前交叉韧带虚拟重建系统的应用及术后膝关节内结构的三维有限元研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     在膝关节韧带损伤中,前交叉韧带(Anterior cruciate ligament, ACL)损伤最为常见,关节镜下ACL重建术是ACL损伤后的常规治疗方法。虽然该治疗方法疗效确切,但仍存在10%-15%的失败和返修率,严重影响患者的膝关节功能。该手术成败的关键在于股骨和胫骨隧道的精确定位。近年兴起的计算机辅助外科(Computer Assisted Surgery, CAS)技术可以改善ACL隧道的精确性和手术效果,应用计算机辅助系统辅助实施ACL重建手术,有望获得比传统手术更好的疗效,降低ACL移植物的撞击率,从而降低手术失败率。
     ACL重建后,患者仍然存在较高的膝关节骨性关节炎的发生比例,可能原因为ACL重建后的膝关节软骨和半月板受到了超出正常范围的过大应力而发生过早的退变、磨损,从而产生骨性关节炎的临床症状,并大大影响患者生活质量。因此,选择术后最能恢复正常膝关节软骨和半月板生物力学的ACL重建方案显得尤为重要,准确评价ACL重建术后膝关节软骨和半月板的应力特点可以帮助医师筛选最佳的手术方案。膝关节三维有限元模型可以模拟术后ACL、软骨和半月板在不同运动和受力情况下的应力大小和分布特点,从而有效、便捷地地分析膝关节内各结构的生物力学特性并推测其损伤机制,还可以探索不同ACL重建方法对关节软骨和半月板应力的影响,筛选最佳的ACL重建方案,并为完善术后的康复训练、支具的设计等方案提供详细的数据。
     目的
     1.根据健康志愿者的双膝关节的CT和MRI资料,探索自主研发的计算机辅助ACL虚拟重建系统的可行性,该系统可虚拟设计出ACL重建方案。
     2.将自主研发的计算机辅助ACL重建系统-ACL detector设计出的虚拟ACL重建方案应用于临床,与传统ACL虚拟重建手术的临床疗效和术后移植物撞击率作对比,探讨计算机辅助ACL虚拟重建系统在ACL损伤治疗方面的临床可行性和优越性。
     3.建立健康志愿者及ACL损伤患者重建术后膝关节的三维有限元模型,分析不同研究对象的膝关节有限元模型在不同运动状态和受力情况下时,正常膝关节、计算机辅助和传统重建术后膝关节ACL、关节软骨、半月板所受应力大小和分布特点,以探索ACL重建术后发生骨性关节炎可能的原因及计算机辅助ACL重建手术对膝关节软骨、半月板应力的影响,并探寻最佳ACL重建方案。
     方法
     1.在前期成功建立50例健康志愿者精确的膝关节三维模型的基础上,随机选择其中一名健康志愿者为研究对象,采用1.5TMRI设备对研究对象伸直位双膝关节进行扫描,并用256排CT对其屈曲位双膝进行扫描,基于以上影像学资料,利用MIMICS14.11、Geomagic Studio2012软件进行双膝关节三维重建,并将三维重建模型导入自主研发的计算机辅助ACL虚拟重建系统-ACL detector中,设计出虚拟的ACL重建方案,包括ACL移植隧道的位置、角度、在股骨和胫骨上的出入口和附着点的面积。
     2.为进一步验证计算机辅助ACL虚拟重建系统-ACL detector的临床可行性和有效性,本研究于2009年3月-2012年10月期间共完成80例ACL单束重建手术,其中以ACL detector辅助指导ACL重建病例作为计算机辅助组(Computer Assisted Surgery group,CAS group),共40例,采用经典ACL单束重建病例作为传统手术对照组(Traditional Surgery group, TS group),共40例,术前均由查体和MRI检查确诊为ACL损伤,所有CAS组患者均接受双膝关节MRI及CT扫描,根据患者双膝关节的影像学资料,利用ACL detector设计出虚拟ACL重建方案,结合定位工具在术中按虚拟ACL重建方案进行重建,TS组患者接受经典传统ACL重建手术,术后对所有患者进行平均18个月的随访,对比两组患者的膝关节稳定性、关节功能主观评分如Lysholm评分和IKDC评分、ACL移植物撞击率,结果行统计学分析,手术前后及组间的膝关节评分比较采用t检验,两组患者膝关节稳定性和撞击率比较采用卡方检验,以α=0.05为检验标准。3.随机选取18名研究对象进行膝关节三维有限元研究,其中健康志愿者6例,作为正常对照组,CAS组术后患者6例,TS组术后患者6例,使用1.5TMRI设备对正常志愿者双膝关节、CAS组和TS组患者手术后的患侧膝关节伸直位进行扫描,利用MIMICS14.11、Geomagic Studio2012和ABAQUS6.10软件建立膝关节三维有限元模型;在屈曲0°、30°、60°、90°时,对所有模型股骨分别加载股骨后向134N和垂直350N的力,分析出ACL、股骨髁软骨、胫骨平台、半月板的应力分布和大小,将应力分布结果与其他膝关节生物力学研究相比较,以验证有限元模型的有效性,并对比分析各组ACL、股骨髁、胫骨平台软骨和半月板的应力分布及大小变化情况,结果采用方差分析,以α=0.05为检验标准。
     结果
     1.成功研发出国内先进的计算机辅助ACL虚拟重建系统-ACL detector,该系统可根据患者的膝关节影像学资料,设计出虚拟的ACL重建方案,包括ACL骨隧道的位置、角度、在股骨和胫骨上的出入口和ACL附着点的面积。
     2.将ACL detector成功应用于临床,并将CAS组患者与TS组患者进行对比,两组患者均获随访,随访时间12-24个月,平均18个月,术后切口均Ⅰ期愈合,无并发症发生,两组间术后Lachman试验阴性率无显著差异(P>0.05),轴移试验阴性率无显著差异(P>0.05);CAS组的Lysholm评分由术前(47.83±5.14)分提高到术后(93.28±3.34)分,P<0.05;IKDC评分由术前(42.25±4.46)分提高到术后(89.13±3.45)分,P<0.05;TS组的Lysholm评分由术前(46.85±7.23)分提高到术后(92.05±3.22)分,P<0.05; IKDC评分由术前(42.73±4.82)分提高到术后(88.03±3.25)分,P<0.05,两组组间术后的Lysholm和IKDC评分无统计学差异,P>0.05;成功重建出患者术后膝关节的三维数字化模型,可以从各角度观测ACL移植物的形态、角度及位置,并评估ACL移植物与髁间窝的撞击情况,三维模型上的ACL移植物撞击测量发现CAS组1例(2.50%)发生撞击,TS组8例(20.00%)发生撞击,两组间撞击率存在统计学差异(P<0.05)。
     3.成功建立正常人、计算机辅助ACL重建组和传统手术重建组术后的膝关节三维有限元模型,模型包括股骨、胫骨、软骨、半月板、ACL、PCL、MCL、LCL,各结构空间位置准确,在验证以上有限元模型的有效性后,在膝关节屈曲0°、30°、60°、90°情况下,对三维有限元模型施加股骨后向的134N力之后,各组ACL应力无统计学差异(P>0.05);施加350N的垂直力后,TS组患者的关节软骨和半月板的应力在各屈曲角度下均高于正常组及CAS组患者的的应力,差异具有统计学意义(P<0.05):而CAS组与正常对照组各部分的软骨应力在各屈曲角度及受力情况下差异均无统计学意义(P>0.05)。
     结论
     1.自主研制出国内先进的计算机辅助ACL重建系统-ACL detector,将其成功应用于临床后发现,该计算机辅助系统在改善膝关节功能方面与传统ACL重建手术相比无明显差异,但可以降低ACL术后撞击率,显示出较好的临床疗效,值得进一步推广应用。
     2.成功建立健康正常人和ACL重建术后患者的膝关节三维有限元模型,该模型可模拟膝关节不同运动状态下的受力情况,并可有效地分析膝关节ACL重建术后ACL、软骨、半月板等结构的在不同屈曲角度下的生物力学特性。
     3.计算机辅助和传统ACL重建术后受到股骨后向134N的力后,ACL移植物的生物力学特性无显著差异,且与正常对照组膝关节的ACL生物力学特性相似,在受到股骨垂直350N的力后,计算机辅助组患者的膝关节软骨及半月板的生物力学特性最接近正常对照组膝关节,但传统重建组的关节软骨和半月板应力高于正常组和计算机辅助组,提示计算机辅助技术有可能降低术后膝关节软骨和半月板的损伤风险,值得进一步深入研究。
Background
     Anterior cruciate ligament (ACL) injury is the most common ligament injury in knee joint. After injury, the ACL reconstruction under arthroscopy is the most common treatment. Although the treatment was applied widely, the rate of failure and revision after surgery was still high as10-15%. The accuracy of position for ACL tunnel affected the clinical result. Compare with traditional treatment, the computer assisted surgery (CAS) for ACL reconstruction which developed these years could improved the accuracy of tunnel, reduced the impingement rate of ACL graft and get better clinic effect.
