哈克尼西棉细胞质雄性不育恢复基因SSR标记定位及利用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞质雄性不育(CMS)现象在自然界普遍存在,是作物杂交育种和杂种优势利用的重要途径之一。哈克尼西棉是棉花中重要的胞质不育材料,其突出优点是败育彻底、能稳定表现出雄性不育特性,并能实现“三系”配套。利用其“三系”生产杂交种可免除人工去雄,具有省工、生产成本低、杂交种子纯度高等优点,在规模化生产棉花杂交种中具有很高的应用价值。目前,哈克尼西棉已实现“三系”配套,但受恢复系资源匮乏的制约,长久以来难以在棉花杂交种生产上被广泛应用。因此,开展哈克尼西棉细胞质雄性不育育性恢复基因遗传和定位研究,将为分子标记辅助选育优良恢复系和分子检测鉴定“三系”及其杂交种纯度服务,也为进一步研究核质互作的作用机理、克隆恢复基因打下基础。本研究以哈克尼西棉细胞质雄性不育系、保持系和恢复系为亲本,经杂交、自交或连续多代回交培育的F_2群体与恢复基因近等基因系(NILs:near-isogenic lines)群体为研究材料,通过调查和分析两群体单株的育性,确认哈克尼西棉细胞质雄性不育系育性恢复基因的遗传模式;采用SSR分子标记技术结合群体分离分析法(Bulked segregant analysis, BSA),筛选与恢复基因连锁的分子标记,并对育性恢复基因进行遗传定位,并构建连锁图谱;同时,用筛到的与恢复基因紧密连锁的分子标记和课题已报道的与不育基因紧密连锁的SCAR标记来检测种子纯度。取得的主要实验结果如下:
     1.调查统计409株NILs群体单株和695株F_2群体单株的育性分离情况,在NILs群体中,有223个可育株,186个不育株;在F_2群体中,有502个可育株,193个不育株。经χ2检验,可育株与不育株在NILs群体中的分离比例符合1:1,在F_2群体中的分离比例符合3:1,表明哈克尼西棉细胞质雄性不育系的恢复基因受1对显性基因控制。
     2.采用SSR分子标记技术并结合BSA法,以NILs群体构建的不育DNA池和可育DNA池为标记筛选材料,对恢复基因进行分子标记筛选。在8242对SSR引物中,共筛选到13个与Rf1基因紧密连锁的分子标记,其中COT010、CGR5340和NAU3938这3个标记为首次发现。结合育性调查结果,利用这13个标记对NILs群体409株单株和F_2群体695株单株的分离情况进行了分析。结果发现,在13对多态性标记中仅引物NAU2650在409株NILs群体中出现1个交换单株,其余12对引物未发现交换单株;而在695株F_2群体中只有引物CGR5340和BNL3535未发现交换单株,其余11对引物则各发现1个交换单株。
     3.利用JionMap3.0软件分别构建了NILs群体和F_2群体的Rf1遗传连锁图谱,其总遗传距离都小于0.5cM。在用近等基因系群体构建的Rf1遗传连锁图谱中,标记NAU2650距Rf1基因为0.245cM,另12个标记则与Rf1基因共分离;在用F_2群体构建的Rf1遗传连锁图谱中,连锁图总的遗传距离为0.35cM,Rf1基因位于标记BNL3535和标记CM003之间,距2个标记分别为0.042cM和0.119cM。通过比较棉花遗传连锁图谱和分析这些标记在棉花染色体上的位置,发现在本研究获得的13对与Rf1基因紧密连锁的SSR标记中,7对标记位于第19染色体上(又名D5染色体),由于SSR标记常作为染色体定位的锚定标记,因此可以推测哈克尼西棉细胞质雄性不育育性恢复基因Rf1位于第19染色体上。
     4.利用本研究获得的与恢复基因紧密连锁的2对共显性标记COT010和NAU3938对中恢-46(恢复系)种子进行了纯度检测,同时借助新得到的与恢复基因连锁的标记CGR5340、NAU6466和课题已报道的与不育基因紧密连锁的SCAR标记检测了田间不育系、保持系、恢复系及其杂交F_1代及常规棉杂交种的基因型。PCR扩增结果表明,这些标记扩增条带清晰,扩增效果好,十分适用于棉花CMS“三系”及其杂交一代种子纯度检测和分子标记辅助选育优良恢复系。
The phenomenon of cytoplasmic male sterility (CMS) exists generally in the natural world, whichplays an important role in crop breeding and heterosis utilization. Gossypium harknessii is a vitualcytoplasmic male sterile material in cotton, whose prominent virtues are thorough pollen abortion,steady sterility and easy to be utilized in achieving three line combination. The utilization of CMS linesis much more effective and economical in producing commercial hybrids, because it can avoid handemasculation and has outstanding advantages of labour saving, cheap price, and high quality of hybridsand so on. At present, Gossypium harknessii has realized completely system of “three lines”, however,this system has not been widely used because of the lack of elite restoring lines. Therefore, study ongenetic and localization of restorer genes in Gossypium harknessii, will not only provide services toselect superior restorer lines with molecular marker assisted and test seeds