爆裂玉米主基因—多基因遗传体系及遗传多样性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验通过爆裂玉米遗传差异较大的二个纯系亲本组合B01(P_1)×B02(P_2)6个家系世代(P_1、P_2、F_1、B_(1:2)、B_(2:2)、F_(2:3)),采用重复内分组随机设计,研究爆裂玉米主要数量性状的主基因-多基因遗传体系及选用45份不同来源的爆裂玉米自交系用SSR分子标记方法对遗传多样性进行分析,为掌握爆裂玉米数量性状遗传规律,提高爆裂玉米遗传育种效率,提供理论依据。所获得主要结果如下:
     1.爆花率性状遗传体系由2对主基因+多基因所组成。两对主基因存在加性、显性效应,但差异较大。同时两对主基因间存在加×加、加×显和显×显等互作效应。爆花率除受主基因控制外,也受多基因控制。多基因效应主要为加性和显性、上位性效应。B_(1:2)、B_(2:2)、F_(2:3)家系分离世代主基因遗传率(h_(mg)~2(%))分别为74.99%、78.35%、62.33%;多基因遗传率(h_(pg)~2(%))分别为3.12%、3.52%、6.12%。可见三个家系世代的表型变异的60%多由主基因决定。环境效应对爆花率也有一定的影响。
     2.膨胀倍数性状遗传体系由一对主基因和多基因所组成。主基因存在加性效应,无显性效应。多基因存在加性、显性效应两者均为负值。B_(1:2)、B_(2:2)、F_(2:3)家系分离世代主基因遗传率(h_(mg)~2(%))均较小,B_(2:2)家系世代多基因遗传率为89.16%,所以,多基因对膨胀倍数性状表型变异起主要作用。
     3.膨胀体积性状遗传体系由多基因所组成。多基因存在加性、显性、上位性效应,多基因遗传率在10.49%—65.52%。环境效应对膨胀体积表型变异有较大的影响。
     4.淀粉含量和蛋白质含量性状遗传体系由一对主基因+多基因所组成。淀粉含量主基因存在加性效应,无显性效应存在。主基因的加性效应d=-10.0643,为负值,表明主基因存在时,淀粉含量降低,多基因存在加性、显性效应,但显性效应为负值。B_(2:2)、F_(2:3)世代主基因遗传率分别为80.96%、82.55%较高,多基因遗传率为2.91%、3.27%。淀粉含量表型变异主要由主基因决定的;蛋白质含量主基因存在完全显性效应。显性效应为负值;多基因存在加性、显性效应,显性效应大于加性效应,B_(1:2)、F_(2:3)世代主基因遗传率分别为50.16%、52.80%,即表型变异的50%多由主基因决定的。环境对蛋白质含量表型变异有一定的影响。
     5.百粒重、单穗重、行粒数、株高性状遗传体系均由一对主基因和多基因所组成(D-2)。主基因存在加性效应,无显性效应存在。百粒重、株高性状主基因加性效应为正值,多基因存在加性、显性效应均为正值,因此2个性状存在杂种优势。百粒重F_(2:3),家系世代主基因遗传率为70.33%,多基因遗传率为12.81%;株高F_(2:3)家系世代主基因遗传率为53.87%,多基因遗传率为38.54%,百粒重、株高的表型变异主要由主基因决定的。单穗重、行粒数性状主基因加性效应为负值,单穗重多基因加性、显性效应均为正值;行粒数多基因加性效应为负值,显性效应为正值,显性效应大于加性效应。单穗重B_(2:2)世代主基因遗传率为62.11%,多基因遗传率为32.48%,单穗重表型变异主要由主基因决定的,环境变异影响较小;行粒数B_(2:2)世代主基因遗传率为48.31%,多基因遗传率为22.19%,环境效应对行粒数影响较大。
     6.穗长、穗位高、雄穗分枝数性状遗传体系由多基因所组成。多基因存在加性、显性、上位性。多基因遗传率较大,穗长、穗位高、雄穗分枝数F_(2:3)群体多基因遗传率分别为88.52%、78.12%、84.82%。
     7.秃尖长、雄穗长度、叶绿素含量性状遗传体系由一对主基因+多基因所组成。秃尖长主基因存在加性、显性,加性效应为负值,显性效应为正值,而且加性效应大于显性效应,多基因存在加性、显性,加性效应为正值,显性效应为负值。显性度h/d为-0.1058,表明有秃尖对无秃尖为显性。B_(2:2)世代主基因遗传率为69.05%,多基因遗传率为27.29%,环境效应对秃尖长影响较小;雄穗长度主基因存在完全显性,显性效应为负值。多基因存在加性、显性。显性效应大于加性效应。B_(2:2)主基因遗传率为58.88%,多基因遗传率为33.96%。雄穗长度的表型变异主基因起重要作用,环境影响较小;叶绿素含量主基因存在加性、显性,加性效应为负值,显性效应为正值,而且显性效应大于加性效应,显性度为-2.0688。多基因存在加性、显性、上位性。B_(2:2)世代主基因遗传率为55.28%,多基因遗传率为26.36%。叶绿素含量表型变异主要由主基因决定的。环境效应也有一定的影响。
     8.选用的80对SSR引物在45份爆裂玉米自交系间共检测出334个等位基因变异,每对引物检测出2-9个等位基因,平均为4.2个,多态性信息量变化范围为0.10-0.83,平均为0.53。
     9.将45份爆裂玉米自交系划分为5类群,第Ⅰ类群包括B01、B36、B45、B17、B10、B28、B39、B38等8个自交系;第Ⅱ类群包括B02、B41、B14、B43、B07、B13、B40、B03、B20、B22、B33、B35、B16、B25、B04、B15、B23、B37、B21、B42、B11、B24、B05、B30、B32、B19、B44、B08、B27、B12、B26、B29、B31等33个自交系;第Ⅲ类群包括B09自交系;第Ⅳ类群包括B34自交系;第Ⅴ类群包括B06、B18等2个自交系。
     10.在一定范围内,亲本自交系间遗传距离越大,杂种优势越强,因此在育种实践中,应该把自交系分子遗传距离作为重要参考。从本试验看几乎所有强优势组合均为不同类群自交系间杂交种,但也并非类群间自交系所组配的组合一定是强优势组合。因此,利用分子标记的遗传距离不足以有效预测供试爆裂玉米自交系间的杂种优势。