     After ACL reconstruction, there is still high occurence rate of osteoarthritis in these patients, the probable cause is the abnormal stress on cartilage which exceed the normal range of stress in cartilage of knee joint, and may resulted in the degeneration or even wear or destroy of cartilage and meniscus. So, it is important to choose the best project of ACL reconstruction which can result in the most proper stress of cartilage after surgery. The3-dimensional finite element model of knee joint can simulate the different conditions of motion and force in knee joint, analyzed the biomechanical property of the ligament and cartilage in knee joint with different conditions precisvely. It is helpful for fully understanding the causes of the osteoarthritis and the biomechanical property and injury mechanics of major ligaments and cartilage in knee, and helpful for exploring the most proper method of ACL reconstruction, diagnosis and assessment method on related disorders injuries of ligaments and cartilage and surgical procedures of ACL reconstruction.
     Objective
     1. Based on the CT and MRI data of a healthy subject's bilateral knees, to invent the innovated CAS system which was advanced domestically for ACL reconstruction, it could design the virtual plan of ACL reconstruction.
     2. Applied the innovated CAS system-ACL detector in clinic for ACL reconstruction, compare with traditional ACL reconstruction, to explore the effect and advantage of CAS system for ACL reconstruction, establish the3D model of knee joint after ACL reconstruction and analyzed the position and impingement of ACL graft.
     3.In order to explore the causes of osteoarthritis after ACL reconstruction and find the optimal ACL reconstruction method which can result in the most suitable biomechanical condition of cartilage, it is neccerary to establish the3D finite element model of normal and postoperative knee joint with different ACL reconstruction methods, simulated the different flexion conditions and forces of knee joint, and analyzed the different stress conditions of ACL, cartilage in femur, tibia and meniscus.
     Methods
     1. Based on the successful experiences of establishing the3D model of knee joint at past, a healthy person was selected as a subject, whose bilateral knee received1.5T MRI at extensive position and256row CT scan at flexed position of90°, imported the MRI and CT data into the3D reconstructive software MIMICS14.11and Geomagic Studio2012to established the3D model of bilateral knees, then, imported the3D model of knee into the innovated CAS system-ACL Detector, it could designed the virtual plan of ACL reconstruction.
     2. In order to explore the feasibility, effect and advantage of innovated CAS system-ACL detector, we applied the CAS system in clinic. From March2009to October2012,80cases of ACL reconstruction surgery were finished. All the cases were diagnosed as ACL injury by physical examination and MRI. All the patients were divided into2groups, Computerized assisted group (CAS group) of patients (40cases) received ACL reconstruction assisted by the viutual plan of ACL detector; Traditional surgery group (TS group) of patients (40cases) with ACL injury received traditional ACL reconstruction. At18months after surgery, the surgical effect of2 groups were evaluated by knee stability test and subjective functional score, the digital3D model of postoperative knees were estabilished based on MRI and CT date and evaluated the position and impingement condition of ACL graft, the results were analyzed statistically.
     3.6healthy man (Normal group) and12patients (6cases in CAS group and6cases in TS group) were selected as subjects for finite element study, the healthy man's bilateral knee and the patients'operated knee s were scanned by1.5T MRI, imported MRI data of all subjects into the software such as MIMICS14.11, Geomagic Studio2012and ABAQUS6.10to establish3D finite element model (FEM) of knees, the FEM consisting of two bony structures, articular layers, menisci, and four principal ligaments. After verified the validity of the FEMs by comparing other FEM studies, added134N posterior femoral force and350N vertical force on the3D finite element model respectively at flexed angle of0°,30°,60°,90°, Analyzed the stress of ACL, cartilage and meniscucs of knee joint, Then, Compared the magnitude and distribution of stress in ACL, cartilage and meniscus among3groups. The statistical standard was α=0.05.
     Results
     1. The computerized assisted system-ACL detector was invented, it was advanced domesticlly. It could designed the virtual plan of ACL reconstruction based on subjects'MRI and CT date in knee joints, the virtual plan included the reconstruction tunnel's position, angle of ACL graft, the entrance and exit of virtual tunnel in femur and tibia and the proportion of graft's attachment.
     2.After applied the ACL detector in clinic, all cases in CAS and TS groups were followed up by12-24months (mean,18months), all the incisions healed well, and no complication was found. The results indicated that there was no significant difference in negative rate of lachman test (P>0.05) and pivot shift test (P>0.05) between two groups after surgery. After surgery, the CAS group's Lysholm score improved from47.83±5.14to93.28±3.34,(P<0.05), the IKDC score improved from42.25±4.46to89.13±3.45,(P<0.05); The TS group's Lysholm score improved from46.85±7.23to 92.05±3.27,(P<0.05), the IKDC score improved from42.73±4.82to88.03±3.25,(P <0.05). There was no significant difference in Lysholm and IKDC score after surgery between2group,(P>0.05). The3D models of operated knee were established succsefully and the position, angle and impingement of ACL graft could be observed. The results of ACL graft impingement measurement indicated that there was significant difference in Impingement rate of ACL in3D model,1case (2.50%) in CAS group and8cases (20.00%) in TS group,(P<0.05) between2groups after surgery.
     3. The3D finite element models (FEM) of healthy and operated knee were established successfully, the models consisting of femur, tibia, articular layers, meniscus, ACL, posterior cruciate ligament (PCL), medial collateral ligament (MCL) and lateral collateral ligament (LCL). After verified the validation of the FEM of each groups, applied posterior femoral134N force on femur at different flexion angle, there was no sigficant difference in stress of ACL among3groups (P>0.05). After applied350N vertical force on femur at different flexion angle, the stresses in most part of cartilage and meniscus of TS group were higher than CAS group and control group (P<0.05). There was no significant difference (P>0.05) in stresses of all parts in knee joint between CAS group and control group.