genetic purity, but also layfoundation for studying the mechanism of nucleo-cytoplasmic interactions and cloning restorer gene.The experiment materials are CMS line ZBA, maintainer line ZB, restore line Zhonghui-46and F_2population of ZBA×Zhonghui-46and Near-isogenic lines (NILs) of fertility restorer genes of(ZBA×Zhonghui-46)×ZB8combination. By studying the segregations pattern of the fertilities ofF_2population and NILs, the inheritance of the fertility restorer gene was identified. SSR markers werechosen on fertility restorer gene of NILs by bulked segregation analysis (BSA) strategy,and subsequently Rf1gene was mapped and seeds purity were tested with these polymorphic markerslinked to fertility restorer gene and a SCAR marker closely linked to sterile gene. The main resultsobtained were as follows:
     1. Plants of the NILs were consisted of223fertile plants and186sterile plants, and plants of the F_2population were consisted of502fertile plants and193sterile plants. Based on the χ2test, the ratioof segregation was1:1in NILs and3:1in F_2population, respectively. This result confirmed thatfertility restoration was controlled by one dominant restorer gene.
     2. The fertile and sterile bulks were conducted by bulked segregant analysis to screen for markerslinked to the Rf1restorer gene, and13SSR molecular markers screening against the Rf1gene wereconducted from the8242pairs of SSR primers, which3marks of COT010, CGR5340andNAU3938are published for the first time. Combined with fertility survey results, the separation ofNILs of409individuals and F_2of695individuals were analyzed with the13polymorphic marks.The results showed that among495NILs plants, only one plants was represented fertile fragmentwhich was in accordance with its sterile fragment with NAU2650, while2markers ofCGR5340and BNL3535didn’t find exchange plant, one exchange plant was found with eachprimer.
     3. Rf1genetic linkage maps of NILs and F_2populations were made with JionMap3.0software,respectively, and the total genetic distance was all less than0.5cM. NAU2650was linked to Rf1with a genetic distance of0.245cM and12other markers showed co-segregated with Rf1in the NILs. A linkage map was constructed with the same13SSR markers based on an F_2population, too,with a total of0.35cM; and Rf1gene was located between the SSR markers BNL3535and CM003,which had a distance of0.042cM and0.119cM, respectively. By comparising genetic linkage mapsof cotton and analysising of the position of the13SSR markers closely linked to Rf1gene in cottonchromosome, we found that7out of13SSR markers were located on chromosome19(D5chromosome). For SSR markers were more stable and could be used as anchor marker, Rf1genewas mapped in chromosome19.
