影像学改变,症状严重度,生化代谢改变等等之间的关系研究,而肥胖,作为一个导致膝关节退行性病变或创伤病变的危险因素,与在关节镜下肉眼观察到的软骨滑膜损伤程度的关联性如何,即为本研究的目的所在。本研究旨在评估其与关节软骨滑膜损伤严重程度的关联,从诊断疾病量化程度的金标准出发来验证BMI指数与疾病程度的关联。此研究对合理评估膝关节内损伤严重度及发生OA的危险性有一定的指导价值。
     目的:
     探讨反映肥胖程度的BMI指数与关节镜下观察到的软骨损伤、滑膜炎症程度之间的联系,评估其与关节疾病严重程度的关联,从诊断疾病量化程度的金标准出发来验证BMI指数与疾病程度的关联。另外通过对比各年龄段中健康体检组与行关节镜手术治疗组人群之间BMI指数的差异,分析肥胖对罹患膝关节内损伤疾病的影响力。
     方法:
     收集2009年5月至2009年9月在山西医科大学第二医院骨科行关节镜诊治的膝关节疾病患者109例,年龄18岁-77岁,平均38岁,男57膝,女52膝。选取178名在山西医科大学第二临床医院体检中心进行体检的无关节疾患人群,年龄在18岁-65岁之间,平均38岁,男111例,女67例。
     对109名在山西医科大学第二临床医院行关节镜手术的患者在入院后术前进行问诊查体及读片,获得患者身体质量指数(Body Mass Index, BMI)指数数据并登记整理。患者行关节镜手术时评估并登记Outerbridge软骨评分、Ayral滑膜炎评分。对178名在山西医科大学第二临床医院体检中心进行体检诊断无关节疾患的患者进行体检问诊,获得患者BMI指数数据并登记整理。然后将数据用方差分析、spearman相关分析进行统计分析,探讨之间的联系。
     结果:
     109名膝关节疾病患者BMI指数与Outerbridge软骨损伤累计评分呈正相关(r=0.58,p<0.01),BMI正常组,BMI超重组,BMI肥胖组各分组间两两比较,差别有统计学意义(p<0.01),并且三组间Outerbridge软骨损伤累计评分呈逐级递增趋势。109名膝关节疾病患者BMI指数与Outerbridge软骨损伤最高评分呈正相关(r=0.70,p<0.01),BMI正常组,BMI超重组,BMI肥胖组各分组间两两比较,差别有统计学意义(p<0.01),并且三组间Outerbridge软骨损伤最高评分呈逐级递增趋势。109名膝关节疾病患者BMI指数与Ayral滑膜炎评分呈正相关(r=0.47,p<0.01),BMI正常组,BMI超重组,BMI肥胖组各分组间两两比较,差别有统计学意义(p<0.01),并且三组间Ayral滑膜炎评分呈逐级递增趋势。将行关节镜手术患者以及体检无膝关节疾病患者分别按照年龄分为四段:第一段,年龄在18岁至28岁之间;第二段,年龄在29岁至39岁之间;第三段,年龄在40岁至50岁之间;第四段,年龄在51岁以上。各组内年龄与Outerbridge软骨损伤累计评分及Ayral滑膜炎评分不相关(p>0.05)。第一年龄段中关节镜组患者BMI与体检组患者BMI无显著差别(p>0.05);第二、三、四年龄段中关节镜组患者BMI显著高于体检组患者BMI(p<0.05)。
     结论:
     肥胖程度对软骨损伤程度以及滑膜炎症程度有较大的影响,尤其表现在对软骨局部损伤程度的影响,可能说明BMI对关节内损伤所产生的影响大部分取决于肢体对位关系的改变。29岁以上的同年龄段人群,随着肥胖程度的增高而导致发生关节内损伤危险性的增高。18至28岁年龄段人群,关节内损伤危险性不会随着肥胖程度的增高发生改变。可能是由于青年人参加运动的强度与频度明显高于中老年人,经历运动或暴力损伤的几率更高,而且自身肌肉韧带与关节囊等软组织韧性大,强度较高,关节内软骨修复能力尚佳,因而导致损伤的原因绝大部分归因于运动或暴力损伤本身,相比较就同肥胖程度关联不是很大。
Background:
     The damage within the knee joint involvs the acute and chronic injury of bone,cartilage which make up the structure of joint and parenchyma including ligament, synovium,cartilage and so on in joint. The mechanical stress intra-articular tissue bear is mainly made up of compression stress, tensile stress, shear stress and fluid static pressure. The injury within the knee is mainly due to mechanical stress distribution imbalance or excessive load which cause cartilage wear. Kneed arthroscope surgery is a minimally invasive and effective surgical method, the most direct, precise reflect can be shown under the arthroscope including the chondral and synovial damage degree of grading, and the development of the internal condition. Many experiments have confirmed the relationship between the obesity and knee osteoarthritis (OA), involves the progress of X-ray results, the severity of symptoms, and biochemical metabolic changes, etc. Whether the obesity, the risk factor which cause joint degenerative diseases or traumatic diseases, is correlative with the arthroscopic macroscopic observation of chondrol and synovial injury or not, is the purpose of this study. This study aims to evaluate the relationship between the gold standard of diagnosis and BMI. The study have guiding values on reasonable assessment of the injury severity within the knee and the risk of OA.
     Objectives:
     To evaluate the correlation between BMI and the damage degree of arthroscopic macroscopic observation of chondrol and synovial injury,to evaluate the relationship between the gold standard of diagnosis and obesity. By comparing BMI differences between the different age brackets of healthy kneed group and arthroscopic surgery treatment group to analyse influence of obesity on injury in knee joint.
     Methods:
     109 patients with knee joint diseases operated under the arthroscope in shanxi medical university 2nd hospital during the may,2009 to the september 2009, aged 18-77,38 on average, involves 57 male and 52 female.178 people received physical examination in clinical check-up center of shanxi medical university 2nd hospital whose knees have been diagnosed healthy, aged 18-65,38 on average, involves 111 male and 67 female. All people's BMI are calculated. The degree of patients'cartilage injury was assessed with Outerbridge's score system under arthroscope,the degree of patients'synovitis was assessed with Ayral'score system under arthroscope.The data are analyzed by the analysis of variance and Spearman correlation.
     Results:
     The results show that BMI of 109 patients with knee joint diseasese are positively related with cumulative Outerbridge's score(r=0.58, p< 0.01), with Outerbridge's top score (r=0.70, p <0.01), with Ayral's score(r=0.47, p< 0.01). The pairwise comparison among three BMI groups show that the differences were statistically significant (p< 0.01). The arthroscopic surgery patients and people without knee diseases are divided respectively according to age into four sections:the first section, aged 18 to 28; The second section, aged 29 to 39, The third section, aged 40 to 50, The fourth section, aged above 51 years old. Within each age section BMI and cumulative Outerbridge's score and Ayral s's score are not related(p> 0.05). In the first age section BMI of arthroscopy group patients are associated with no significant difference with BMI of people without knee diseases(p> 0.05). In the second, third, fourth age section, BMI of arthroscopy group patients have significantly higher BMI than that of people without knee diseases (p<0.05).
     Conclusion:
     Obese degree are related with the degree of cartilage injury and synovitis.Obesity has great influence on cartilage, especially on the local damage degree, which indicate that the effect of obesity on the joint may depends largely on the change of body alignment. In the age sections above 29 years old, the risk of damage occurred within the joints raise with increasing obese degree.While in the section aged 18 to 28 show no significant difference(p> 0.05). It may be due to the strength and the sport of youngsters are obviously higher than in the elderly,they experience the higher frequency of injury or violent motion, and their muscles, ligaments, soft capsule have higher strength and toughness,and have strong repair ability of joint cartilage.The damage are most attributed to exercise or violent damage themselves, compared with them obesity dose not have strong association.
引文
[1]Powell A, Teichtahl AJ, Wluka AE, Cicuttini FM. Obesity:a preventable risk factor for large joint osteoarthritis which may act through biomechanical factors. Br J Sports Med 2005;39:4-5.
