普通×爆裂玉米群体单性状及多性状联合QTL分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
爆裂玉米是一种专门用来制作玉米花系列休闲食品的特用玉米类型。由于爆裂玉米种质资源较少,严重着制约育种水平和效率的进一步提高。随着分子标记技术的发展,高密度遗传图谱的构建,在玉米数量性状基因定位方面已经取得了一定的进展。本研究以优良爆裂玉米自交系N04与普通玉米丹232杂交构建259个F_2群体及F_(2:3)家系,利用SSR分子标记构建高密度遗传图谱,采用复合区间作图法,以排列测验1000次所得LOD值作为阈值,对爆裂玉米的3个膨爆特性指标、9个穗粒性状、9个植株性状和4个籽粒营养品质进行了两个环境的合并QTL定位和效应分析,采用多区间作图法分析QTL间的上位效应,并采用多性状联合分析的复合区间作图法对膨爆特性指标间、穗粒性状间、籽粒营养品质性状间、主要植株性状间以及膨爆特性与主要穗粒性状间进行了多性状QTL联合分析,探讨各性状的分子遗传机制及其间的遗传关系,判断控制相关性状QTL存在的一因多效性或基因紧密连锁,同时验证以往相关研究结果。为进一步开展分子标记辅助选择、QTL精细定位及其克隆提供更为可靠的理论依据。
     本研究主要得到以下结论:
     1.用613对SSR引物对两个亲本N04和丹232进行多态性检测,获得193个共显性标记位点,占31.48%。利用Mapmaker3.0作图软件和183个共显性SSR分子标记构建了一张爆裂玉米分子标记连锁图,图谱总长度为1762.2cM,相邻两标记间的平均距离为9.63cM。
     2.3个膨爆特性指标单独分析共检测到16个QTL,单个QTL贡献率为4.85%~15.39%,控制不同膨爆特性指标的QTL具有相同的标记或置信区间,部分显性、超显性、加性对膨爆特性的遗传均起着主要的作用;部分定位QTL间存在较大的互作效应;控制不同膨爆特性指标的QTL多数表现为一因多效。
     3.9个穗粒性状单独分析共检测到26个QTL,单个QTL贡献率为4.66%~22.96%,部分穗粒性状QTL具有相同的标记或置信区间,表现为热点分布,部分显性效应对穗粒性状的遗传起着主要作用;定位QTL间互作较少,而且效应较小;在第2、5、10染色体上控制穗粒重和百粒重的QTL,在第10染色体上控制穗粒重和穗行数的QTL以及在第2、7、8染色体上控制穗粒重和行粒数的QTL存在为一因多效性或紧密连锁。
     4.穗粒重和百粒重与膨化倍数呈极显著负相关,其QTL联合分析表明百粒重与膨化倍数在第1染色体上、穗粒重与膨化倍数在第2、8染色体上LOD曲线的峰点表现同向变化,存在QTL紧密连锁或一因多效。
     5.4个籽粒营养品质性状单独分析共检测到15个QTL,单个QTL贡献率为4.95%~10.57%,加性和部分显性效应均对籽粒营养品质的遗传起着主要作用;定位QTL间互作较少,而且效应较小;大多数控制淀粉含量和蛋白含量的QTL存在一因多效或紧密连锁。
     6.9个植株性状单独分析共检测到39个QTL,单个QTL贡献率为4.25%~31.44%,加性和部分显性效应对植株性状遗传起着主要的作用;定位QTL间互作较少,而且效应较小;
Popcorn is a special kind of corn type being used to make popcorn flake for a series pastime foodstuff. Breeding level and efficiency in popcorn is seriously restricted due to its quite few germplasm resource. With the development of molecular marker technology, high density gentetic linkage maps were constructed, quantitative trait loci (QTL) in maize have already been identified. In this research, two hundred and fifty-nine F_2 population and F_(2:3) family lines, developed from a cross between a dent corn indred, Dan232, and a elite popcorn indred, N04, were developed. A high-density genetic map was constructed using SSR markers. Three popping characteristics, 9 ear-kernel traits, 4 nutritional quality of krnel, and 9 plant characters for F_(2:3) population were evaluated. Data in two environments(in spring and in summer) were combined to map QTL of these traits and evaluate their effect, using composite interval mapping(CIM). The LOD threshold values were determined by 1000 times permutation test. The interactions of detected QTL were identified using multiple interval mapping (MIM) method according to the result of CIM method. The joint QTL analysis of two or three different traits were done using composite interval mapping(CIM) of multiple traits analysis, including between different popping characteristics, between different ear-kernel characters, between different nutritional quality of ear-kernel characters, and between main plant characters, and between popping characteristics and main ear-kernel traits. This was to analyze their molecular genetic mechanism and genetic correlations between different characters, and to test for linked or pleiotropic QTL controlling correlated traits. Meanwhile, previous research results in single environment were verified. The main purpose was to provide more reliable theory basis to utilize molecular marker-assisted selection, and fine map QTL and even clone them in future.