     4. Seeds purity of Zhonghui-46was tested using the2co-dominant markers COT010and NAU3938,meanwhile, genotypes of the sterile line, maintainer line, restorer line and their F1seeds andconvertional hybrids were identified with the2markers CGR5340and NAU3938linked to fertilegene and a SCAR marker closely linked to sterile gene. PCR results showed that these markerscould produce qualified fragments, so these markers closely linked to Rf1gene, especiallyco-dominant markers, are very suitable for testing the “three system” and its hybrid seeds purity andselecting elite restoring lines by molecular marker-assisted selection.
引文
1.曹乃倩,刘桂茹,杨学举.小麦抗白粉病基因定位及分子标记辅助育种综述.植物保护科学,2007,23(7):482-486
    2.曹秀霞,吴建勇,邢朝柱,郭立平,戚廷香,王海林.棉花细胞质雄性不育育性恢复基因的定位及分子标记辅助育种研究进展.中国农学通报,2012,28(6):8-13
    3.陈欢庆.玉米百粒重和膨化倍数3个QTL近等基因系构建及精细定位.[硕士学位论文].郑州:河南农业大学.2009
    4.陈利,张正圣,胡美纯等.陆地棉遗传图谱的构建及产量和纤维品质性状QTL定位.作物学报,2008,34(7):1199~1205
    5.成奇,郭旺珍,马晓玲等.陆地棉衣分差异群体产量及产量构成因素的QTL标记和定位.棉花学报,2008,20(3):163~169
    6.程宝山.SSR标记在粳稻恢复基因Rf-1转育、F1纯度和品种鉴定中的应用.[硕士学位论文].南京:南京农业大学,2007
    7.程计华,李云昌,梅德圣等.几种农作物细胞质雄性不育恢复基因的定位和分子标记研究进展.植物学通报,2006,23(6):613-624
    8.戴剑,陈敏,张继红等.种子质量检验技术的现状与展望.种子,2007,26(1):46-49
    9.杜金昆,姚颖垠,倪中福等.普通小麦、斯卑尔脱小麦、密穗小麦和轮回选择后代材料ISSR分子标记遗传差异研究.遗传学报,2002,29(5):445-452
    10.范术丽,喻树迅,宋美珍等.短季棉早熟性的分子标记及QTL定位.棉花学报,2006,18(3):135-139
    11.方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.北京:科学出版社,2001,1-9
    12.郭红,魏育明,陈放等.应用STS-PCR标记研究新疆布顿大麦的遗传多样性.植物学报,2002,44(11):1327-1332
    13.郝转芳,苏治军,李亮等.基于SNP标记的关联分析在玉米耐旱研究中的应用.作物杂志,2009,(6):1-7
    14.侯思宇,张锐,张晓等.棉花细胞质雄性不育与育性恢复研究进展.中国农业科技导报,2010,12(1):1-7
    15.侯思宇.陆地棉细胞质雄性不育恢复基因的遗传定位及GhPG2基因的克隆与表达分析.[博士学位论文].北京:中国农业科学院,2009
    16.华金平,张成,易先达等.棉花远缘核质杂种的培育与育种应用.湖北农业科学,2003,(4):25-28
    17.贾占昌.棉花雄性不育系104-7A的选育及三系配套.中国棉花,1990,17(6):11
    18.蒋洪蔚,刘春燕,高运来等.作物QTL定位常用作图群体.生物技术通报,2008(增刊):12-17
    19.李蒙恩,郑重.棉花三系杂种的研究和利用.石河子大学学报:自然科学版,2000,4(1):1-8
    20.李朋波,曹美莲,刘慧民等.棉花“晋A”细胞质雄性不育恢复基因定位.西北植物学报,2007,27(10):1937-1942
    21.刘仁虎,孟金陵.Map Draw,在Excel中绘制遗传连锁图的宏.遗传,2003,25(3):317-321
    22.刘志文,韩旭,王英等.分子标记辅助选育甘蓝型黄籽波里马恢复系.华北农学报,2009,24(增刊):30-33
    23.柳李旺,朱协飞,郭旺珍等.分子标记辅助选择聚合棉花Rf1育性恢复基因和抗虫Bt基因.分子植物育种,2003(1):48-52
    24.乔婷婷.茶树资源遗传多样性及其表型性状关联EST-SSR位点的初步鉴定.[硕士学位论文].北京:中国农业科学院,2010
    25.饶琼.大豆作图群体亲本的单核苷酸多态性.[硕士学位论文].南昌:南昌大学,2007
    26.宋国立,崔荣霞,王坤波等.改良CTAB法快速提取棉花DNA.棉花学报,1998,10(5):273-275
    27.王建波.ISSR分子标记及其在植物遗传学研究中的应用.遗传,2002,24(5):613-616
    28.王立新,常利芳,李宏博等.小麦种子纯度的分子标记检测方.麦类作物学报,2009,29(1):1-8
    29.王先俱,谭学林,邵国军等.印水型细胞质雄性不育粳稻恢复系分子标记辅助选择.分子植物育种,2010,8(2):319-324
    30.王心宇,亓增军,马正强等.小麦抗白粉病基因Pm6的RAPD标记.遗传学报,2000,27(12):1072-1079