    [2]Oliveria SA, Felson DT, Cirillo PA, Reed JI, Walker AM. Body weight, body mass index, and incidentsymptomatic osteoarthritis of the hand, hip, and knee. Epidemiology 1999; 10:161-166.
    [3]M Reiiman Is BMI associated with the onset and progression of osteoarthritis of the knee and hip? the rotterdam study Medical Center, Rotterdam, Netherlands:2000;8:130-132
    [4]Obesity and osteoarthritis of the knee in women:results from the Matsudai Knee Osteoarthritis survey
    [5]Avery L. Metabolic activity of osteoarthritic knees correlates with BMI Buchholz aThe Knee 17 (2010) 161-166
    [6]Outerbridge RE.The etiology of chondromalacia patellae. J Bone Joint Surg.1961,43:752-7
    [7]Ayral X,Mayoux-Benhamou A, Dougados M. Propose scoring system for assessing synovial membrane abnormalities at arthroscopy in knee osteoarthritis.Br JRheumatol.1996,35;14-17
    [8]Wheeler C A, Fitzgerald J B, GrodzinskyA J.Cartilage mechanobiology:the response of chondrocytes to mechanical force.LIppincot Williams & Wilkins,Inc.2005,16(5):346-353
    [9]Robert P. Wilder, Michael Cicchetti. Common Injuries in Athletes with Obesity and Diabetes Clinics in Sports Medicine, Volume 28, Issue 3, July 2009, Pages 441-453
    [10]G. Recnik, V. Kralj-Igli?, A. Igli?, V. Antoli?, S. Kramberger, I. Rigler, B. Pompe, R. Vengust.The role of obesity, biomechanical constitution of the pelvis and contact joint stress in progression of hip osteoarthritis Osteoarthritis and Cartilage, Volume 17, Issue 7, July 2009, Pages 879-882
    [11]Gushue DL, Houck J, Lerner AL. Effects of childhood obesity on three-dimensional knee joint biomechanics during walking. J Pediatr Orthop 2005;25:763-768.
    [12]Messier SP, Gutekunst DJ, Davis C, DeVita P. Weight loss reduces knee-joint loads in overweight and obese older adults with knee osteoarthritis. Arthritis Rheum 2005;52:2026-2032.
    [13]Stephen P. Messier, Obesity and Osteoarthritis:Disease Genesis and Nonpharmacologic Weight Management Medical Clinics of North America, Volume 93, Issue 1, January 2009, Pages 145-159
    [14]Francis Berenbaum, Jeremie Sellam Obesity and osteoarthritis:what are the links?Joint Bone Spine, Volume 75, Issue 6, December 2008, Pages 667-668
    [15]U. N. Das Is obesity an inflammatory condition?Nutrition, Volume 17, Issues 11-12, November 2001, Pages 953-966
    [16]Das UN. Obesity, metabolic syndrome X, and inflammation. Nutritio2002;18:430-432.
    [17]Lago F, Dieguez C, Gomez-Reino J, Gualillo O. The emerging role of adipokines as mediators of inflammation and immune responses. Cytokine & growth factor reviews 2007; 18:313-325.
    [18]Weisberg SP, Hunter D, Huber R, Lemieux J, Slaymaker S, Vaddi K, Charo I, Leibel RL, Ferrante AW Jr. CCR2 modulates inflammatory and metabolic effects of high-fat feeding. J Clin Invest2006;116:115-124.
    [19]Visser M. Higher levels of inflammation in obese children. Nutrition 2001;17:480-481.
    [20]Fain JN. Release of interleukins and other inflammatory cytokines by human adipose tissue is enhanced in obesity and primarily due to the nonfat cells. Vitam Horm 2006;74:443-477.
    [21]Hart DJ, Doyle DV, Spector TD. Association between metabolic factors and knee osteoarthritis in women: the Chingford Study. J Rheumatol 1995;22:1118-1123.
    [22]Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL, Ferrante AW Jr. Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest 2003;112:1796-1808.