     Conclusion
     1. The innovated computer-assisted surgery system for ACL reconstruction-ACL detector which was advanced domestically was invented. It could designed the viutual plan for ACL reconstruction and could be applied in clinic succesufully. After applied the computer-assisted surgery technology in clinic, it could improve the function of knee, compared with traditional ACL surgery,it could reduce the impingement rate indicated the better effect of CAS technology.
     2. Established the3D finite element model of normal and operated knee joint after ACL reconstruction successfully, The stress in cartilage of femur, tibia, meniscus and ligaments in knee joint could be effectively analyzed.
     3. There was no significant difference on stress of ACL among3groups after ACL reconstruction. The stress on cartilage of femur, tibia and meniscus of CAS group were similar to normal group, and lower than some part of cartilage in CS group. Indicated the causes of complications after traditional ACL reconstruction and the advantages of CAS technology..
引文
[1]. Frank RM, McGIll KC, Cole BJ, et al. An institution-specific analysis of ACL reconstruction failure [J]. J Knee Surg,2012,25 (2):143-149
    [2]. Van Ginckel A; Verdonk P; Victor J, et al. Cartilage status in relation to return to sports after anterior cruciate ligament reconstruction [J]. Am J Sports Med.2013,41(3):550-9
    [3]. Wright RW, Gill CS, Chen L. et al. Outcome of revision anterior cruciate ligament reconstruction:a system review [J].J Bone Joint Surg Am,2012,94 (6):531-536.
    [4]. Petersen W, Forkel P, Achtnich A, et al. Anatomic reconstruction of the anterior cruciate ligament in single bundle technique [J]. Oper Orthop Traumatol,2013,25 (2),185-204.
    [5]. Herbort M, Lenschow S, Fu FH, et al. ACL mismatch reconstructions:influence of different tunnel placement strategies in single-bundle ACL reconstructions on the knee kinematics. Knee Surg Sports Traumatol Arthrosc,2010,18(11):1551-1558.
    [6]Fu FH, Musahi V. Anatomic ACL reconstruction. Preface [J]. Clin Sports Med,2013,32 (1): 15-16.
    [7]. Kenji Hara, Tomoyuki Mochizuki, Ichiro Sekiya, et al. Anatomy of normal human anterior cruciate ligament attachments evaluated by divided small bundles. Am J Sports Med,2009,37(12), 2386-2391.
    [81. Stefano Zaffagnini. Tiburtius V. Klos. et al. Computer-Assisted Anterior Cruciate Ligament Reconstruction:An Evidence-Based Approach of the First 15 Years. The Journal of Arthro and Rel Sur,2010,26(4):546-55.
    [9]. Zhu W,Lu W,Han Y,et al. Application of a computerised navigation technique to assist arthroscopic anterior cruciate ligament reconstruction. International Orthopaedics,2013,37 (2):233-238
    [10]. Cheng T, Zhang GY.Zhang XL, et al. Does computer navigation system really improve early clinical outcomes after anterior cruciate ligament reconstruction? A meta-analysis and systematic review of randomized controlled trials. Knee.2012,19(2):73-77.
    [11]. Maffulli N, Osti L. ACL stability. Function, and arthritis:what have we been missing? Orthopedics,2013,36 (2):90-92.
    [12].汪田福,郝智秀,高相飞.前交叉韧带生物力学特性及其损伤对膝关节稳定性的影响[J].清华大学学报:自然科学版,2010(7):1005-1008.
    [13]. Hirse J, Nishioka H, Okamoto N, et al. Articular cartilage lesions increses early cartilage degeneration in knees treated by anterior crucaite ligament reconstruction:Tlrho mapping evaluation and 1-year follow-up [J]. Am J Sports Med,2013,41(10):2353-6.
    [14]Shirazi R, Shirazi-Adl A. Computational biomechanics of articular cartilage of human knee joint:effect of osteochondral defects[J]. J Biomech,2009,42(15):2458-2465.
    [15]. Pena E, Calvo B, Martinez M A, Palanca D, Doblare M. Finite element analysis of the effect of meniscal tears and meniscectomies on human knee biomechanics[J]. Clin Biomech,2005, 20(5):498-507.
    [1].Taylor KA, Cutcliffe HC, Queen RM, et al. In vivo measurement of ACL length and relative strain during walking [J]. J Biomech,2013,46 (3):478-83.
    [2]Amis AA. The functions of the fibre bundles of the anterior cruciate ligament in anterior drawer, rotational laxity and the pivot shift [J]. Knee Surg Sports Traum Arthr,2012,20(4): 613-620.
    [3]Francesca Cimino, Brasdfrod Acott Volk, Don Setter. Anterior ligament injury:Diagnosis, manangement, and prevention.[J]American family physician,2010,82(8):917-922
    [4]Herbort M, Lenschow S, Fu FH, et al. ACL mismatch reconstructions:influence of different tunnel placement strategies in single-bundle ACL reconstructions on the knee kinematics. Knee Surg Sports Traumatol Arthrosc,2010,18(11):1551-1558.
    [5]Petersen W, Forkel P, Achtnich A, et al. Anatomic reconstruction of the anterior cruciate ligament in single bundle technique [J]. Oper Orthop Traumatol,2013,25 (2),185-204.
    [6].Lprade CM, James EW, Engebretsen L,et al.Anterior medial meniscal root avulsions due to malposition of the tibial tunnel during anteriro cruciate ligament reconstruction:two case reports [J]. Knee Surg Sports Trumatol Arthrosc,2014.
    [7]. Petersen W, Forkel P, Achtnich A, et al. Anatomic reconstruction of the anterior cruciate ligament in single bundle technique [J]. Oper Orthop Traumatol,2013,25 (2),185-204. [8] Fu FH, Musahi V. Anatomic ACL reconstruction. Preface [J]. Clin Sports Med,2013,32 (1): 15-16.
    [9]陈文栋,李彦林,许鹏等.正常人与尸体膝关节MRI二维图像重建前交叉韧带三维模型的比较研究.中国修复重建外科杂志,2011:25(11):1314-1318.
    [10].李彦林,许鹏,韩睿等.基于MRI二维影像下股骨髁间窝的三维可视化研究,中国修复重建外科杂志;2012,26(10):89-93.
    [11]陈文栋,李彦林,许鹏等.基于MRI建立膝关节前交叉韧带三维数字化模型.中国组织工程研究与临床康复.2011,15(52):9725-9728.
    [12]. Boisgard S, Levai JP, Geiger B, et al. Study of variations in length of the anterior cruciate ligament during flexion of the knee:use of a 3D model reconstructed from MRI sections [J]. Surg Radiol Anat.1999,21(5):313-317.
    [13]Plaweskia S, Rossia J, Merloz P, et al. Analysis of anatomic positioning in computer-assisted and conventional anterior cruciate ligament reconstruction[J]. Ortho & Traumat,2011 (97):80-85
    [14]. Westermann R, Sybrowsky C, Ramme A, et al. Three-Dimensional characteristion of the anteriror cruciate ligament's femoral footprint [J]. J Knee Sug,2014.27 (1):53-58.
    [15]. Youn YS, Cho SD, Eo J, et al.3D CT analysis of femoral and tibial tunnel position safter modified transtibial single bundle ACL reconstructionwith varus and internal rotation of the tibia [J]. Knee,2013,20(4):272-276.