     11.爆裂玉米小区产量、一般配合力效应与分子标记遗传距离呈显著正相关关系,F_1爆花率、膨胀倍数与分子标记遗传距离之间无显著的相关关系。
Major gene-polygene genetic system of popcorn quantitative trait were studied byduplicational grouping random design in 2 pureline as parent combination B01 (P_1)×B02(P_2),6ancestry generation, and genetic diversity were studied by SSR molecular marker in 45popcorns.The purpose of these works is to hold the genetic law of popcorn quantitative trait,enhance breeding efficiency.The results is below:
     1. The trait genetic system of popcorn flower is compose of 2 pair major gene whichexhibit additive and dominance effect and large different, and polygene, meanwhile, 2pair exist additive×additive, additive×dominance and dominance×dominanceinteractive effect. Beside manin gene, the popcorn flower rate is controled by polygene.Polygne effect main express additive, dominance and interactive effect. The major geneheritability(h_(mg)~2(%)) of ancestry segregate generation of B_(1:2), B_(2:2), F_(2:3) is74.99%,78.35%and 62.33%, polyene heritability(h_(pg)~2(%)) is 3.12%,3.52%,6.12%respectly. The 60% phenotype variation of 3 ancestory generation is controled by majorgene, and a small quantity by environment.
     2. Expand trait genetic system is compose 1 pair major gene and polygene. Major genewxhibit additive effect, no dominance effect. Polygene exist additive and dominanceeffect, and all is negative value. The major gene heritability of B_(1:2), B_(2:2), F_(2:3) are lower,the polygene heritability of B_(2:2) is 89.16%, so, expand trait is main controled bypolygene.
     3. Expand volumn trait is compose of polygene. Polygene exhibit additive, dominance,interactive effect, polygene heritability range from 10.49%-65.52%. Environmentinfluence expand volumn phenotype.
     4. Starch conent and protein content trait is compose by lpair major gene and polygene.Starch content major gene exist additive effect, no dominance effect. Additive effect ofmajor gene d-10.0643, is negative, that indicate major gene exist, the starch content islower, polygene exist additive, dominance effect, which is negative value. The majorgene heritability of B_(2:2), F_(2:3) is 80.96%, 82.55%, the heritability of polygene is 2.91%, 3.27%. The phenotype variance is due to gene, the major gene of proein exhibitcomplete dominance effect which is negative value. The polygene exist additive,dominance effect, and later is larger than before. The major gene heritability of B_(1:2), F_(2:3)generation is 50.16%, 52.80%, i.e.major gene determine phenotype variance about 50%,and environment has some influence.