    [23]Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA, Chen H. Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest 2003;112:1821-1830. Cartilage.2007】
    [24]Dumond H, Presle N, Terlain B, Mainard D, Loeuille D, Netter P, Pottie P. Evidence for a key role of leptin in osteoarthritis. Arthritis Rheum 2003;48:3118-312937. Simopoulou T, Malizos KN, Iliopoulos D, Stefanou N, Papatheodorou L, Ioannou M, Tsezou A.
    [25]Differential expression of leptin and leptin's receptor isoform (Ob-Rb) mRNA between advanced and minimally affected osteoarthritic cartilage; effect on cartilage metabolism. Arthritis Rheum 2000;43:568-575.
    [26]Wallenius V, Wallenius K, Ahren B, Rudling M, Carlsten H, Dickson SL, Ohlsson C, Jansson JO. Interleukin-6-deficient mice develop mature-onset obesity. Nature medicine 2002;8:75-79.
    [27]Chida D, Osaka T, Hashimoto O, Iwakura Y. Combined interleukin-6 and interleukin-1 deficiency causes obesity in young mice. Diabetes 2006;55:971-977.
    [28]Zorrilla EP, Sanchez-Alavez M, Sugama S, Brennan M, Fernandez R, Bartfai T, Conti B. Interleukin-18 controls energy homeostasis by suppressing appetite and feed efficiency. Proc Natl Acad Sci U S A 2007;104:11097-11102.
    [29]Netea MG, Joosten LA, Lewis E, Jensen DR, Voshol PJ, Kullberg BJ, Tack CJ, van Krieken H, Kim SH, Stalenhoef AF, van de Loo FA, Verschueren I, Pulawa L, Akira S, Eckel RH, Dinarello CA, van Griffin and Guilak Page 8 Biorheology. Author manuscript; available in PMC 2009 September 22. den Berg W, van der Meer JW. Deficiency of interleukin-18 in mice leads to hyperphagia, obesity and insulin resistance. Nature medicine 2006; 12:650-656.
    [30]Zhang Y, Proenca R, Maffei M, Barone M, Leopold L, Friedman JM. Positional cloning of the mouse obese gene and its human homologue. Nature 1994;372:425-432.
    [31]Zorrilla EP, Sanchez-Alavez M, Sugama S, Brennan M, Fernandez R, Bartfai T, Conti B.Interleukin-18 controls energy homeostasis by suppressing appetite and feed efficiency. Proc Natl Acad Sci U S A 2007;104:11097-11102.
    [32]Friedman JM, Halaas JL. Leptin and the regulation of body weight in mammals. Nature 1998;395:763-770.46. Hellerstein MK, Meydani SN, Meydani M, Wu K, Dinarello CA.
    [33]Interleukin-l-induced anorexia in the rat. Influence of prostaglandins. J Clin Invest 1989;84:228-235.47.
    [34]Jansson JO, Wallenius K, Wernstedt I, Ohlsson C, Dickson SL, Wallenius V. On the site and mechanism of action of the anti-obesity effects of interleukin-6. Growth Horm IGF Res,13 Suppl A 2003:S28-32.
    [35]Garcia MC, Wernstedt I, Berndtsson A, Enge M, Bell M, Hultgren O, Horn M, Ahren B, Enerback, Ohlsson C, Wallenius V, Jansson JO. Mature-onset obesity in interleukin-1 receptor I knockout ice. Diabetes 2006;55:1205-1213.
    [36]Chua SC Jr, Chung WK, Wu-Peng XS, Zhang Y, Liu SM, Tartaglia L, Leibel RL. Phenotypes of ouse diabetes and rat fatty due to mutations in the OB (leptin) receptor. Science 1996;271:994-996.
    [37]Hirsch E, Irikura VM, Paul SM, Hirsh D. Functions of interleukin 1 receptor antagonist in gene nockout and overproducing mice. Proc Natl Acad Sci U S A 1996;93:11008-11013.
    [38]Somm E, Henrichot E, Pernin A, Juge-Aubry CE, Muzzin P, Dayer JM, Nicklin MJ, Meier CA. ecreased fat mass in interleukin-1 receptor antagonist-deficient mice:impact on adipogenesis, food ntake, and energy expenditure. Diabetes 2005;54:3503-3509.