    The main results in this study were as follows:
    1. Totally, 613 SSR primers were employed to screen polymorphism between two parents, N04 and Dan232, only 193 markers(31.48%) were in co-dominant segregation. One hundred eighty-three pairs SSR markers were selected to construct a genetic linkage map of popcorn with the genetic distance of 1762.2 cM (centimorgan) and on an average of 9.63 cM using Mapmaker 3.0.
    2. Sixteen QTL were mapped for 3 popping characteristics by single trait analysis. Contribution of single QTL to phenotypic variation varied from 4.85% to 15.39%. Most QTL controlled different popping characteristics located at the same marker loci or in the same marker confidence intervals. Partially dominant, over-dominant and additive effects all played main funcations in the heredity of popping characteristics. A little bigger interactions existed between some detected QTL. Most QTL controlling different popping characteristics showed pleiotropy.
    3. Twenty-six QTL were detected for 9 ear-kernel traits using single trait
引文
1. 陈树宾,李鲁华.爆裂玉米若干数量性状的典型相关分析.玉米科学,1998(增刊),10-13.
    2. 丁效华.作物数量性状基因图位克隆研究进展.植物遗传资源学报,2005,6(4):464-468.
    3. 邓启云,袁隆平,梁凤山,李继明,李新奇,王岳光,王斌.野生稻高产基因及其分子标记辅助育种研究.杂交水稻.2004,19:6-10.
    4. 董继新,董海涛,何祖华,等.一个水稻与稻瘟病菌(Magnaporthe grisea)互作相关新基因的克隆.农业生物技术学报,2001,9(1):41-44.
    5. 方宣钧,吴为人,唐纪良.作物DNA标记辅助育种.科学出版社,2001,57-70.
    6. 高世斌,冯质雷,李晚忱,荣廷昭.干旱胁迫下玉米根系性状和产量的QTLs分析.作物学报,2005,31(6):718-722.
    7. 顾红雅,等.植物基因与分子操作[M].北京大学出版社,1995 142-150.
    8. 惠大丰,姜长鉴,莫惠栋.数量性状基因图谱构建方法的比较.作物学报,1997,23(2):29-36.
    9. 侯建华,郑红丽,杨丽君,等.玉米种质资源品质性状与主要农艺性状相关性分析.内蒙古农业大学学报,2001,22(2):71-74.
    10.兰进好,李新海,高树仁,等.不同生态环境下玉米产量性状QTL分析.作物学报,2005,31(10):1253-1259.
    11.兰进好,褚栋.玉米株高和穗位高遗传基础的QTL剖析.遗传,2005,27(6):925-934.
    12.李杰勤,张启军,叶少平等.四种不同QTL作图方法的比较研究.作物学报,2005,31(11):1473-1477.
    13.李玉玲,靳永胜,薛喜梅等.爆裂玉米穗粒性状与爆裂性的关系研究.河南农业科学,1999,(5):11—12.