     5. 100-grains weight, single spike weight, grain number per row and stem high geneticsystem is compose 1 pair major gene and polygene. Major gene exist additive effect, nodominance effect. 100-grains weight,stem high trait major gene additive effect ispositive, polygene exist additive, dominance effect all positive, hence the 2 characterexist heterosis. 100-grain weight heritability of F_(2:3) major gene is 70.33%, theheritability of polygene is 12.81%, the stem high major gene heritability of F_(2:3) ancestrygeneration is 53.87%, polygene heritability is 38.54%, the major gene play importantrole in 100-grains weight, stem high. The additive effect of major gene grain number perrow is negative, polygene additive, dominance effect of a single spike weight is positive,polygene additive effect of grain number per row is negative, dominance effect ispositive, dominance effect is more than additive effect. A single spike weight major geneheritability of B_(2:2) is 62.11%, polygene is 32.48%, a single spike phenotype variancemain due to mainene, a little environment, the major gene heritability of B_(2:2) grainnumber per row is 48.31%, polygeneis 22.19%, the environment play important role inthe trait.
     6. Spike length, the position of spike, male spike branch genetic systemis composepolygene. Polygene exist additive,dominance, interactive effect. Polygen heritability islarger, spike length, the heritability of position of spike and male spike branch in F_(2:3) isrespectively 88.52%,78.12%, 84.82%.
     7. Bare tip long, male spike long, chlorophyll content genetic system is compose 1 pairand polygene. Major gene of bare tip long has additive, dominance effect, the former isnegative, the later is positive, and former is larger, than later, polygene exist additive,dominance effect, and the former is positive, the later is negative. The dominance degreeis -0.1056, that showed that bare tip is dominance than no. the major gene heritability ofB_(2:2) is 69.05%, polygene is 27.29%, the environment affect bare tip little. The majorgene of male spike long exist complete dominance, effect is negative. Polygene includeadditive, dominance, the later large former. The major gene heritability of B_(2:2) is 58.88%, polygene heritability is 33.96%. the gene play important role in the trait of male spikelong, and a little environment, the major gene of chlorophyll content include additive,dominance, the former is negative, the later is positive, and dominance is larger additive,the dominance degree is -2.0688. polygene include additive, dominance and interactive.The major gene heritability of B_(2:2) is 55.28%, polygene heritability is 26.36%. the geneplay important role in the trait of chlorophyll content, and some environment.
     8. 334 alleles variance were checked by using 80 pair SSR primer, each primer check 2-9allele, average 4.2, polymorohic variance from 0.10 to 0.83, average 0.53.
     9. 45 popcorn inbred lines group 5, the first group includeB01,B36,B45,B17,B10,B28,B39,B38; the second include B02, B41, B14, B43, B07,B13, B40, B03, B20, B22, B33, B35, B16, B25, B04, B15, B23, B37, B21, B42, B11,B24, B05, B30, B32, B19, B44, B08, B27, B12, B26, B29, B31; the third include B09;the forth include B34; the fifth include B06, B18.
     10. In some content, the genetic distance more large, the heterosis is strength, and it isimportant reference in breeding. Almost all strength heterosis is express by differentclasses inbred line, but not all combinance from different classes express like so. Hence,molecule marker is not enough to estimate heterosis of popcorn inbred line.
     11. The plot yield, general combining ability and molecule marker exhibit positivecorrelation, popcornflower rate of F_1, expand and molecule marker exhibit no dominantcorrelation.
引文
[1] 陆卫平,苟根勤,彭顺林,等.爆裂玉米高产生育特性的研究.江苏农学院学报,1997,18(2):27-35.
    [2] 楼辰军,王鹏文,王国琴.爆裂玉米研究现状.天津农业科学,2000,6(3):45-48
    [3] 史振声.美国爆裂玉米的历史和发展.玉米科学,2001,9(2):8-10
    [4] 饶富春等.爆裂玉米膨爆机理探讨.新疆农业科学,1991,(4):154-156
    [5] Johnson I J, Eldredge J C. Performance of recovered popcorn inbred lines derived from out crosses to dent coru. Agronomy Journal 1953, 45: 105-110.
    [6] Crumbaker D E, Johnson I J, Eldredge J C. Inheritance of popping volume and associated characters in crosses between popcom and dent corn. Agronomy Journal, 1949, 41: 207-212.
    [7] Doting S M, D Croz Mason N, Thomas Compton M A. Inheritance of expansion volume and yield in two popcorn,: dent corn crosses. Crop Science, 1991, 31: 715-718.
    [8] Robbins W A Jr, Ashman R B. Parent offspring popping expansion correlations in progeny of dent cornxpopcorn and flint comxpopcorn crosses. Crop Science, 1984, 4: 119-121.