    [16]. Xerogeanes JW,Hammond KE,Todd DC, et al. Anatomic landmarks utilized for physeal-sparing, anatomic anterior cruciate ligament reconstruction:an MRI-based study[J]. J Bone Joint Surg Am,2012,94(3):268-276.
    [17].Crawfrod R, Walley G, Bridggman S, et al. Magnetic resonance imaging versus arhtroscopy in the diagnosis of knee pathology, concentrating on meniscal lesions and ACL tear:a systematic review [J]. Br Med Bull,2007,84:5-23.
    [18].刘艳琪,胡亨伍.基于EM算法的混合模型医学图像分割.计算机工程,2012,38(2):231-233.
    [19].于林森,张田文.用于图像分割的滤波EM算法[J].计算机学报,2006,29(6):920-927.
    [20]. Rodriguez-Alvarez MJ, Soriano A, Iborra A, et al. Expectation maximization (EM) algorithms using polar symmetries fro computed tomography (CT) image reconstruction. Comput Biol Med,2013,43(8):1053-61.
    [21].Angelis GI, Reader AJ, Markiewicz PJ, et al. Acceleration of image-based resolution modeling reconstruction using an Expectation maximization nested algorithm [J]. Phys Med Biol, 2013,58(15):5061-83
    [22]. Roceh A, Ribes D, Bach-Cuadra M, et al. On the convergence of EM-like algorithms for image segmentation using Markov random fields [J]. Med image Anal,2011,15(6):830-9.
    [23].Zhou Z,You J, Heng PA, et al. Cardiac MR image segmentation and left ventricle surface reconstruction based on level set method. Stud health technol inform.2005,111:629-632.
    [24]. Xia J, Ip HH, Samman N, et al. Three-dimensional virtual-reality surgical planning and soft-tissue prediction for orthognathic surgery J. IEEE Trans Inf Technol Biomed,2001.5(2): 97-107.
    [25]. Timmerman ME. Ceulemans E. De Roover K. et al. Subspace K-means clustering [J].Behav Res Methods,2013,45(4):1011-23.
    [26]. Sven Shafizadeh, Maurice Balke, Stefan Wegener, et al. Precision of Tunnel Positioning in Navigated Anterior Cruciate Ligament Reconstruction. The J of Arthrand Re Surg,2011,27(9): 1268-1274.
    [27]. Kawakami Y, Hiranaka T, Matsumoto T, et al. The accuracy of bone tunnel position using fluoroscopic-based navigation system in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc.2012,20(8):1503-1510
    [28]Forsythe B, Kopf S, Wong AK, et al. The location of femoral and tibial tunnels in anatomic double-bundle anterior cruciate ligament reconstruction analyzed by three-dimensional computed tomography models. J Bone Joint Surg Am.2010;92:1418-1426.
    [29]Kawakami Y; Hiranaka T; Matsumoto T, et al. The accuracy of bone tunnel position using fluoroscopic-based navigation system in anterior cruciate ligament reconstruction. Knee Surg Sports Traumatol Arthrosc.2012,20(8):1503-1510
    [30]. Sati M, Staubli H, Bourquin Y, Kunz M, Nolte LP. Real-time computerized in situ guidance system for ACL graft placement. Comput Aided Surg.2002;7:25-40.
    [31].吴昊,Stephane P, Phlippe M.计算机辅助手术系统与关节镜下前交叉韧带重建。中国修复重建外科杂志,2008,22(1):19-25。
    [32].熊岳山,徐凯,王彦臻,等.虚拟膝关节镜手术仿真系统的关键技术研究J.国防科技大学学报,2007,29(1):76-80.
    [33]. Anthony CA,Duchman K, McCunniff P,et al. Double-bundle ACL reconstruction:Novice surgeons utilizing computer-assisted versus experienced surgeons.2013,10 (4) 256-264.
    [34]. Dessenne V, Lavallee S, Julliard R,et al. Computer-assisted knee anterior cruciate ligament reconstruction:first clinical tests.J Image Guid Surg.1995;1(1):59-64
    [1]Petersen W, Forkel P, Achtnich A, et al. Anatomic reconstruction of the anterior cruciate ligament in single bundle technique [J]. Oper Orthop Traumatol,2013,25 (2),185-204.
    [2]. Kim HS, Seon JK, Jo AR, et. Al. Current Trends in Anterior Cruciate Ligament Reconstruction [J]. Knee Surg Relat Res.2013,25(4):165-173.
    [3]. Xu H; Zhang C. Can coronal oblique angle be translated to clock-face position in femoral tunnel preparation in ACL reconstruction [J]? Arthroscopy,2010,26(12).
    [4]. Grant JA. Updating Recommendations for Rehabilitation after ACL reconstruction:A review [J]. Clin J Sport Med.2013,23(6):501-502.
    [5]Wright RW, Fetzer GB. Bracing after ACL reconstruction:a systematic review [J]. Clin Orhthop Relat Res.2007,455:162-168.
    [6].Amis AA. Te functions of the fibre bundles of the anterior cruciate ligament in anterior drawer, rotational laxity and the pivot shift [J]. Knee Surg Sports Traum Arthr,2012,20 (4):613-620.
    [7].Francesca Cimino, Brasdfrod Acott Volk,Don Setter. Anterior ligament injury:Diagnosis, manangement,and prevention [J]. American family physician,2010,82(8):917-922
    [8]Alentorn-Geli E, Mendiguchia J, Samuelsson K,et al. Prevention of non-contact anterior cruciate ligament injuries in sports. Part Ⅱ:systematic review of the effectiveness of prevention programmes in male athletes [J]. Knee Surg Sports Traumatol Arthrosc.2014,22 (1):16-25.
    [9]Joseph AM, Collins CL, Henke NM,et al.A multisport epidemiologic comparison of anterior cruciate ligament injuries in high school athletics [J]. J Athl Train.2013,48(6):810-7.
    [10]Webster KE, Feller JA, Leigh WB,et al.Younger patients are at increased risk for graft rupture and contralateral injury after anterior cruciate ligament reconstruction[J].Am J Sports Med.2014,42 (3):641-7
    [11]Colvin AC; Shen W; Musahl Vet al. Avoiding pitfalls in anatomic ACL reconstruction [J].Knee Surg Sports Traumatol Arthrosc,2009,17 (8):956-63.
    [12].Herbort M, Lenschow S, Fu FH, et al. ACL mismatch reconstructions:influence of different tunnel placement strategies in single-bundle ACL reconstructions on the knee kinematics [J]. Knee Surg Sports Traumatol Arthrosc,2010,18(11):1551-1558.
    [13]. Fu FH, Musahi V. Anatomic ACL reconstruction. Preface [J]. Clin Sports Med,2013,32 (1): 15-16.
    [14]Zantop T, Petersen W, Sekiya JK, et al. Anterior cruciate ligament anatomy and function relating to anatomical reconstruction.knee Surg Sports Traumatol Arthrosc[J].2006; 14(10):982-992.
    [15]Colombet P. Robinson J, Christel P. et al. Morphology of Anterior Crueiate Ligament Attaehmenis for Anatomic Reconstruction:A Cadaveric Disseetion and RadiograPhic Study.Arthroscopy[J].2006; 22 (9):984-992.
    [16]Hensler D, Working ZM, Illingworth KD,et al Correlation between femoral tunnel length and tunnel position in ACL reconstruction [J]. J Bone Joint Surg Am.2013,20:95(22):2029-34.