    14.李玉玲,鹿智江.爆裂玉米与普通玉米杂交后代选系的膨爆特性研究.河南农业大学学报,2000,34(3):210-212.
    15.李玉玲.爆裂玉米膨爆特性的遗传及杂交种研究进展.中国农学通报,2001,17(1):43-45.
    16.李玉玲,江洪勋.爆裂玉米胚乳数量性状的遗传研究.生物数学学报, 2002,17(4):435-439.
    17.李玉玲,吴锁伟,牛素贞,李志强,薛淑丽.爆裂玉米自交系与不同优势类群普通玉米自交系的配合力及聚类分析.河南农业大学学报,2004,38(1):5-8.
    18.李玉玲.爆裂玉米种质遗传及其数量性状的分子遗传研究.河南农业大学博士论文, 2005.
    19.金一,潘相文,王振华,等.玉米品质性状的遗传相关和选择方案研究.中国农业科学, 2003,36(7):851-855.
    20.林慧贤,刘筱斌,李发强,罗文永,刘良式.水稻小GTP蛋白基因Osrab5B基因的克隆和鉴定.高技术通讯,2001,3:9-14.
    21.柳李旺,朱协飞,郭旺珍,张天真.分子标记辅助选择聚合棉花Rf1育性恢复基因和抗虫Bt基因.分子植物育种,2003,1:48-52.
    22.刘向辉,蒋基建.爆裂玉米主要品质性状的配合力研究,延边农学院学报,1993,1:1-9.
    23.马晓萍,王玉兰,等.爆裂玉米膨胀倍数的遗传研究.吉林农业科学,2001,26(4):9-13.
    24.米丽萍,卫春,黄俊生,杜喜玲,等.水稻凋亡基因rPDCD5的克隆和表达分析.遗传,2004,26(6):893-897.
    25.莫惠栋.数量性状遗传基础研究的同顾与思考—后基因组时代数量遗传领域的挑战.扬州大学学报(农业与生命科学版),2003,24(2):24-31.
    26.沈新莲,袁有禄,郭旺珍,朱协飞,张天真.棉花高强纤维主效QTL的遗传稳定性及它的分子标记辅助选择效果.高技术通讯,2001,10:13-17.
    27.宋秀芳.玉米籽粒油分QTL定位及相关性状的分析.中国农业大学博士论文,2003.
    28.汤华,严建兵,黄益勤,等.玉米5个农艺性状的QTL定位.遗传学报,2005,32(2):203-209.
    29.滕文涛.利用分子标记划分玉米杂种优势群及定位农艺性状QTL的研究.中国农业大学博士论文,2004.
    30.万建民.作物分子设计育种.作物学报,2006,32(3):455-462.
    31.王心宇,陈佩度,张守忠.小麦白粉病抗性基因的聚合及其分子标记辅助选择.遗传学报,2001,28:640-646.
    32.王振华,王义波,王永普,等.普通玉米主要品质性状的杂种优势及优势相关分析.玉米科学,1998,6(3):25-28.
    33.魏良明,戴景瑞,张义荣,刘占先。玉米淀粉含量的杂种优势与基因效应分析.作物学报,2005,31(7):833-837.
    34.吴金红,蒋江松,陈惠兰,等.水稻稻瘟病抗性基因Pi-2(t)的精确定位.作物学报,2002,28:505-509.
    35.吴谡琦,张进兴,洪旭光,孙修勤.分子标记技术的进展及其应用高技术通讯,2001,4:99-103.
    36.吴为人,李维明,卢浩然.基于最小二乘估计的数量性状基因座的复合区间定位法.福建农业大学学报,1996,25:394-399.
    37.邢永忠,徐才国,华金平,谈移芳,孙新立.水稻株高和抽穗期基因定位和分离.植物学报,2001,43(7):721-726.
    38.向道权.中国农业大学博士研究生论文,2001.
    39.向道权,曹海河,曹永国,等.玉米SSR遗传图谱的构建及产量性状基因定位.遗传学报,2001,28(8):778-784.