    [39]Griffin TM, Guilak F. The role of mechanical loading in the onset and progression of osteoarthritis. Exerc Sport Sci Rev 2005;33:195-200.
    [40]Guilak F, Fermor B, Keefe FJ, Kraus VB, Olson SA, Pisetsky DS, Setton LA, Weinberg JB. The role f biomechanics and inflammation in cartilage injury and repair. Clin Orthop Relat Res 2004:17-26.
    [41]Goldring MB. Osteoarthritis and cartilage:the role of cytokines.Curr Rheumatol Rep 2000;2:459-65.
    [42]Sharma L, Lou C, Cahue S, Dunlop DD. The mechanism of the effect of obesity in knee osteoarthritis:the mediating role of malalignment. Arthritis Rheum 2000;43:568-575.
    [43]Felson DT, Goggins J, Niu J, Zhang Y, Hunter DJ. The effect of body weight on progression of knee osteoarthritis is dependent on alignment. Arthritis Rheum2004;50:3904-3909.
    [44]Griffin and Guilak Page IBiorheology. Author manuscript; available in PMC 2009 September 22.
    [45]郝一勇,卫小春,杨自全等。膝关节疾病中关节软骨损伤和滑膜炎的关系。中国药物与临床。2003,3: 23-25
    [46]ThomasB, Thirion S, HumbertL, et all Differentiation regulates interleukin-1 beta-induced cyclooxygenase-2 in human articular chondrocytes:role of p38 mitogen-activated protein kinase (J) 1Biochem J,2002; 36:367-73.
    [1]Martel-Pelletier J, Alleddine N, Pelletier JP. Cytokines and their role in the pathophysiology of osteoarthritis. Front Biosci 1999;4:694-703.
    [2]Kobayashi Y, Yamamoto K, Saido T, et al。Identification of calciumactivated neutral protease as a processing enzyme of human interleukin 1 alpha (J) lProc Natl Acad Sci USA,1990; 87:5548-52.
    [3]Kobayashi M, Squire GR, Mousa A, et al. Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage. Arthritis Rheum,2005,52:128-135
    [4]Rudolphi K, Gerwin N, Verzijl N, van der Kraan P, van den Berg W. Pralnacasan,an inhibitor of interleukin-1 beta converting enzyme, reduces joint damage in two murine models of osteoarthritis. Osteoarthr Cartil2003;11:738-46.
    [5]Scott, A. Midha, et,al. Correlation of gene and mediator expression with clinical endpoints in an acute interleukin-lb-driven model of joint pathology. Osteoarthritis and Cartilage (2009) 17,790-797
    [6]Fukui N, Zhu Y, Maloney WJ, Clohisy J, Sandell LJ. Stimulation of BMP-2 expression by pro-inflammatory cytokines IL-1 and TNF-alpha in normal and osteoarthritic chondrocytes. J Bone Joint Surg Am 2003;85-A(Suppl 3):59-66.
    [7]Goldring MB. Osteoarthritis and cartilage:the role of cytokines.Curr Rheumatol Rep 2000;2:459-65.
    [8]Yukiko Aida, Masao Maeno, et al. The effect of IL-1 (3 on the expression of inflammatory cytokines and their receptors in human chondrocytes. Life Sciences 79 (2006) 764-771
    [9]Ollivierre, F., Gubler, U., Towle, C.A., Laurencin. C., Treadwell, B.V.,1986. Expression of IL-l genes in human and bovine chondrocytes:a mechanism for autocrine control of cartilage matrix degradation. Biochemical and Biophysical Research Communications 141.904-911.
    [10]Guerne, P.A., Carson, D.A., Lotz, M.,1990. IL-6 production by human articularchondrocytes. Modulation of its synthesis by cytokines, growth factors, and hormones in vitro. Journal of Immunology 144,499-505.
    [11]Lotz, M., Terkeltaub, R., Villiger, P.,1992. Cartilage and joint inflammation. Regulation of IL-8 expression by human articular chondrocytes. Journal of Immunology 148,466-473.