    [17]Xu H, Zhang CL, Li GZ, et al.Anatomic assessment of femoral tunnel by transtibial drilling technique in double-bundle anterior cruciate ligament reconstruction:an in vivo study [J]. Chin J Traumatol.2013; 16(5):259-64
    [18]Takeda Y, Iwame T, Takasago T, et al Comparison of tunnel orientation between transtibial and anteromedial portal techniques for anatomic double-bundle anterior cruciate ligament reconstruction using 3-dimensional computed tomography [J].Arthroscopy.2013; 29(2):195-204
    [19]. Behrend H, Stutz G, Kessler MA, et al. Tunnel placement in anterior cruciate ligament (ACL) reconstruction:quality control in a teaching hospital.Knee Surg Sports Traumatol Arthrosc [J]. 2006; 14(11):1159-65.
    [20].Iriuchishima T, Tajima G, Ingham SJ, et al. PCL to graft impingement pressure after anatomical or non-anatomical single-bundle ACL reconstruction [J].Knee Surg Sports Traumatol Arthrosc,2012,20 (5):964-9.
    [21].Iriuchishima T, Shirakura K, Fu FH, et al. Graft impingement in anterior cruciate ligament reconstruction [J]. Knee Surg Sports Traumatol Arthrosc,2013,21 (3):664-70.
    [22]. Iriuchishima T; Shirakura K; Yorifuji H. et al.Size comparison of ACL footprint and reconstructed auto graft [J].Knee Surg Sports Traumatol Arthrosc.2013.21(4):797-803
    [23]. Kyung BS; Kim JG; Chang M, et al. Anatomic double-bundle reconstruction techniques result in graft obliquities that closely mimic the native anterior cruciate ligament anatomy[J]. Am J Sports Med.2013.41(6):1302-9
    [24]Seo SS1, Kim CW, Kim JG, Clinical results comparing transtibial technique and outside in technique in single bundle anterior cruciate ligament reconstruction [J].Knee Surg Relat Res.2013; 25(3):133-140.
    [25]Shin YS1, Ro KH, Lee JH, et al. Location of the femoral tunnel aperture in single-bundle anterior cruciate ligament reconstruction:comparison of the transtibial, anteromedial portal, and outside-in techniques [J]. Am J Sports Med.2013,41(11):2533-9
    [26]. Yamazaki J; Muneta T; Koga H, et al. Radiographic description of femoral tunnel placement expressed as intercondylar clock time in double-bundle anterior cruciate ligament reconstruction [J].Knee Surg Sports Traumatol Arthrosc,2011,19(3):418-23.
    [27]. Azzam MG; Lenarz CJ; Farrow LD, et al. Inter-and intraobserver reliability of the clock face representation as used to describe the femoral intercondylar notch [J]. Knee Surg Sports Traumatol Arthrosc.2011,19(8):1265-70
    [28]. Kai S; Kondo E; Kitamura N, et al.A quantitative technique to create a femoral tunnel at the averaged center of the anteromedial bundle attachment in anatomic double-bundle anterior cruciate ligament reconstruction [J]. BMC Musculoskelet Disord.2013,14:189.
    [29]. Rue JP; Ghodadra N; Lewis PB, et al. Femoral and tibial tunnel position using a transtibial drilled anterior cruciate ligament reconstruction technique [J]. J Knee Surg.2008,21 (3):246-9
    [30]Hughes AW, Dwyer AJ, Govindaswamy R, et al. The use of intra-operative fluoroscopy for tibial tunnel placement in anterior cruciate ligament reconstruction [J].Bone Joint Res.2012 Oct 1;1(10):234-7
    [31]Verhelst L, Van Der Bracht H, Oosterlinck D,et al.ACL repair with a single or double tunnel:a comparative laboratory study of knee stability using computer navigation.Acta Orthop Belg[J]. 2012;78(6):771-8
    [32]. Sven Shafizadeh, Maurice Balke, Stefan Wegener, et al. Precision of Tunnel Positioning in Navigated Anterior Cruciate Ligament Reconstruction [J]. The Journal of Arthroscopic and Related Surgery,2011.27(9):1268-1274.
    [33]Zhu W,Lu W,Han Y,et al. Application of a computerised navigation technique to assist arthroscopic anterior cruciate ligament reconstruction [J]. International Orthopaedics,2013,37 (2):233-238
    [34]. Kawakami Y, Hiranaka T, Matsumoto T, et al. The accuracy of bone tunnel position using fluoroscopic-based navigation system in anterior cruciate ligament reconstruction [J]. Knee Surg Sports Traumatol Arthrosc.2012,20 (8):1503-1510
    [35]Forsythe B, Kopf S, Wong AK, Martins CA, Anderst W, Tashman S, Fu FH. The location of femoral and tibial tunnels in anatomic double-bundle anterior cruciate ligament reconstruction analyzed by three-dimensional computed tomography models [J]. J Bone Joint Surg Am. 2010;92:1418-1426.
    [36]. Bernard M; Hertel P. Intraoperative and postoperative insertion control of anterior cruciate ligament-plasty. A radiologic measuring method (quadrant method) [J]. Unfallchirurg.1996,99 (5):332-40
    [37]. Klos TV; Harman MK; Habets RJ. et al. Locating femoral graft placement from lateral radiographs in anterior cruciate ligament reconstruction:a comparison of 3 methods of measuring radiographic images. Arthroscopy [J].2000V16N5:499-504
    [38].吴昊,Stephane P, Phlippe M.计算机辅助手术系统与关节镜下前交又韧带重建[J].中国修复重建外科杂志,2008,22(1):19-25。
    [39].熊岳山,徐凯,王彦臻,等.虚拟膝关节镜手术仿真系统的关键技术研究[J].国防科技大学学报,2007,29(1):76-80.
    [40]陈文栋,李彦林,许鹏等.正常人与尸体膝关节MRI二维图像重建前交叉韧带三维模型的比较研究[J].中国修复重建外科杂志,2011,25(11):1314-1318.
    [41].李彦林,许鹏,韩睿等.基于MRI二维影像下股骨髁间窝的三维可视化研究,中国修复重建外科杂志[J].2012.26(10):89-93.
    [42]陈文栋,李彦林,许鹏等.基于MRI建立膝关节前交义韧带三维数字化模型[J].中国组织工程研究与临床康复.2011,15(52):9725-9728.
    [1]. Frank RM, McGIll KC, Cole BJ, et al. An institution-specific analysis of ACL reconstruction failure [J]. J Knee Surg,2012,25 (2):143-149
    [2]. Ma Y, Ao YF, Yu JK, et al. Faulied anterior cruciate ligament reconstruction:analysis of factors leading to instability after primary surgery [J].Chin Med J (Engl),2013,126 (2):280-285
    [3]. Wright RW, Gill CS, Chen L, et al. Outcome of revision anterior cruciate ligament reconstruction:a system review [J].J Bone Joint Surg Am,2012,94 (6):531-536.