    40.肖静,胡治球,汤在祥等.多个相关数量性状主基因的联合分析方法.中国农业科学2005,38(9):1717-1724.
    41.严建兵,汤华,黄益勤,等.玉米F_2群体分子标记偏分离的遗传分析.遗传学报,2003,30(10):913-918.
    42.杨俊品,荣廷昭,向道权,等.玉米数量性状基因定位.作物学报,2005,31(2):188-196.
    43.杨文鹏.与玉米奥帕克-6位点连锁RFLP标记.作物学报,1998,24(1):34-41.
    44.徐云碧,朱立煌.分子数量遗传学.北京:中国农业大学出版社,1994.
    45.张晓国,刘玉乐,康良仪,朱英国,田波.水稻花药特异表达基因启动子的扩增及克隆,武汉大学学报(自然科学版)1997,43(4),480-484.
    46.朱军.复合数量性状基因定位的混合线性模型方法.王连铮,戴景瑞(主编):全国作物育种学术讨论会论文集.北京:中国农业科技出版社 1998:11-20.
    47. Agrawal, A. Phenotypic plasticity in the interactions and evolution of species. Science (Washington, D. C.) 294: 321-326.
    48. Agrama HAS, Moussa M E. Mapping QTL in breeding for drought tolerance in maize (Zea mays L.). Euphytica, 1996, 91: 89-97.
    49. Alpert K B, Tankesley S D. High-resolution mapping and isolation of a yeast artificial chromosome contig containing fw2.2: A major fruit weight quantitative trait locus in tomato.Proc Natl Acad Sci USA, 1996, 93: 15503-15507.
    50. Arondel V, Lemieux B, Hwang I, et al. Map-based cloning of a gene controlling omega-3 fatty acid desaturation in Arabidopsis. Science, 1992, 258:1353-1355.
    51. Ashman R.B.Registration of three popcorn(Maize) Parental lines HP62-02,HP72-11,and HP68-07.Cropsci,1991,31:1402-1403.
    52. Ashman R B. Popcorn, Purdue University, Cooperative Extension Service, Plant Disease Control, Bulletin .1983,BP-4.
    53. Austin D F ,Lee M. Genetic resolution and verification of quantitative trait loci for flowering and plant height with recombinant inbred lines of maize. Genome ,1996 ,39 (6) :957-968.
    54. Austin,D.F.and M. Lee..Detection of quantitative trait loci for grain yield and yield components in maize across generations in stress and nonstress environments.Crop Sci. 1998,38:1296-1308.
    55. Babu.R.,Nair S.K.,Kumar A.,Rao H.S. et al. Mapping QTLs for popping ability in a popcorn X flint corn cross. Theor Appl Genet., 2006 (In press ) .
    56. Beavis, W.D., D. Grant, M. Albertsen, and R. Fincher.Quantitative trait loci for plant height in four maize populations and their associations with qualitative genetic loci. Theor. Appl. Genet. 1991,83:141-145.
    57. Bernacchi D, T Beck-Bunn, Y Eshed, J Lopez, V Petiard, J Uhlig, D Zamir & S Tanksley, 1. Advanced backcross QTL analysis of tomato.I. Identification of QTLs for traits of agronomic importance from Lycopersicon hirsutum. Theor. Appl. Genet. 998b,97:381-397.
    58. Bonierbale MW, Plaisted RL, Tanksley SD. RFLP maps based on a common set of clones revealmodes of chromosomal evolution in potato and tomato. Genetics, 1988, 120: 1095-1103.
    59. Brondani C, Rangel P,Brondani R,Ferreira M.QTL mapping and introgression of yield-related traits from Oryza glumaepatulato to cultivated rice (Oryza sativa) using microsatellite markers. Theoretical andApplied Genetics, 2002.104:1192-1203.
    60. Brunson AM.Popcorn. In: Sprague GF (ed) Corn and Corn Improvement. Am Soc Agron, Madison, WI.1955,p.423.
    61. Cai D, Kleine M, kifle S, Harloff HJ, Sandal NN, et al. Positional cloning of a gene for nematode resistance in sugar beet. Science, 1997,275:832-834.