    [9] Crumbaker Don E, et al. InheritanceofpoppingVolumeandassociatedcharactersincrossesbetweenpopcorn anddent corn. Agr. Jour, 1949, 41(5): 678-672
    [10] Lyerly PJ1Some genetic and mornhogy charactersoffecting the poppingexpansionof popcorn. Joar. of the Amer. of Agr., 1942, 34(11): 713-716
    [11] Doffing SM, et al. Inheritance of expansion volume and eld in two dent cornXpopcorn crosses. Crop sci 1991, 31(2): 715-718
    [12] 李玉玲,鹿智江.爆裂玉米与普通玉米杂交后代选系的膨爆特性研究.河南农业大学学报,2000,34(3):210-212
    [13] 李玉玲.利用普通玉米改良爆裂玉米初探.河南省首届青年学术年会论文集.北京:中国科技出版社,1995,424-426
    [14] 李玉玲,吴锁伟,张亚丽等.普×爆自交高代选系的配合力及利用价值研究.华北农学报,2003,18(4):46-50
    [15] 李玉玲,杜振伟,董永彬.爆裂玉米产量及膨爆特性遗传效应分析.华北农学报,2006,21(1):35-38
    [16] 刘向辉,朴秀吉,张亚辉.爆裂玉米爆裂性状的遗传和相关分忻.杂粮作物2005,25(6):349-352
    [17] 马晓萍,杨振宁,王玉兰.爆裂玉米膨胀倍数的遗传研究.吉林农业科学2001,26(4):9-13
    [18] 陈火英,张建华,金兴龙等.爆裂玉米爆裂品质与籽粒结构关系的研究.上海农业学报,1994,12(3):157-160
    [19] 王守义,修成贤,姜丽君.影响爆裂玉米品质因素的分析.山东农业科学,1999,27(1):50-51
    [20] 王玉兰.国内外爆裂玉米遗传育种研究动态.吉林农业大学学报,1998,20(4):99-102
    [21] 陈树宾 李鲁华.爆裂玉米若干数量性状典型相关分析.玉米科学1998,增刊:10-13
    [22] 马晓萍,杨振宇,王玉兰.爆裂玉米膨胀倍数的相关和通径分析.吉林农业科学2001,26(2):10-14
    [23] 李玉玲,江洪勋.爆裂玉米胚乳数量性状的遗传研究.生物数学学报,2002,17(4):435-439
    [24] 王婷,陈树宾,王友德.爆裂玉米几个农艺性状杂种优势分析.玉米科学2006,14(1):53-54,
    [25] 王玉兰,乔春贵,王庆钰等.爆裂玉米距离分析与杂种优势.作物学报,1994,20(2):223-227
    [26] 李玉玲,董永彬,崔党群等.利用三倍体胚乳遗传模型定位爆裂玉米膨爆特性QTL.中国农业科学2006,39(3):448-455
    [27] L. L. Burnham Larish, J. L. Brewbaker. Diallel analyses of temperate and tropicalpopcorns. Maydica, 1999, 44: 279-284
    [28] 李玉玲,路风银,杜振伟等.普通玉米种质及双回交对爆裂玉米改良效果初报.华北农学报,2002,17(4):37-43
    [29] MessmerMM,MelchingerAE, LeeM, etal. Geneticdiversityamongprogenitors and elite lines from the lowa stiff stalk synthetic(BSSS)maize population: comparison of allozyme and RFLP data. Theor. Appl. Genet.,1991,83: 97-107.
    [30] MummRH, DudleyJW. Aclassificationof148U. S. maizeinbreds:Ⅰ. clusteranalysisbased onRFLPs. CropSci.,1994,34:842-851.
    [31] 刘新芝,彭泽斌,傅骏骅.RAPD在玉米类群划分研究中的应用.中国农业科学,1997,30(3):44-51.
    [32] 孙致良,张超良,金敏德.RAPD技术在玉米自交系亲缘关系研究中的应用.遗传学报,1999,26(1):61-68.