    31.王学德,张天真,潘家驹.棉花细胞质雄性不育系育性恢复的遗传基础I:恢复基因及其遗传效应.中国农业科学,1996,29(5):32-40
    32.王学德,李悦有.细胞质雄性不育棉花的转基因恢复系的选育.中国农业科学,2002,35(2):137-141
    33.王祖秀,汤泽生.棉花湘远A41和A42小孢子败育的细胞学研究.四川师范学院学报:自然科学版,1992,13(1):14-18
    34.韦贞国,华金平.棉花雄性不育恢复系的选育及“三系”杂种优势初步究.湖北农业科学,1989,(11):8-12
    35.吴巧雯,宋洋,张锐等.棉花恢复系中含有26S rRNA序列的GH18Rorf392基研因克隆.棉花学报,2008,20:323-329
    36.吴巧雯,张锐,侯思宇等.植物细胞质雄性不育及其育性恢复的分子生物学研究进展.生物技术通讯,2008,19(3):456-462
    37.夏军红,郑用琏.玉米恢复系的分子标记辅助回交选育与效益分析.作物学报,2002,28:339-344
    38.肖松华,刘剑光,吴巧娟等.棉花细胞质雄性不育与育性恢复的研究与利用.江西农业学报,2008,20(9):8-15
    39.肖扬.几种新型分子标记技术在中国香菇种质资源遗传多样性研究中的应用.[博士学位论文].武汉南京:华中农业大学,2009
    40.邢朝柱,靖深蓉,邢以华.中国棉花杂种优势利用研究回顾和展望.棉花学报,2007,19(5):337-345
    41.徐秉芳.核编码的育性恢复基因.植物生理学通讯,2000,36(6):573-580
    42.杨路明.棉花细胞质雄性不育恢复基因的图位克隆及PPR基因家族的分析.[博士学位论文].南京:南京农业大学,2009
    43.袁钧,张铎,刘巷禄等.棉花质核不育材料晋A的发现与观察.华北农学报,1996,11(4):29-32
    44.张天真.作物育种学总论.北京:中国农业出版社,2003
    45.赵兵,邓其明,张启军等.水稻日本晴与广陆矮4号杂交F2群体SSR标记偏分离原因探析.遗传学报,2006,33(5):449-457
    46. Akagi H, Nakamura A, Misono Y, et al. Positional cloning of the rice Rf-1gene a restorer ofBT-type cytoplasmic male sterility that encodes a mitochondrial-targeting PPR protein. Theor ApplGenet,2004,108:1449-1457
    47. Bentolila S, Alfonso A A, Hanson M R.A Pentatricopeptide repeat-containing gene restores fertilityto cytoplasmic male-sterile plants. Proc Natl Acad Sci USA,2002,99:10887-10892
    48. Bi X X, Yang Q L, Gao T X et al. The loss of genetic diversity during captive breeding of theendangered sculpin, Trachidermus fasciatus, based on ISSR markers: implications for itsconservation. Chinese Journal of Oceanology and Limnology,2011,29(5):958-966
    49. Bostein D, White R.L,Skolnick M. et al. Construction of a genetic linkage map in man usingrestriction fragment length polymorphism. Hum. Genet.,1980,32:314-331
    50. Brown G G, Formanova N, Jin H, et al. The radish Rfo restorer gene of Ogura cytoplasmic malesterility encodes a protein with multiple pentatricopeptide repeats. Plant J,2003,35:262-272
    51. Chen S, Xu C G, Lin X H, et al. Improving bacterial blight resistance of '6078', an elite restorer lineof hybrid rice by molecular marker-assisted selection. Plant Breeding,2001,120:133-137
    52. Christopher P. Online Resources for SNP Analysis. A Review and Route Map. MolecularBiotechnology,2007,35(1):65-98
    53. Cui X Q, Wise R P, Schnable P S. The rf2nuclear restorer gene of male-sterile T-cytoplasm maize.Science,1996,272:1334-1336
    54. Da Silva F P, Endrizzi J E, Stith L S. Genetic study of restoration of pollen fertility of cytoplasmicmale-sterile cotton. Rev. Brasil.Genet.,1981,4:411-426