    62. Chuck G, RobbinsT,Nijjar C,et al. Tagging and cloning of a petunia flower color gene with the maize transposable element activator. Plant Cell, 1993,5:371-378.
    63. Churchill GA, and Doerge RW. Empirical threshold values for quantitative trait mapping. Genetics, 1994,138: 963-971.
    64. Clary GA.. study of the inheritance of expansion in popcorn [Disertation], Purdue University, West Lafayette, IN,. 1954.
    65. Crumbaker A M,Johnson,Eldredge J C.Inheritance of popping volume and associated characters in crosses between popcorn and dent corn.Agron J.1949,41:207-212.
    66. DeVicente M.C and Tanksley S.D.QTL Analysis of Transgressive Segregation in an Interspecific Tomato Cross. Genetics 1993 134:585-596.
    67. Dholakia BB, Ammiraju SS, Lagu MD , Roder MS , Rao VS, Dhaliwal HS, Ranjekar PK, Gupta VS.Molecular marker analysis of kernel size and shape in bread wheat. Plant Breeding, 2003,122: 392-397.
    68. Dixon MS, Jones DA, Kedelie JS, et al. The tomato Cf-2 disease resistance locus comprises two functional genes encoding leucine-rich repeat proteins. Cell, 1996, 84:451-459.
    69. Doerge R W,Churchill G A.Permutation tests for multiple loci affecting a quantitative character. Genetics ,1996 ,142 (1) :285-294.
    70. Dofing, S.M.; Thomas-Compton, M.A.; Buck, J.S. Genotype x popping method interaction for expansion volume in popcorn. Crop Science,, 1990,30:62-65.
    71. Dofing S.M.,Nora Dcroz-Mason,Thomas-Compton M.A..Inheritance of expansion volume and yield in two popcorn xdent corn crosses.Crop Sci,1991,81:715-718.
    72. Dorweiler J, Stec A, Kermicle J, Doebley J. Tesominte glume architecture 1. A genetic locus controlling a key step in maize evolution. Science, 1993,262:233-235.
    73. Dudley JW. Molecular markers in plant improvement: manipulation of genes affecting quantitative traits. Crop Sci., 1993, 33:660-668.
    74. Fedoroff NV, Furtek DB, Nelson OJ. Cloning of bronze locus in maize by a simple and generalizable procedure using the transposable controlling element activator (AC). Proc Natl Acad Sci USA, 1984,81:3825-3829.
    75. Feldmann KA, Marks MD, Christianson ML and Quatrano RS.A dwarf mutant of Arabidopsis generated by T-DNA insertion mutagensis. Science, 1989,243:1351.
    76. Flint-Garcia SA. Jampatong C, Darrah LL and McMullen MD.Quantitative Trait Locus Analysis of Stalk Strength in Four Maize Populations. Crop Sci. 43:13-22 (2003).
    77. Frary A, Nesbitt TC, Grandillo S, Knaap E, Cong B, Liu J, Meller J, Elber R, Alpert KB, Tanksley SD.fw2.2: a quantitative trait locus key to the evolution of tomato fruit size. Science, 2000,289(5476):85-88
    78. Fulker D W, Cardon L R.A sib-pair approach to interval mapping of quantitative trait loci. AmJHum Genet, 1994,54:1092-1103.
    79. Fullon TM, T Beck-Bunn, D Emmatty,et al. QTL analysis in an advanced backcross of Lycopersicon peruvianum to the cultivated tomato and comparisons with QTLs found in other wild species.Theor Appl Genet. 1997,95:881-894.
    80. Fullon TM, Grandillo S, Beck-Bunn T, Fridman E,et al. Advanced backcross QTL analysis of a Lycopersicon esculentum x L. parviflorum cross.Theor Appl Genet,2000,100:1025-1042.