    [12]Maier, R., Ganu, V., Lotz, M.,1993. Interieukin-11, an inducible cytokine in human articular chondrocytes and synoviocytes, stimulates the production of the tissue inhibitor of metalloproteinases. Journal of Biological Chemistry 268,21527-21532.
    [13]Campbell, I.K., Novak, U., Cebon, J., Layton, J.E., Hamilton, J.A.,1991. Human articular cartilage and chondrocytes produce hemopoietic colonystimulating factors in culture in response to IL-1. Journal of Immunology 147,1238-1246.
    [14]Campbell, I.K., Ianches, G., Hamilton. J.A.,1993. Production of macrophage colony-stimulating factor (M-CSF) by human articular cartilage and chondrocytes. Modulation by interleukin-1 and tumor necrosis factor alpha. Biochimica et Biophysica Acta 1182,57-63.
    [15]Dijkgraaf, L.C., de Bont, L.G., Boering, G., Liem, R.S.,1995. The structure, biochemistry, and metabolism of osteoarthritic cartilage:a review of the literature. Journal of Oral and Maxillofacial Surgery 53,1182-1192.
    [16]C.A. Dinarello, Interleukin-1, Cytokine Growth Factor Rev.8 (1997) 253-265.
    [17]Nam J, et al. Biomechanical thresholds regulate inflammation through the NF-kappaB pathway: experiments and modeling. PLoS One.2009;4(4):e5262. Epub 2009 Apr 16.
    [18). Mark S. Nanes. Tumor necrosis factor-a:molecular and cellular mechanisms in skeletal pathology. Gene Volume 321,4 December 2003, Pages 1-15
    [19]Yasuhara R, Miyamoto Y, Akaike T, et al. Interleukin-1 beta induces death in chondrocyte like ATDC5 cells through mitochondrial dysfunction and energy depletion in a reactive nitrogen and oxygen species-dependentmanner (J).Biochem J,2005; 389:315-23.
    [20]Tanabe, B.K., Abe, L.M., Kimura, L.H., Reinker, K.A., Yamaga, K.M.,1996. Cytokine mRNA repertoire of articular chondrocytes from arthritic patients, infants, and neonatal mice. Rheumatology International 16, 67-76.
    [21]Fernandes J,Tardif G,Martel-Pelletier J, In vivo transfer of interleukin-1 receptor antagonist gene in osteoarthritic rabbit knee joints prevention of osteoarthritis progression.Am J Pathol,1999,4:1559-1569.
    [22]Sally R,Pierre B,Babak J, et al.Transforming growth factor beta superfamily members:role in cartilage modeling plastic and reconstruction surgery. Arthritis Rheum,2000,4:801-811.
    [23]Mecgshol JA, Vincenti MP,Coon CI, et al.Interleukin-1 infuction of collagenase 3 (matrix metalloproteinase 13) gene expression in chondrocytes require p38,c-Jun N-terminal kinase, and nuclear factor Kappa-B differential regulation of collagenase 1 and clooagenase 3.Arthritis Rheum,2000,43:801-811.
    [24]Aida, Y., Maeno, M., Suzuki, N., Shiratsuchi, H., Motohashi, M., Matsumura, H.,2005. The effect of IL-1β on the expression of matrix metal loproteinases and tissue inhibitor of matrix metaloproteinases in human chondrocytes. Life Sciences 77,3210-3221.
    [25]Flannery CR, Little CB, Caterson B, et all Effects of culture conditions and exposure to catabolic stimulators(IL21 and retinoic acid) on the expression of matrix metallop roteinases (MMPs) and disintegrin metalloproteinases (ADAMs) by articular cartilage chondrocytes (J) 1MatrixBiol,1999; 18 (3):2251
    [26]Hwang SG, Yu SS, Poo H, el allC2Jun/activator protein-1 mediates interleukin-1 beta-induced dedifferentiation but not cyclooxygenase-2 expression in articular chondrocytes (J) 1J Biol Chem,2005; 280 (33):29780-7.