    55. Desloire S, Gherbi H, Laloui W, et al. Identification of the fertility restoratioin locus Rfo in radishas a member of the pentatricopeptide repeat protein family.. EMBO Rep,2003,4:588-594
    56. Feng C D, Stewart J M, Zhang J F. STS markers linked to the Rf1fertility restorer gene of cotton.Theor. Appl. Genet.,2005,110:237-243
    57. Guo W Z, Cai C.P, Wang C B. et al. A microsatellite-based gene-rich linkage map reveals genomestructure, function and evolution in Gossypium. Genetics,2007,176:527-541
    58. Guo W Z, Zhang T Z, Pan J J, et al. Identification of RAPD marker linked with fertility-restoringgene of cytoplasmic male sterile lines in upland cotton. Chinese Sci. Bull.,1998,43:52-54
    59. Guo Y F, McCarty J.C, Jenkins J.N. et al. QTLs for node of first fruiting branch in a cross of anupland cotton Gossypium hirsutum L., cultivar with primitive accession Texas701. Euphytica,2008,163:113-122
    60. Gupta H.S. Agrawal P. Mahajan K. V. et al. Quality protein maize for nutritional security: rapiddevelopment of short duration hybrids through molecular marker assisted breeding. CurrentScience,2009,96(2):230-237
    61. Ha, B.K., Hussey, R.S., Boerma, H.R. et al. Development of SNP Assays for Marker-AssistedSelection of Two Southern Root-Knot Nematode Resistance QTL in Soybean. CropScience,2007,47(2):S73-S82
    62. Han Z.G, Wang C.B, Song X.L. et al. Characteristics, development and mapping of Gossypiumhirsutum derived EST-SSRs in allotetraploid cotton. Theor Appl Genet.,2006,112(3):430-439
    63. Hanson M.R. Bentolila S.. Interactions of mitochondrial and nuclear genes that affect malegametophyte development. Plant Cell,2004,16:154-169
    64. He D.H, Lin Z.X, Zhang X.L. et al. QTL mapping for economic traits based on a dense geneticmap of cotton with PCR-based markers using the interspecific cross of Gossypiumhirsutum×Gossypium barbadense. Euphytica,2007,153(1-2):181-197
    65. Chin J H, Kim J H, Jiang W Z et al. Identification of Subspecies-specific STS Markers and TheirAssociation with Segregation Distortion in Rice (Oryza sativa L.). Journal of crop science andbiotechnology,2007,10(3):175-184
    66. Justus N, Leinweber C L. A heritable partially male sterile character in cotto. J.Hered,1960,51:191-192
    67. Kalivas A, Xanthopoulos F, Kehagia O. et al. Agronomic characterization, genetic diversity andassociation analysis of cotton cultivars using simple sequence repeat molecular markers. Genet.Mol. Res.,2011,10(1):208-217