    81. Gao M, Chibbar RN. Isolation, characterization and expression analysis of starch synthase II a cDNA from wheat (Triticumaes tivumL.).Genome,2000,43:768-775
    82. Giraudat J, Hauge BM, Valon C, et al. Isolation of the Arabidopsis ABI3 gene by positional cloning. Plant Cell, 1992, 4:1251-1261.
    83. Goffinet B, Mangin B.Comparing methods to detect more than one QTL on a chromosome. Theor Appl Genet 1998,96: 628-633.
    84. Goldman, I.L., T.R. Rocheford, and J.W. Dudley. Quantitative trait loci influencing protein and starch concentration in the Illinois Long Term Selection maize strains. Theor. Appl. Genet. 1993, 87:217-224.
    85. Goldman IL, Rocheford TR, & Dudley JW. Molecular markers associated with maize kernel oil concentration in an Illinois High Protein x Illinois Low Protein Cross. Crop Sci., 1994,34:908-915.
    86. Groh S, Gonzalez-de-Leon D, Khairallah MM, et al.(1998) QTL Mapping in tropical maize: III. Genomic regions for resistance to Diatraea spp. and associated traits in two RIL Polulations. Crop Sci 38:1062-1072.
    87. Guo L.B.,Xing Y.Z.,Mei H.W.et al.Dissection of component QTL expression in yield formation in rice. Plant Breeding,2005,124:127-132.
    88. Hehl R. Transposon tagging heterologous host plants. Trends in Genetics, 1994,10:385-386.
    89. Harushima Y, Yano M, Shomura A, Sato M, Shimano T, Kuboki Y, et al. A high-density rice genetic linkage map with 2275 markers using a single F2 population.Genetics, 1998, 148: 479-494
    90. Helentjaris T, Slocum M, Wright S, Schaefer A, Niehhuis J. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor Appl Genet, 1986,72: 761-769.
    91. H.J.Lu, R.Bernardo. H.W.0hm. Mapping QTL for popping expansion volume in popcorn with simple sequence repeat markers. Theor. Appl.Genet. 2003,106:423-427.
    92. Hospital F, and Charcosset A. Marker-assisted introgression of quantitative trait loci. Genetics, 1997,147:1469-1485.
    93. Huang N, Angeles ER, Domingo J, et al. Pyramiding of bacterial blight resistance genes in rice: marker assisted selection using RFLP and PCR. Theor. Appl. Genet., 1997, 95:313-320.
    94. Hulbert SH, Richter TE, Axtell JD and Bennetzen JL Genetic mapping and characterization of sorghum and related crops by means of maize DNA probes. Proc Natl. Acad. Sci.USA. 1990,87 : 4251-4255
    95. Jansen R C. Interval mapping of multiple quantitative trait loci. Genetics,1993,135:205-211.
    96. Jansen R C.Controlling the type I and type II errors in mapping quantitative trait loci .Genetics,1994,138:871-881.
    97. Jantasuriyarat Chatchawan, Gowda Malali, Haller Karl, Hatfield Jamie et al. Large-Scale Identification of Expressed Sequence Tags Involved in Rice and Rice Blast Fungus Interaction.Plant Physiol. 2005 138:105-115.
    98. Jiang, C., and Z.-B. Zeng. Multiple trait analysis of genetic mapping for quantitative trait loci.Genetics 1995, 140:1111-1127.
    99. Johnson IJ, Eldredge JC (1953) Performance of recovered popcorn inbred lines derived from out crosses to dent corn. Agron J 45 :105-110.
    100. Jones DA, Thomas CM, Hammond-Kosack KE, Balint-Kurti PJ and Jones, JDG Isolation of the tomato Cf-9 gene for resistance to cladosporium fulvum by transposon tagging. Science, 1994,266:789-793.
    101. Kao C H, Zeng Z B, Teasdale R D. Multiple interval mapping for quantitative trait loci. Genetics,1999,152:1203 -1216.