    [33] 施永泰,边红武,韩凝等.中国江浙地区栽培大麦遗传资源的RAPD研究.作物学报,2004,30:258-265
    [34] 陈新平,阎玲,丁毅等.湖北大麦品种资源的RADP分析.武汉大学学报(自然科学板),2000,46:249-252
    [35] 宏棋斌,侯磊,罗小英等.应用RADP标记分析四川西北高原青稞的遗传背景.中国农业科学,2001,34:133-138
    [36] Mengoni A. Ru ni C, Vendramin G, Bazzicalupo M. Chloroplast miscrosatellite variation in tretaploid alfalfa. Plant Breeding, 2000, 119:509-512
    [37] Diwan N, Bouton J H, Kochert G, Cregan P B. Mapping of simple sequence repeat(SSR)DNA markers in diploid and tetraploid alfalfa. Theor Appl Genet, 2000。101: 165-172
    [38] Bernadette J, Sandrine F, Philippe B, Gaelic C, Sylvaln S, Thierry H. Christian H. Construetion of two genetic linkage maps in cultivated tetraploid alfalfa(Medicago satlva)using miemsatellite and AFLP markers. BMC Plant Biology. 2003, 3:9
    [39] EuiaylI, SledgeM R, Wang L。MayOD, Chekhovskiy R, Zwonitz J C. Mian A R. Med cago truncate a EST-SSm reveal ero species genetic lm rkemfor Medicngo spp. Theor Genet. 2004, 108; 414-422
    [40] Wu K.S., Tanksley S D. Abundance. polymorphism and genetic mapping of mierosatellice in rice. Mol Gen Genet, 1993,241:225-235
    [41] Panaud O, Chen X. McCouch S K. Development of microsatellite markers and characterin tion of simple sequencelength polymorphism (SSLP) in rice (Oryza saliva L.). Mol Gen Genet. 1996, 252:597-607
    [42] 崔国惠,倪中福.小麦杂种优势群研究Ⅲ普通小麦和斯卑尔脱小麦微卫星分子标记遗传差异的研究,农业生物技术学报,1999,7(4):333-338
    [43] RongwenJ, AkkayaMS, Bhagwat AA, Lavi U, Cregan PB. The useof microsatelliteDNAmarkersfor soybeangenotypeidentification. TheorAppl Genet, 1995, 90:43-48
    [44] StrussD, PlieskeJ. Theuseofmicrosatellitemarkersfordetectionofge2netic diversity in barley populations. Theor Appl Genet, 1998, 97:308-315
    [45] Szewc-Mc FaddenA K, KresovichS, BiiekSM, McFersonJ R. Identi2fication of polymorphic, conserved simple sequence repeats(SSRs) incultivated Brassica species. TheorAppl Genet, 1996, 93:534-538
    [46] Wu KS, TanksteySD. Abundance, polymorphismandgeneticmappingof microsatellite in rice. Molec Gen Genet, 1993, 241:225-235
    [47] Carriero F, Fontanazza G, Cellini F, Giorio2G. Identificationof simplesequence repeats(SSRs) inOlive. TheorAppl Genet,2002,104:301-307
    [48] SmithJ SC, Chin E. C. L., Shu H., SmithOS, Wall S. J., SeniorML, Mitchell S. E, KresovichS, ZiegleJ. An Evaluationoftheutilityof SSRloci asmolecular markers in maize(Zea mays L.): Comparisonswith datafromRFLPsandpedigree. TheorAppl Genet, 1997, 95:163-173
    [49] SenoirML, MurphyJ P, Goodman,S, Stuber CW. Utiiityof SSRsfor determining genetic similarities and relationships in maize using anagarose gel system. CropSci, 1998, 38, 1088-1098
    [50] Wu X-L(吴晓雷), He C-Y(贺超英), ChenS-Y(陈受宜)等. Phyloge-netic analysisof interspecies in genus through SSR markers. Acta Ge-neticaSinica (遗传学报), 2001,28(4):359-366
    [51] Xu L-A(徐立安), Li X-J(李新军), Pan H-X(潘惠新)等. Study onpopulation genetic structure in Castanopsis fargesii with microsatellitemarkers. Acta BotanicaSinica(植物学报), 2001, 43(4): 409-412
    [52] XiangD-Q(向道权), Cao H-H(曹海河), Cao Y-G(曹永国)等.Constructionofageneticmapandlocationquantitativetraitlocifor yieldcomponent inmaize bySSR. Acta GeneticaSinica (遗传学报), 2001,28(8): 778-784
    [53] Li X-H(李新海), FuJ-H(傅骏华), ZhangS-H(张世煌)等. Genetic variation of inbred linesofmaize detected by SSR markers. Scientia Agricultura Sinica (中 国农业科学),2000,33(2):1-9
    [54] Jiang C J, Pan x B, Gu M H. The use of mixture models to detecteffects of major genes on quantitative characters in a plant breedingexperiment. Genetics, 1994, 136: 383-394.
    [55] Loisel P, Goffinet B, Monod H, Montes G. Detecting a major in an F2population. Biometrics, 1994, 50: 512-516.