    68. Khan N.U, Hassan G, Kumbhar M.B. et al. Combining ability analysis to identify suitable parentsfor heterosis in seed cotton yield its components and lint%in upland cotton. Industrial Crops andProducts,2009,29:108-115
    69. Kohel R J, Quisenberry J E, Dilbeck R E. Linkage analysis of the male fertility restorer gene Rf incotton-. Crop Sci.,1984,24:992-994
    70. Komori T, Ohta S, Murai N, et al. Map-based cloning of a fertility restorer gene,Rf-1,in rice(Oryzasativa L.).Plant J,2004,37:315-325
    71. Lacape J.M, Nguyen T.B, Brigitte C. et al. QTL analysis of cotton quality using multipleGossypium hirsutum×Gossypium barbadense backcross generations. Crop Science,2005,45:123-140
    72. Lan T, Cook C G, Paterson A H. Identification of a RAPD marker linked to a male fertilityrestoration gene in cotton (Gossypium hirsutum L.). J.Agric. Genomic.,1999,4:299
    73. Liu L, Guo W, Zhu X, et al. Inheritance and fine mapping of fertility restoration for cytoplasmicmale sterility in Gossypium hirsutum L. Theor. Appl. Genet.,2003,106:461-469
    74. Maranhao T O, da Silva F P, Alves J F, et al. Inheritanceand linkage of fertility restoring genes andgenes forcracked roots in cotton, Gossypium hirsutum L.r.Latifoliumhutch. Rev. Brasil. Genet.,1984,7:265-275
    75. Mei M, Syed N.H, Gao W. et al. Genetic mapping and QTL analysis of fiber-related traits in cotton(Gossypium). Theor Appl Genet.,2004,108:280-291
    76. Meyer V G, Meyer J R. Cytoplasmically controlled male sterility in cotton. CropSci.,1965,5:444-448
    77. Meyer V G. Male sterility from Gossypium harknessii. Journal of Heredity,1975,66(1):23-27
    78. Michelmore R. W., Paran, I. Kesseli. R. V. Identication of markers linked to disease resistancegenes by bulked segregant analysis: a rapid method to detect markers in specific genome regionsby using segregating populations. Proc. Natl. Acad. Sci.1991(77):8717-8721
    79. Muehlbauer G J, Speech J E, Thomas-Compton M A, et al. Near-Isogenic Lines-A Potentialresource in the integration of conventional and linkage maps. Crop Science,1988,28:729-735
    80. Murayama S, Habuchi T, Yamagishi H et al. Identification of a sequence-tagged site (STS) markerlinked to a restorer gene for Ogura cytoplasmic male sterility in radish (Raphanus sativus L.) bynon-radioactive AFLP analysis. Euphytica,2003,129(1):61-68
    81. Neeraja C.N. Use of molecular markers for testing seed purity in Hybrids and Basmati lines of rice.Senior Scientist, Biotechnology Unit,Directorate of Rice Research.