    [4]. Van Ginckel A; Verdonk P; Witvrouw E, et al. Cartilage adaptation after anterior cruciate ligament injury and reconstruction:implications for clinical management and research? A systematic review of longitudinal MRI studies [J]. Osteoarthritis Cartilage.2013.21(8):1009-24
    [5]Warner MD; Taylor WR; Clift SE, et al. Finite element biphasic indentation of cartilage:a comparison of experimental indenter and physiological contact geometries [J]. Proc Inst Mech Eng H.2001,215(5):487-96
    [6]Pena E, Martinez M A, Calvo B, Palanca D. Doblare M. A finite element simulation of the effect of graft stiffness and graft tensioning in ACL reconstruction [J]. Clin Biomech (Bristol, Avon).2005, 20(6):636-644
    [7]Shirazi R, Shirazi-Adl A. Computational biomechanics of articular cartilage of human knee joint: effect of osteochondral defects [J]. J Biomech.2009.42(15):2458-2465.
    [8]. Higginson G R, Snaith J E. The mechanical stiffness of articular cartilage in confined oscillating compression [J]. Eng in Med,1979,8(1):11-14.
    [9]. Li G, Lopez O, Rubash H. Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis[J]. J Biomech Eng,2001, 123(4):341-346.
    [10]. LeRoux M A, Setton L A. Experimental and biphasic FEM determinations of the material properties and hydraulic permeability of the meniscus in tension[J]. J Biomech Eng,2002,124(3): 315-321.
    [11]. Wan C; Hao Z; Wen S, et al. The effect of the variation in ACL constitutive model on joint kinematics and biomechanics under different loads:a finite element study [J]. J Biomech Eng.2013.135(4):41-52
    [12]. El Sayed T; Mota A; Fraternali F, et al.A variational constitutive model for soft biological tissues [J]. J Biomech.2008,41(7):1458-66
    [13]. Yang N H, Nayeb-Hashemi H, Canavan P K, Vaziri A. Effect of frontal plane tibiofemoral angle on the stress and strain at the knee cartilage during the stance phase of gait[J]. J Orthop Res, 2010,28(12):1539-1547.
    [14]. Darryl D. D'Lima, Peter C. Chen, W. Colwell C J. Osteochondral grafting:effect of graft alignment, material properties, and articular geometry [J]. Open Orthop J.2009;3:61-68.
    [15]Cohen Z A, Henry J H, McCarthy D M, Mow VC, Ateshian GA. Computer simulations of patellofemoral joint surgery patient-specific models for tuberosity transfer[J]. Am J Sports Med, 2003,31(1):87-98.
    [16]Li G, Park S E, DeFrate L E, Schutzer ME, Ji L, Gill TJ, Rubash HE. The cartilage thickness distribution in the tibiofemoral joint and its correlation with cartilage-to-cartilage contact [J]. Clin Biomech,2005,20(7):736-744.
    [17]. Guess TM; Liu H; Bhashyam S, et al. A multibody knee model with discrete cartilage prediction of tibio-femoral contact mechanics [J]. Comput Methods Biomech Biomed Engin. 2013,16(0).256-70
    [18]Song YH, Debski RE, Musahl V. et al. A three-dimensional finite element model of the human anterior cruciate ligament:A computational analysis with experimental validation [J]. J Biomech, 2004,37(3):383-390.
    [19]Gabriel M T, Wong EK, Woo SL Y, et al. Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads [J]. Journal of Ortho Res,2004,22(1):85-89.
    [20]万超,郝智秀,温诗铸.前交叉韧带力学特性差异对膝关节有限元仿真结果的影响[J].医用生物力学,2012,27(4):375-380.
    [21]. Suggs JF;Li G; Park SE. et al.Function of the anterior cruciate ligament after unicompartmental knee arthroplasty:an in vitro robotic study [J]. J Arthroplasty.2004V,19(2):224-9
    [22]Zhang X, Jiang G, Wu C, et al. A Subject-specific Finite Element Model of the Anterior Cruciate Ligament [C]. Conf Proc IEEE Eng Med Biol Soc.2008.891-894.
    [23]Li G. Lopez O. Rubash H. Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis [J]. J Biomech Eng. 2001, 123(4):341-346.
    [24]. Kazemi M; Dabiri Y; Li LP, et al. Recent advances in computational mechanics of the human knee joint [J]. Comput Math Methods Med.2013,2013:718423
    [25]. Wilson W; van Donkelaar CC; van Rietbergen R, et al. The role of computational models in the search for the mechanical behavior and damage mechanisms of articular cartilage [J]. Med Eng Phys.2005,27(10):810-26
    [26]张春宝,马轩祥,张少峰,等.跟骨内种植体植入牙槽骨吸收的中切牙的有限元应力分析[J].实用口腔医学杂志2003;(19):103.
    [27]Jia,X. Zhang M, Lee, WC. Load transfer mechanics between trans-tibial prosthetic socket and residual limb dynamic effects [J]. J Biomech.2004;37(9):1371-1377.
    [28]. Jaumard NV; Welch WC, et al. Spinal facet joint biomechanics and mechanotransduction in normal, injury and degenerative conditions [J]. J Biomech Eng.2011,133(7):071010
    [30]E. Pena, B. Calvo, M.A. Martinez, et al. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint [J]. Journal of Biomechanics,2006,39:1686-1701.
    [31]Ozkan A; Atmaca H; Mutlu I, et al.Stress distribution comparisons of foot bones in patient with tibia vara:a finite element study [J]. Acta Bioeng Biomech.2013,15(4):67-72
    [32]Moojen TM, Snel JG, Ritt MJ,et al.In vivo analysis of carpal kinematics and comparative review of the literature [J]. J Hand Surg Am,2003;28(1):81-87.
    [33]. Beynnon J. A sagittal plane model of the knee and cruciate ligaments with application of a sensitivity analysis [J]. Jof Biomech Eng,1998,118:227-239.
    [34]Au G, James R, Adrian B. A three-dimensional finite element stress analysis for tunnel placement and buttons in anterior cruciate ligament reconstructions [J]. Jof Biomech,2005,38: 827-832.
    [35]Pena E, Calvo B, Martinez M A. Influence of the tunnel angle in ACL reconstructions on the biomechanics of the knee joint [J]. J of Biomech,2006,21:508-516.
    [36]Jiang Y, Jason S, Michael M. Stresses and strains in the medial meniscus of an ACL deficient knee under anterior loading:A Finite element analysis with image-based experimental validation [J]. Journal of Biomech Eng,2006,128:135-141.
    [37]. Parsa A; Ibrahim N; Hassan B. et al. Influence of cone beam CT scanning parameters on grey value measurements at an implant site[J]. Dentomaxillofac Radiol.2013-42 (3):798-847
    [38]. Sousa MV; Vasconcelos EC; Janson G, et al. Accuracy and reproducibility of 3-dimensional digital model measurements[J]. Am J Orthod Dentofacial Orthop.2012,142(2):269-73
    [39]Frederick HS, Gino B, Alfred T. Elastic energy storage in human articular cartilage:esti maton of the elastic modulus fortype Ⅱ collagen and changes ass ociated with osteoarthritis[J]. Matrix Biol ogy,2002,21 (2):129-137.
    [40]. Hosseini A,Vandevelde SK, KozanekM, et al. In2 vivo time dependent articular cartilage contact behavior of the tibiofemoral joint [J]. Osteoarthritis and Cartilage,2010,18 (7):909-916.
    [41]. Hosseini A, Van de Velde S, Gill TJ, et al. Tibiofemoral cartilage contact biomechanics in patients after reconstruction of a ruptured anterior cruciate ligament [J]. J Orthp Res,2012,30 (11): 1781-8
    [42]. Grorge AC,Murrell K, Maddali S, et al. The effects of time course after anterior cruciate ligament injury in correlati on with meniscal and cartilage loss [J]. Am J SportsMed,2001,29 (1):9-21
    [43]黄荣瑛,许勇刚,胡磊,等胫股关节接触特性及含前交叉韧带重建隧道软骨应力仿真研究[J].航天医学与医学工程.201023(5):329-334.