    [27]康思宁,刘强.骨关节炎病理过程与关节软骨特性的改变.中华关节外科杂志(电子版)2007年10月第1卷第4期。
    [28]homasB, Thirion S, HumbertL, et all Differentiation regulates interleukin-1 beta-induced cyclooxygenase-2 in human articular chondrocytes:role of p38 mitogen-activated protein kinase (J) 1Biochem J,2002; 36:367-73.
    [29]何耀华,翁习生,邱贵兴。白细胞介素1β、肿瘤坏死因子α在膝关节原发性骨关节病发病中的作用。中华骨科杂志1999;19(5):281
    [30]Tanabe, N., Maeno, M., Suzuki, N., Fujisaki. K., Tanaka, H.. Ogiso, B., Ito, K.,2005. IL-la stimulates the formation of osteoclast-like cells by increasing M-CSF and PGE2 production and decreasing OPG production by osteoblasts. Life Sciences 77,615-626.
    [31]James L,Collins A,John K, et al.Effects of human recombinant interleukin-1βon canine articular chondrocytes in three-dimensional culture.AJVR,2000,61:766-770.
    [32]查振刚,黄良任,姚平,等.膝骨关节炎患者血清TNF-Q与IL-6水平及其临床意义[J].广东医学,2005,26(2):191-193
    [33]傅欣,林霖, 张继英,于长隆.骨性关节炎兔关节软骨、关节液细胞因子IL-1 β和TNF-α变化的研究.中国运动医学杂志2007年11月第26卷第6期Chin J Sport s Med, Nov 2007,Vol.26,No.6
    [34]管兴发,,董金波等.骨关节炎患者血清及关节液中TNF-α与MMP-3含量及临床意义.青岛医药卫生2008年第40卷第1期
    [35]AlexanderD, Friedrich B, Abruzzese T, et al. The active form of leflunomide, HMR1726, facilitates TNF2alpha and IL-17 induced MMP-1 andMMP■3 exp ression[J]. Cell Physiol Biochem,2006,17 (122):69-78.
    [36]Pay S, Erdem H, Pekel A, et al. Synovial p roinflammatory cytokines and their correlation with matrix metallop roteinase-3 exp ression in BehOe t's disease. Does interleukin-1beta play a major role in BehOe t's synovitis? [J]. Rheumatol Int,2006,26 (7):608-613.
    [37]Webb GR, Westacott CI, Elson CJ. Chondrocyte tumor necrosis factor receptors and focal loss of cartilage in osteoarthritis. Osteoarthritis Cartilage 1997;5(6):427-437.
    [38]王晶,肖德明。性激素与骨关节炎。中华骨科杂志2001;1(1:50)
    [39]Punzi L, CaloL, PlebaniM. Clinical significance of cytokine determination in synovial fluid[J]. Critical Reviews in ClinicalLaboratoryScience,2002,39 (1):63-88.
    [40]S.L. Teitelbaum, Osteoclasts:what do they do and how do they do it?, Am. J. Pathol.170 (2007) 427-435.
    [41]J.M. Quinn, N.J. Horwood, J. Elliott, M.T. Gillespie,TJ. Martin, Fibroblastic stromal cells express receptor activator of NF-kappa B ligand and support osteoclast differentiation, J.Bone Miner. Res.15 (2000) 1459-1466.
    [42]H. Kitaura, M.S. Sands, K. Aya, et al., Marrow stromal cells and osteoclast precursors differentially contribute to TNF-alpha-induced osteoclastogenesis in vivo, J. Immunol.173 (2004) 4838-4846.
    [43]J. Lam, S. Takeshita, J.E. Barker, O. Kanagawa, F.P.Ross, S.L. Teitelbaum, TNF-alpha induces osteoclastogenesis by direct stimulation of macrophages exposed to permissive levels of RANK ligand, J. Clin. Invest.106(2000) 1481-1488.
    [44]J. Li, I. Sarosi, X.Q. Yan, et al., RANK is the intrinsic hematopoietic cell surface receptor that controls osteoclastogenesis and regulation of bone mass and calcium metabolism, Proc. Natl. Acad. Sci. USA 97 (2000) 1566-1571.