    82. Onozaki T, Tanikawa N, Taneya M et al. A RAPD-derived STS marker is linked to a bacterial wilt(Burkholderia caryophylli) resistance gene in carnation. Euphytica,2004,138(3):255-262
    83. Paran I, Kesseli R, Michelmore R.. Identification of restriction fragment length polymorphism andrandom amplified polymorphic DNA markers linked to a downy mildew resistance genes in lettuceusing near-isogenic lines. Genome,1991,34:1021-1027
    84. Paran I, Michelmore R. W. Development of reliable PCR-based markers linked to downy mildewresistance genes in lettuce. Theor Appl Genet,1993,85:985-993
    85. Pring D R, Tang H V, and Schertz K F. Cytoplasmic male sterility and organelle DNAs of sorghum.Molecular Biology of Plant Mitochondria,1995,461—495
    86. Qin H.D, Guo W.Z, Zhang Y.M. et al. QTL mapping of yield and fiber traits based on a four-waycross population in Gossypium hirsutum L. Thero Appl Genet.,2008,117:883-894
    87. Rahman M, Yasmin, Tabbasam N. et al. Studying the extent of genetic diversity among Gossypiumarboreum L. genotypes/cultivars using DNA fingerprinting. Genet. Resour. Crop Evol.2008,55:331-339
    88. Rakshit A, Rakshit S, Singh J. et al. Association of AFLP and SSR markers with agronomic andfiber quality traits in Gossypium hirsutum L. Journal of Genetics,2010,89(2):155-162
    89. Ren L.H, Guo W.Z, Zhang T.Z. Identification of quantitative trait (QTLs) affecting yield and fiberproperties in chromosome16in cotton using substitution line. Acta Botanica Sinica,2002,4(7):815-820
    90. Robbins M, Darwin S, Jack E..Comparative analysis of marker-assisted and phenotypic selectionfor yield components in cucumber. Theoretical and Applied Genetics,2009,119(4):621-634
    91. Schmir L C., Williams C R., Barkan A..RNA immunoprecipitation and microarray analysis show achloroplast pentatricopeptide repeat ptotein to be associated with the5’region of mRNAs whosetranslation it activates. Plant Cell,2005,17(10):2791-2804
    92. Schnable P S, Wise R P. The molecular basis of cytoplasmic male sterility and fertility restoration.Trends Plant Sci.,1998,3:175-180
    93. Schroeder H., Fladung M. SSR and SNP Markers for the Identification of Clones, Hybrids andSpecies Within the Genus Populus. Silvae Genetica,2010,59(6):257-263
    94. Sheetz R H, Weaver Jr J B. Inheritance of a fertility enhancer factor from Pima cotton whentransferred into Upland cotton with Gossypium harknessii Brandegee cytoplasm[J].CropSci.,1980,20:272-275
    95. Shen X.L, Guo W.Z, Lu Q.X. et al. Genetic mapping of quantitative trait loci for fiber quality andyield trait by RIL approach in Upland cotton. Euphytica,2007,155:371-380
    96. Stewart J M. A new cytoplasmic male sterile and restorer for cotton. Proc. Beltwide Cotton Conf,1992:610
    97. Thakare D, Kumudini S, Dinkins, R D et al. Expression of flowering-time genes in soybean E1near-isogenic lines under short and long day conditions. Planta,2010,231(4):951-963
    98. Van Ooijen J W, Voorrips R E. JoinMap3.0, Software forthe calculation of genetic linkage maps.Plant Research International,2001
    99. Villanueva B, Pong W, Ricardo W, et al. Marker assisted selection with optimised contributions ofthe candidates to selection.2009
    100. Wang F, Stewart J M, Zhang J F. Molecular markers linked to the Rf2fertility restorer gene incotton. Genome,2007,50(9):818-824
    101. Wang F, Yue B, Hu J G, et al. A Target Region Amplified Polymorphism Marker for FertilityRestorer Gene Rf1and Chromosomal Localization of Rf1and Rf2in Cotton. Crop Sci.,2009(49):1602-1608