    [56] 袁力行,傅骏骅,张世煌等.利用RFLP和SSR标记划分玉米自交系杂种优势群的研究,作物学报,2001,27(2):149-156
    [57] R. V. Kantety. Defection of bight level:of polymorphism among dent and popcorninbred lines using inter-Simple Sequence Repeat(ISSR) amplificationtechnique. Maize Genetics Coperation Nev}sletter, 1995, 69: 132-134
    [58] H. J. Lu, R.. Bernardo. H. f. Ohm. dapping QTL for popping expansion volume in popcornmple sequence repeat markers. Theor. Appl. Genet. 2003, 106: 423-427
    [59] Senior M L, J P Murphy, Goodman M M, et al. L ti lity of 88Rs for determining geneticsimilarities and relationships in maize using an agarose gel system. Crop 8ci. 1998, 38: 1088-1098
    [60] Romera S, J, Smith, J S C, Ziegle, J, Hauler, J,, Joe L, Hookstra G. Pedi greeanalysi: and haplotypesharing vith inApplied Genetics, divers groups of ZeamaysbL. inbreds. Theoretical2001, 103(4): 567-574
    [61] 吴渝生,郑用琏,孙荣等.基于SSR标记的云南糯玉米、爆裂玉米地方种质遗传多样性研究.作物学报,2004,30(1):36-42
    [62] 李玉玲,吕德彬,王延召等.SSR标记在自选爆裂玉米自交系遗传变异研究中的应用河南农业大学学报.2004,38(4):361-364
    [63] 李玉玲,王延召,陈绍江等.利用SSR标记划分爆裂玉米杂种优势群的研究.华北农学报,2004,19(3):13-17
    [64] Melchinger, A. E. and R. K. Gumber. overview of Heterosis and Heterotic Groups in Agronomic Crops. In "Conceptsand Breeding of Heterosis in Crop Plants" (K. R. Lamkey and J. E. Stanb, eds), 1998, 29-44, CSSA Spec. Publ. 25. CSSA. Madison. W. I.
    [65] Melchinger, A. E, Boppenmaier J, Dhillon BS et al. Genetic diversity for RFLP sinan maize inbred. ILRelation to performance ofhybrids within versus betweengroups for forge trait. Theor. Appl. Genet. 1992, 84: 672-681
    [66] Boppenmaier, J. et al. Genetic diversity for RFLPS in European maize inbreds. Ⅲ. Performance of crosses with versus between heterosis groups for grain trait. Plant Breeding. 1993, Ⅲ: 3, 217-226
    [67] Ajmone-Marsan. P., Castiglioni P, Fusari F., Kuiper, M., Motto, M. Genetic diversity and its relationship to hybred performance in maize as revealed by RFLP and AFLP markers. Theor. Appl. Genet, 1998, 98:219-227
    [68] Dudley, J. W, M. A. Saghai Maroof, G. K. Rufener. Molecular markers and grouping of parents in maize breeding programs. Crop Sci. 1991, 31:718-723.
    [69]. Menkir, A., Kling, J.G., Badu-Apraku, B and Ingelbrecht 1. Molecular marker-based genetic diversity assessment of Striga-resistant maize inbred lines. Theor. AppLGenet. 2005, Published online: 5 March 2005
    [70] Warburton, ML, Xianchun X, Crossa J,. Franco J, Melchinger AE, Frisch M,. Bohn M, Hoisington D. Genetic characterization of CIMMYT inbred maize lines and open pollinated populations using large scale fingerprinting methods. Crop sci. 2002,42: 1832-1840
    [71] 李明顺,张世煌,彭泽斌等.玉米半外来群体的构建与利用.中国农业科学.2000,33(增刊):15-19.
    [72] Smith, O.S., Smith J.S. C, Bowen S. L. Tenborg R. A., Wall S. J. Similarities among a group of elite maize inbreds as measured by pedigree, F, grain-yield, heterosis and RFLPs. Theor Appl. Genet 1990, 80: 833-840
    [73] Stuber, C.W, Lincoln, S.E., Wolfl; D.W, ttelentjaris, T, and lander, E.S. Identification of geneticcontributing to heterosis in a hybrid from two elite maize inbred lines using molecular markers. 6enetics, 1992, 132:823-839