    [45]L.M. Childs, E.P. Paschalis, L. Xing, et al., In vivo RANK signaling blockade using the receptor activator of NFkappaB:Fc effectively prevents and ameliorates wear debrisinduced osteolysis via osteoclast depletion without inhibiting osteogenesis, J. Bone Miner. Res.17 (2002) 192-199.
    [46]S. Ochi, M. Shinohara, K. Sato, et al., Pathological role of osteoclast costimulation in arthritis-induced bone loss, Proc. Natl. Acad. Sci. USA 104 (2007)11394-11399.
    [47]K. Redlich. S. Hayer, R. Ricci, et al., Osteoclasts are essential for TNF-alpha-mediated joint destruction, J. Clin. Invest.110 (2002) 1419-1427.
    [48]Goodstone, N.J., Hardingham, T.E.,2002. Tumor necrosis factor_stimulates nitric oxide production more potently than interleukin-1_in porcine articular chondrocytes. Rheumatology 41 (8),883-891.
    [49]Hashimoto J, Yoshikawa H, Takaoka K, Shimizu N,Masuhara K, Tsuda T, et al. Inhibitory effects of tumor necrosis factor alpha on fracture healing in rats. Bone 1989; 10(6):453-7
    [50]Di Giovine FS, Nuki G, Duff GW. Tumour necrosis factor in synovial exudates[J]. Ann Rheum Dis, 1988,47 (9):768-772
    [51]Largo R, Alvarez-Soria MA, Diez-Ortego I, et al. Glucosamine inhibit s IL-1 beta-induced NFkappaB activation in human osteoarthritic chondrocytes. Osteoarthritis Cartilage,2003,11 (4):290-298
    [52]Homandberg GA, Umadi V, Kang H, et al. High molecular weight hyaluronan promotes repair of IL 1beta-damaged cartilage explant s form both young and oldbovines. Osteoarthritis Cartilage,2003,11 (3): 177-186. [J]=[c]
    [53]Oppenheim JJ, Matsushima K, Yoshimura T, Leonard EJ, Neta Relationship between interleukin I (IL-1), tumor necrosis factor (TNF) and a neutrophil attracting peptide (NAP-I). Agents Actions 1989;26:134-40.
    [54]Amin AR, Attur M, Patel RN, Thakker GD, Marshall PJ, Rediske J, et al. Super induction of cyclooxygenase-2 activity in human osteoarthritis-affected cartilage. Influence of nitric oxide. J Clin Invest 1997;99:1231-7.
    [55]Sandra K, Leo ABJ, Alison MB, et al. Different roles of tumour necrosis factoraand interleukin-1 in murine st reptococcal cell wall arthritis. Cytokine,1998,10:690-702.
    [56]Y. Xiang M.D., K. Masuko-Hongo M.D., et al. Expression of proteinase-activated receptors (PAR)-2 in articular chondrocytes is modulated by IL-1b, TNF-a and TGF-b. OsteoArthritis and Cartilage (2006)14,1163-117
    [57]J. Zwerina, S. Hayer, M. Tohidast-Akrad, et al., Single and combined inhibition of tumor necrosis factor, interleukin-1, and RANKL pathways in tumor necrosis factor-induced arthritis:effects on synovial inflammation, bone erosion, and cartilage destruction, Arthritis Rheum.50 (2004) 277-290.
    [58]Blom AB, van der Kraan PM, van den Berg WB. Cytokine targeting in osteoarthritis. Curr Drug Targets 2007;8:283-92.
    [59]Zhang X, Mao Z, Yu C. Suppression of early experimental osteoarthritis by gene transfer of interleukin-1 receptor antagonist and interleukin-10. J Orthop Res.2004;22:742-50.
    [60]Braddock M, Quinn A. Targeting IL-1 in inflammatory disease:new opportunities for therapeutic intervention. Nat Rev Drug Discov 2004;3:1-10.
    [61]Iqbal I, Fleischmann R. Treatment of osteoarthritis with anakinra. Curr Rheumatol Rep 2007;9:31-5.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700