    102. Wang K, Song X L, Han Z, G. et al. Complete assignment of the chromosomes of Gossypiumhirsutum L. by translocation and fluorescence in situ hybridization mapping. Theor Appl Genet,2006,113:73-80
    103. Wang Y, Zhao L, Wang X, et al. Molecular mapping of a fertility restorer gene for cytoplasmicmale sterility in soybean. Plant Breeding,2010,129:9-12
    104. Wang, C. M., Li, L. H., Zhang, X. T. et al. Development and Application of EST-STS MarkersSpecific to Chromosome1RS of Secale cereale. Cereal Research Communications,2009,37(1):13-21
    105. Weaver J B,Weaver Jr J B. Inheritance of pollen fertility restoration in cytoplasmic male-sterileupland cotton. Crop Sci.,1977,17:497-499
    106. Williams J.G, Kubelik A.R, Livak K. J. et al. DNA polymorphisms amplified by arbitrary primersare useful as genetic markers. Nucl. Acids Res.,1990,18:6531-6535
    107. Wu J.X, Gutierrez O.A, Jenkins J.N. et al. Quantitative analysis and QTL mapping for agronomicand fiber traits in an RI population of Upland cotton. Euphytica,2009,165:231-245
    108. Wu M.Q, Zhang X.L, Nie Y.C. et al. Localization of QTLs for yield and fiber quality traits oftetraploid cotton cultivar. Acta Genetica Sinica,2003,30(5):443-452
    109. Yashitola J, Thirumurugan H, Sudaram R, et al. Assessment of purity of rice hybrids usingmicrosatelite and STS markers. Crop Science,2002,42:1369-1373
    110. Yin J M, Guo W Z, Yang L M, et al. Physical mapping of the Rf1fertility-restoring gene to a100kbregion in cotton. Theor. Appl. Genet.,2006,112:1318-1325
    111. Yuan X. F, Dai Z. H.,Wang X. D. et al. Assessment of genetic stability in tissue-cultured productsand seedlings of Saussurea involucrata by RAPD and ISSR markers. Biotechnology Letters,2009,31(8):1279-1287
    112. Zhang T.Z, Yuan Y.L, Yu J. et al. Molecular tagging of a major QTL for fiber strength in Uplandcotton and its marker-assisted selection. Theor Appl Genet.,2003,106:262-268
    113. Zhang J F, Stewart J McD. CMS-D8restoration in cotton is conditioned by one dominant gene.Crop Sci.,2001,41:283-288
    114. Zhang J F, Stewart J McD. Inheritance and genetic relationships of the D8and D2-2restorer genesfor cotton cytoplasmic male sterility. Crop Sci.,2001,41:289-294
    115. Zhang J F, Stewart J McD. Linkage Analysis between Gametophytic Restorer Rf2Gene andGenetic in Cotton. Crop Sci.,2004,45:147-156
    116. Zhang J F, Stewart J McD. CMS-D8restoration in cotton is conditioned by one dominant gene[J].Crop Sci.,2001a,41:283-288
    117. Zhang J F, Turley R B, Stewart J McD. Comparative analysis of gene expression between CMS-D8restored plants and normal non-restoring fertile plants in cotton by differential display. Plant CellRep,2008,27:553-561
    118. Zhang J F, Stewart J McD. Identification of molecular markers to the fertility restorer gene forCMS-D8in cotton. Crop Sci.2004,44:1209-1217
    119. Zhang Z S, Hu M.C, Zhang J. et al. Construction of a comprehensive PCR-based marker linkagemap and QTL mapping for fiber quality traits in upland cotton (Gossypium hirsutum L.). MolBreeding,2009,24:49-61
    120. Zheng P H, Meng X Y, Yu Z X. et al Genetic and Phytochemical Analysis of Armillaria mellea byRAPD, ISSR, and HPLC. Analytical Letters,2009,42(10/12):1479-1494
    121. Hao Z F, Li X H, Xie C X.et al. Identification of Functional Genetic Variations UnderlyingDrought Tolerance in Maize Using SNP Markers. Bulletin of Bitany,2011,53(8):641-652

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700