    [74] 李玉玲,董永彬.崔党群等.利用三倍体胚乳遗传模型定位爆裂玉米膨爆特性OTL.中国农业科学,2006,39(3):448-455
    [75] 盖钧镒,章元明,王健康.植物数量性状遗传体系.北京:科学出版社,2003,266-276
    [76] Mather K. 1949. Biometrical Genetics. London: Methuen & Co. Ltd
    [77] ElstonRC. andJ. Steward, Theanalysisofquantitativetraitforsimplegeneticsmodels fromparental, Fland backcrossdata. Genetics. 1973,73:695-711
    [78] Stewart J and R C Eiston. Biometrical genetics with one or two loci: the inheritace of physiological charctersinmice. Genetics, 1973, 73:765-693
    [79] Morton N E and C J MacLean. Anatysis of family resemblance. Ⅲ. Complex segation of quantitative traits. Am JHum Genet, 1974, 26:489-503
    [80] MacLean C J,N E Morton, R C Elston and S Yee. Skewness in commingled distributions. Biometrics, 1976, 32:695-688
    [81] ElstonRC. Thegeneticanalysisofquantitativetraitdifferencebetweentwohomozygou slines. Genetics, 1984, 108:733-73
    [82] HoescheleI., Geneticevaluationwithdataprescntingevidenceofmixedmajorgeneandp olygenicinheritance. Theor. Appl. Genet. 1988, 76:81-92
    [83] GoffinetB.,P. LoiselandB. Laurent. Statisticaltestsforidentificationofthegenot ypeatamajorlocusofprogenytestedsires. Biometrics. 1990, 46:583-594
    [84] KnottS A. C S. Hally and R. Thanpson. Method of segregation analysis for animal breeding data: a comparison of power. Hevidity, 1991a, 68: 299-311
    [85] Knott S A. C S. Hally and R. Thanpson. 1991. Method of segregation analysis for animal breeding data: parameter estimates. Heredity, 68: 313-320
    [86] Femando R L et at al. 1994. The finite polygenic mixed model: an alternative formulation for thr the mixed model of inheritance. Theor Appl Genet, 88: 573-580
    [87] ElkindY. andA. Cahaner, 1990. Amixedmodelfortheeffectsofsinglegene, polygenesand theirinteractiononquantitativetraits. 2. Theeffectsofthemajorgeneandpolygeneontom atofruitsoftness. Heridity, 64: 205-213
    [88] 晨惠栋.质量-数量性状遗传分析Ⅰ.遗传组成和主基因型鉴别.作物学报,1993a,19(3):1-6
    [89] 莫惠栋.质量-数量性状遗传分析Ⅱ.世代平均数和遗传方差.作物学报,1993b.19(3):193-200
    [90] Loisel P., B. Goffinet, H. monod and G. M. Deoca. 1994. Detecting a major gene in a F2 population. Biometrics, 50: 512-516
    [91] 姜长鉴,莫惠栋.质量-数量性状遗传分析Ⅳ.极大似然法应用.作物学报,1995,21(6):641-648
    [92] 莫惠栋,徐辰武.质量-数量性状的遗传分析Ⅲ.受三倍体遗传控制的胚乳性状.作物学报,1994,20(5):513-519.
    [93] 徐辰武,莫惠栋.胚乳性状的质量-数量遗传分析.江苏农学院学报,1995,16(1):9-13
    [94] Jiang C J, Pan x B, Gu M H. The use of mixture models to detecteffects of major genes on quantitative characters in a plant breedingexperiment. Genetics, 1994, 136: 383-394.
    [95] Loisel P, Goffinet B, Monod H, Montes G. Detecting a major in an F2 population. Biometrics, 1994, 50: 512-516.
    [96] 盖钧镒,王建康.数量性状主-多基因混合遗传的P_1,P_2,F_1,F_2和F_(2:3)联合分析方法.作物学报.1998,24(6):561-568
    [97] 盖钧镒,章元明,王建康.QTL混合遗传模型扩展至两对主基因+多基因时的多世代联合分析.作物学报,2000,26(4):385-391
    [98] 盖钧镒,管荣展,王建康.植物数量性状QTL体系检测的遗传试验方法.世界科技研究与发展,1999,21(1):34-40
    [99] 章元明,盖均镒,戚存扣,利用家系群体鉴定多基因的存在.生物数学学报,2001,16(1)96-102
    [100] 章元明,盖均镒,戚存扣.植物数量性状QTL体系检验中回交或自交家系重复试验数据的分析方法.遗传,2001,(4):329-332
    [101] 章元明,盖均镒,戚存扣.数量性状分离分析的精确度及其改良途径.作物学报,2001,27(6):787-793
    [102] 卢永根,曾世雄,李镇邦等.我国早籼稻矮生性基因源的表型表现和遗传传递的研究.遗传学报,1979,6(3):311-321