    [44].黄荣瑛,许勇刚,王田苗.移植隧道对股骨力学性能的影响.工程力学[J],航天医学与医学工程.2010,27(3):251-256
    [45]郑学美.膝关节损伤修复后的生物力学分析.中国组织工程研究,2012,16(21):3987-3990.
    [1]. Stiehl JB, Konermann WH, Haaker RG, et al. Navigation and MIS in Orthopedic Surgery. Bedin:Springer,2006:306-314,315-323,324-332.
    [2]. Shelbourne KD, Davis TJ, Patel DV, et al. The natural history of acute, isolated, nonoperatively treated posterior cruciate ligament injuries [J]. A prospective study. Am J Sports Med.1999;27(3): 276-283
    [3]. Jarvela MD. Anterior cruciate ligament reconstruction with a bone-patellar tendon-bone autograft:a long-term follow-up of 101 patients [J]. Pittsbg Orthop J.2002; 13:57-59
    [4]. Ait Si Selmi T, Fithian D, Neyret P. The evolution of osteoarthritis in 103 patients with ACL reconstruction at 17 years follow-up [J]. Knee.2006; 13:353-358
    [5].Hart AJ, Buscombe J, Malone A, et al. Assessment of osteoarthritis after reconstruction of the anterior cruciate ligament. A study using single-photon emission computed tomography at ten years [J]. J Bone Joint Surg Br,2005; 87:1483-1487.
    [6]. Koh JL. Navigation and ACL reconstruction. Presented at the 25th Annual Meeting of the Arthroscopy Association of North America, Hollywood, FL, May,2006.
    [7]. Musahl V, Burkart A, Debski RE, et al. Anterior cruciate ligament tunnel placement: comparison of insertion site anatomy with the guidelines of a computer-assisted surgical system [J]. Arthroscopy.2002; 19:154-160.
    [8]. Topliss C, Webb J. An audit of tunnel position in anterior cruciate ligament deficient knee [J]. Knee.2001; 8:59-63.
    [9]. Giffin JR, Harner CD. Failed anterior cruciate ligament surgery [J]. Am J Knee Surg.2001; 14:185-192.
    [10]. Burkart A, Debski RE, McMahon PJ, Rudy T, Fu FH et al. Precision of ACL tunnel placement using traditional and robotic techniques [J]. Comput Aided Surg.2001; 6:270-278
    [11].Takumi Nakagawa, Hisatada Hiraoka, Akira Fukuda, et al. Fluoroscopic-based navigation-assisted placement of the tibial tunnel in revision anterior cruciate ligament reconstruction [J]. The Journal of Arthroscopic and Related Surgery.2007; Vol 23, No 4 (April),2007; 443. el-443.e4
    [12]. Sven Shafizadeh, Hans-J6rg Huber. Principles of fluoroscopic based navigation in anterior cruciate ligament reconstruction [C]. Operative Techniques in Orthopaedics.2005;70-75.
    [13]. Sati M, Staubli H, Bourquin Y, Kunz M, Nolte LP. Real-time computerized in situ guidance system for ACL graft placement [J]. Comput Aided Surg.2002;7.25-40.
    [14]. De Rycke J. Clinical experiences for ACL-repair with the Surgigate System. In:Stiehl JB, Konermann WH, Haaker RG, eds. Navigation and Robotics. New York, NY:Springer; 2004:397-399.
    [15]. Plaweski S, Cazal J, Rosell P, et al. Anterior cruciate ligament reconstruction using navigation: a comparative study on 60 patients [J]. Am J Sport Med.34:542-552
    [16]. Ahn JH. Yang HS, Jeong WK, et al-Arthroscopic transtibial posterior cruciate ligament reconstruction with preservation of posterior cruciate ligament fibers:clinical results of minimum 2-year follow-up [J]. Am J Spods Med.2006; 34(2):194-204.
    [17]. Colombet P, Robinson J, Christel P, et al. Using navigation to measure rotation kinematics during ACL reconstruction [J]. Clin Orthop Relat Res 2007; 454:59-65
    [18]. Martelli S, Zaffagnini S, Bignozzi S, et al. Description and validation of a navigation system for intra-operative evaluation of knee laxity [J]. Comput Aided Surg 2007; 12:181-188
    [19]. Niels WLS, Michel HJS, Carel HD, et al. Intersurgeon variance in computer-assisted planning of anterior cmciate ligament reconstruction [J]. Arthroscopy,2005; 21:942-947.
    [20]. Markolf KL, Slauterbeck JR, Armstrong K L-et al. A biomechanical study of replacement of the posterior cruciate ligament with agraft. Part 1:Isometry. pre-tension of the graft, and anterior-posterior laxity [J]. J Bone Joint Surg Am.1997; 79(3):375-380.
    [21]. Nicola Lopomo, Simone Bignozzi, Sandra Martelli, et al. Realiability of a navigation system for intra-operative evaluation of antero-posterior knee joint laxity [J]. Computers in Biology and Medicine 2009,39; 280-285
    [22]. Kazutomo, Yasuyuki, Eiichi, et al. Intraoperative comparision of knee laxity between anterior cruciate ligament-reconstructed knee and contralateral stable knee using navigation system [J]. The Jof Arthr and Re Surg,2010,26 (7); 1203-1211
    [23]. Ishibashi Y, Ysuda E, Yamamoto Y.et al. Navigation evaluation of the pivot-shift phenomenon during double-bundle anterior cruciateligament reconstruction:Is the posterolateral bundle more important [J]? Arthroscopy 2009:25:488-495
    [24]. Song EK, Seon JK, Park SJ, et al. In vivo laxity of stable versus anterior cruciate ligament-injured knees using a navigation system:A comparative study [J], Knee Surg Sports Traumatol Arthrosc 2009; 17:941-945.
    [25]. J.W.H. Luites, A.B. Wymenga, L. Blankevoort, et al. Development of femoral template for computer-assisted tunnel placement in anatomical double-bundle ACL reconstruction [J]. Com Aided Surg,2011; 16 (1):11-21
    [26]. M.Hofbauer, P.Valentin, R. Kdolsky, et al. Rotational and translational laxity after computer-navigated single-and double-bundle anterior cruciate ligament reconstruction [J]. Knee Surg Sports Traumatol Arthrosc 2010; 18:1201-1207.
    [27]. J-Y. Jenny. Coronal plane knee laxity measurement:Is computer-assisted navigation useful? Orthopaedics and Traumatology:Surgery and Research 2010; 96,583-588.
    [28]. Hart R, Krejzla J, Svab P, et al. Outcomes after conventional versus computer-navigated anterior cruciate ligament reconstruction [J]. Arthroscopy 2008; 24:569-78.
    [29]. Tao Cheng, Tao Liu, Guoyou Zhang, et al.Computer-Navigated Surgery in Anterior Cruciate Ligement Reconstruction:Are Radiographic Outcomes Better Than Conventional Surgery [J]? The J of Arthr and Re Surg,2011,27 (1):97-100
    [30]. Tao Cheng, Guo-You Zhang, Xian-Long Zhang. Does computer navigation system really improve early clinical outcomes after anterior cruciate ligament reconstruction? A meta-analysis and systematic review of randomized controlled trails [J]. Knee.2011:1-11.