    [103] 顾铭洪,朱立宏.几个矮秆籼稻矮秆基因等位关系的初步分析.遗传,1979,1(6):10-13
    [104] 顾铭洪.矮源及其在水稻育种上的利用.江苏农学院学报,1980,1(1):40-44
    [105] 朱立宏,主要农作物抗病性遗传研究进展.南京:江苏科学技术出版社,1991
    [106] Simmonds N W. Principleof Crop improvement. Longman Inc, 1979
    [107] 高明尉.野败型杂交籼稻基因型的初步分析.遗传学报,1981,8(1):66-74
    [108] 周天理,沈锦骅,叶复初等.野败型杂交籼稻的育性基因分析,作物学报,1983,9(4):241-247
    [109] 莫惠栋.谷类作物品质性状遗传研究进展.南京:江苏科学技术出版社,1990
    [110] Khush GSand I Kumar, J. Genet., 1986, 65(1&2): 1-11
    [111] VasalSKet al..In: Improvementof Quality Traitsof Maizefor GrainandSilageUse, MartinusNi jhoff Publishers, TheNetherlands, 1980, 37-71
    [112] 中时全,曾亚文,李绅崇.应用主基因-多基因混合模型研究昆明小白谷孕穗期耐冷性的遗传.植物遗传资源学报2004,5(3):252-255
    [113] 向道权,黄烈健,曹永国.玉米产量性状主基因-多基因遗传效应的初步研究.华北农学报,2001,16(3):1-5
    [114] 吴建宇,陈彦惠,席章营.玉米雄穗性状主基因-多基因遗传的初步研究.河南农业大学学报,2000,34(2):107-108
    [115] 王庆钰,朱立宏,盖钧镒.水稻广亲和性遗传的主基因-多基因混合模型分析.遗传26(6):898-902,2004
    [116] 金文林,白璐,文自翔.小豆百粒重性状遗传体系分析.作物学报,2006,32(9):1410-1412
    [117] 葛秀秀,张立平,何中虎.冬小麦PPO活性的主基因+多基因混合遗传分析.作物学报,2004,30(1):18-20
    [118] 吴建宇,汤继华,夏宗良等.玉米矮花叶病毒一个新的抗性基因位点的微卫星标记.植物学报,2002,(2):177-180
    [119] 孔繁玲.植物数量遗传学.北京:中国农业大学出版社,2006,274-275
    [120] 吴建宇.玉米自交系性状及分类研究.河南农业大报,1992 26(2)163-168
    [121] 翟仁平.玉米雄穗的遗传和相关性研究.作物学报,1993,19(6):515-518
    [122] 刘克礼,盛晋华.春玉米叶片叶绿素含量与光合速率的研究.内蒙古农牧学院学报,1998,19(2):48-51.
    [123] 李海潮,刘奎.不同产量水平玉米杂交种生育后期光合效率比较分析.作物学报,2002,28(3):379-383.
    [124] 孟军,陈温福,徐正进等.水稻剑叶净光合速率和叶绿素含量的研究.沈阳农业大学学报,2001,32(4):247-249.
    [125] 张巨松,杜永猛.棉花叶片叶绿素含量消长动态的分忻.新疆农业大学学报,2002,25(3):6-7.
    [126] 梁镇林.间作大豆不同单位叶绿素的遗传研究.贵州农业科学,1999,27(2):9-14.
    [127] 吴敏生,王守才,戴景瑞.RAPD分子标记与玉米杂种产量优势预测的研究,遗传学报,1999,26(5):578-584
    [128] Senior M. L., Murphy J. P., Goodman M. M., and Stuber C. W., 1998, Utility of SSRs for determining genetic similaritiesand relationships in maize using an agarose gel system, CropSci., 38: 1088-1098
    [129] 袁力行,傅骏晔,刘新芝等.利用分子标记预测玉米杂种优势的研究.中国农业科学,2000,33(6):6-12
    [130] EnokiH., SatoH., and Koinuma K., 2002, SSRanalysisofge-netic diversity among maize inbred lines adapted to coldregionsofJapan, Theor. Appl. Genet., 104: 1270-1277
    [131] 番兴明,谭静,张世煌等.利用SSR标记对29个热带利温带玉米自交系进行杂种优势群的划分,作物学报2003,29(6):835-840
    [132] 向道权,黄烈健,戴景瑞.玉米产量QTL和杂种优势遗传基础研究进展.中国农业大学学报,1999,4(增刊):1-7
    [133] Stuber C W, Edwards M D, WendelJ F, et al. Molecular marker facilitatedinvestigationof quantitative traitloci in maize: Factorsinfluencing yield anditscomponent traits 1Crop Sci, 1987, 27: 639-648
    [134] Stuber C W. Biochemical and molecular markersinplant breedingPlant Breeding Rev, 1992,9:37-61
    [135] 吴敏生,戴景瑞.AFLP标记与玉米杂种优势群、产量杂种优势的预测.植物学报,2000,42(6):600-604
    [136] Ajmone M P, P Castiglioni, F Fusari, et al. Genetic diversity and its relationshipto hybrid performance in maize as revealed by RFLP and AFLP markers TAG. 1998, 96:219-227
    [137] 吴敏生,戴景瑞.中国17个优良玉米自交系的分子标记杂合性及其与杂交种性状的关系研究.西北植物学报,2000,20(5):691-700
    [138] 曹永国,王国英,戴景瑞.分子标记在植物育种中的应用.阎隆飞,王学臣主编,生命科学研究进展(第一集),中国农业大学出版社,1996,143-149
    [139] 黄益勤,李建生.利用RFLP标记划分45份玉米自交系杂种优势群的研究.中国农业科学,2001,34(3):244-250
    [140] 牛素贞,李玉玲,黄永彬等.玉米普×爆BC2S1家系籽粒营养品质及其与膨化倍数的相关分析.河南农业科学,2006(1):33-35

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700