    [31]. S. Plaweski, J. Rossi, P, Merloz, et al. Analysis of anatomic positioning in computer-assisted and conventional anterior cruciate ligament reconstruction. Orthopaedics and Traumatology:Surgery and Research,2011; 975, S80-S85.
    [32]. Ishibashi Y, Tsuda E, Fukuda A, et al. Future of double-bundle anterior cruciate ligament(ACL)reconstruction:incorporation of ACL anatomic data into the navigation system [J]. Orthopedics,2006,29(10) Suppl:108-112.
    [1]. D.M. Daniels, Knee Ligaments:Structure, Function, Injury and Repair, Raven Press, New York, NY, USA,1990.
    [2]. Van Ginckel A; Verdonk P; Witvrouw E, et al. Cartilage adaptation after anterior cruciate ligament injury and reconstruction:implications for clinical management and research? A systematic review of longitudinal MRI studies [J]. Osteoarthritis Cartilage.2013,21(8):1009-24.
    [3]. Grorge AC,Murrell K, Maddali S, et al. The effects of time course after anterior cruciate ligament injury in correlati on with meniscal and cartilage loss [J]. Am J SportsMed,2001,29 (1):921.
    [4]. Jiang Y, Jason S, Michael M. Stresses and strains in the medial meniscus of an ACL deficient knee under anterior loading:A Finite element analysis with image-based experimental validation [J]. J of Biomech Eng,2006,128:135-141.
    [5]. Li G, Lopez O, Rubash H. Variability of a three-dimensional finite element model constructed using magnetic resonance images of a knee for joint contact stress analysis [J]. J Biomech Eng, 2001,123(4):341-346.
    [6]. Kazemi M; Dabiri Y; Li L P, et al. Recent advances in computational mechanics of the human knee joint [J]. Comput Math Methods Med,2013:718423
    [7]. Wilson W; van Donkelaar CC; van Rietbergen R, et al. The role of computational models in the search for the mechanical behavior and damage mechanisms of articular cartilage [J]. Med Eng Phys.2005,27(10):810-26
    [8].Shirazi R, Shirazi-Adl A. Computational biomechanics of articular cartilage of human knee joint: effect of osteochondral defects [J]. J Biomech,2009,42(15):2458-2465.
    [9].Warner MD; Taylor WR; Clift SE, et al. Finite element biphasic indentation of cartilage:a comparison of experimental indenter and physiological contact geometries [J]. Proc Inst Mech Eng H.2001,215(5):487-96
    [10]. B. J. Fregly, T. F. Besier,D. G. Lloyd, et al., Grand challenge competition to predict in vivo knee loads [J]. Journal of Orthopaedic Research, vol.30, no.4, pp.503-513,2012.
    [11]. M. S. Hefzy and E. S. Grood, "Review of knee models," Applied Mechanics Reviews,1988,41 (1),1-12.
    [12].M. S. Hefzy and T. D. V. Cooke, "Review of knee models:1996 update," Applied Mechanics Reviews.1996,49(10):187-193.
    [13]. J. A.Weiss, J. C. Gardiner. "Computational modeling of ligament mechanics," Critical Reviews in Biomedical Engineering [J],2001,29 (3):303-371.
    [14]. Lorda-Diez CI; Canga-Villegas A; Cerezal L, Comparative transcriptional analysis of three humanligaments with distinct biomechanical properties [J]. J Anat.2013,223(6):593-602
    [15].Mizutani N, Kageyama S, Yamada M, et al. The behavior of ligament cells cultured on elastin and collagen scaffolds[J]. J Artif Organs,2013:1619-0904.
    [16].Gabriel M T, Wong EK, Woo SL Y, et al. Distribution of in situ forces in the anterior cruciate ligament in response to rotatory loads [J]. Journal of Ortho Res,2004,22(1):85-89.
    [17].Song YH, Debski RE, Musahl V, et al. A three-dimensional finite element model of the human anterior cruciate ligament:A computational analysis with experimental validation[J]. J Biomech, 2004,37(3):383-390.
    [18].Suggs J, Wang C, Li G. The effect of graft stiffness on knee joint biomechanics after ACL reconstruction-A 3D computational simulation [J]. Clin Biomech,2003,18(1):35-43.
    [19], Zhang X, Jiang G, Wu C, et al. A Subject-specific Finite Element Model of the Anterior Cruciate Ligament [C]. Conf Proc IEEE Eng Med Biol Soc,2008,891-894.
    [20]. Pena E, Martinez M A, Calvo B, et al. A finite element simulation of the effect of graft stiffness and graft tensioning in ACL reconstruction[J]. Clin Biomech (Bristol, Avon),2005, 20(6):636-644
    [21]. Pena.E, Calvo. B, M.A. Martinez, et al. A three-dimensional finite element analysis of the combined behavior of ligaments and menisci in the healthy human knee joint [J]. Journal of Biomechanics,2006,39:1686-1701.
    [22]Moglo KE; Shirazi-Adl A. On the coupling between anterior and posterior cruciate ligaments, and knee joint response under anteriorfemoral drawer in flexion:a finite element study [J]. Clin Biomech (Bristol, Avon).2003,18 (8):751-9
    [23]. Li G; Papannagari R; DeFrate LE, et al. Comparison of the ACL and ACL graft forces before and after ACL reconstruction:an in-vitro robotic investigation. Acta Orthop.2006, 77 (2):267-74
    [24]. Sekiya JK, Whiddon DR, Zehms CT, et al. A clinically relevant asseasment of posterior cruciate ligament and posterolateral corner injuries [J]. J Bone Joint Surg Am. 2008;90(8):1621-1627.
    [25].容可,王友.膝关节后交叉韧带的解剖及生物力学特性的研究进展[J].应用生物力学,2009,24,1:74-78.
    [26]. Liu F, Gadikota HR, Kozanek M,et al. In vivo length patterns of the medial collateral ligament during the stance phase of gait [J]. Knee Surg Sports Traumatol Arthrosc,2011,19 (5):719-727.
    [27]. Ellis BJ,Lujan TJ,Dalton MS,et al. Medial collateral ligament insertion site and contact forces in the ACL-deficient knee [J]. J Orthop Res,2006,24(4):800-810.
    [28]. Park SE, DeFrate LE, Suggs JF, et al. The change in length of the medial and lateral collateral ligaments during in vivo knee flexion [J]. Knee,2006,13(1):77-82.
    [29]. Hosseini A,Vandevelde SK, KozanekM, et al. In vivo time dependent articular cartilage contact behavior of the tibiofemoral j oint. Osteoarthritis and Cartilage,2010,18 (7):909-916.
    [30]. Hosseini A, Van de Velde S, Gill TJ, et al. Tibiofemoral cartilage contact biomechanics in patients after reconstruction of a ruptured anterior cruciate ligament [J]. J Orthp Res,2012,30 (11): 1781-8
    [31]. Perie D; Hobatho MC. In vivo determination of contact areas and pressure of the femorotibial joint using non-linear finite element analysis. Clin Biomech (Bristol, Avon).1998,13 (6):394-402
    [32]. LeRoux M A, Setton L A. Experimental and biphasic FEM determinations of the material properties and hydraulic permeability of the meniscus in tension [J]. J Biomech Eng,2002,124(3): 315-321.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700