    102. Keim P, Diers BW, Olson TC, Shoemaker RC. RFLP mapping in soybean: Association between marker loci and variation in quantitative traits. Genetics, 1990,126: 735-742
    103. Kleinhofs A, A. Kilian MA. Saghai Maroof RM, et al. A molecular, isozyme, and morphological map of the barley (Hordeum vulgare) genome. Theor. Appl. Genet.,1993, 86:705-712.
    104. Knapp SJ, Stroup WW, Ross WM.Exact confidence intervals for heritability on progeny mean basis. Crop Science,1985,25:192-194.
    105. Korol, A. B., Y. I.Ronin and V. M. Kirzhner. Interval mapping of quantitative trait loci employing correlated trait complexes. Theror. Appl. Genet. 1995, 92: 998-1002.
    106. Korol AB, Ronin YI, Itskovich AM, Peng J, Nevo E Enhanced efficiency of quantitative trait loci mapping analysis based on multivariate complexes of quantitative traits. Genetics 2001, 157:1789-1803.
    107.Kruglyak L, Lander E S. Complete multi-point sib pair analysis of qualitative and quantitative traits. AmJHum Genet, 1995,57: 439-459.
    108.Lander ES, Botstein S. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989,121: 185-199.
    109.Lander ES, Botstein S. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics, 1989,121:185-199.
    110.Lagudah ES, Moullet O, Appels R. Map-based cloning of a gene sequence encoding a nucleotide-binding domain and a leucine-rich region at the Cre3 nematode resistance locus of wheat. Genome, 1997,40:659-665.
    111.Lawrence GJ, Finnegan EJ, Ayliffe MA, Ellis JG The L6 gene for flux rust resistance is related to the Arabidopsis bacterial resistance gene RSP2 and tobacco viral resistance gene N. Plant Cell, 1995,7:1195-1206.
    112.L.D.Pordesimo, et al. Physical properties as indicators of popping characteristics of microwave popcorn. Journal of food science 1990,55(5):1352-1355.
    113.Lee M. DNA markers in plant breeding programs. Adv. Agron., 1995, 55:265-344.
    114.Lincoln S, Daly M, Lander E. Mapping genetic mapping with MAPMAKER/EXP3.0. Cambridge: MA: Whitehead institute Technical Report, 1992.
    115.Liu Z, Tan G, Dunham RA. Transcribed dinucleotide microsatellites and their associated genes from channel catfish Ictalurus punctatus. Biochemical and Biophysical Research Communication, 1999, 259,190-194.
    116.Lubberstedt Thomas,Albrecht E.Melchinger,Chris C.Schon, H.F. Utz,and D.Klein. QTL Mapping in Testcrosses of European Flint Lines of Maize:1.Comparison of Different Testers for Forage Yield Traits. Crop Sci, 1997, 37: 921-931.
    117.LYERLY, P.J. Some genetic and morphological characters affecting the popping expansion of popcorn. Journal American Society of Agronomy, 1942,34:986-995.
    118.Mangin B, Goffinet B, Rebai A .Constructing confidence interval for QTL location. Genetics 1994,138; 1301-1308.
    
    119.Mangin B, Goffinet B.Comparison of several confidence intervals for QTL location. Heredity1997,78: 345-335.
    120.Margis-Pinheiro M, Zhou X-R, ZhuQ-H, Dennis ES, Upadhyaya NM. Isolation and Characterization of a Ds-Tagged Rice (Oryza sativa L.) GA Responsive Dwarf Mutant Defective in An Early Step of the Gibberellin Biosynthesis Pathway. Plant Cell Reports,2005,23,819-833.
    121.Martin GB, Brommonschenkel SH, Chunwongse J, et al. Map-based cloning of a protein kinase gene conferring disease resistance in tomato. Science.1993,262:1432-1436.
    122.McDowell JM, Dhandayham M, Long TA, et al. Intragenic recombination and diversifying selection contribute to the evolution of downy mildew resistance at the RPP8 locus of Arabidopsis. The Plant Cell, 1998,10: 1861-1874.
    123.Melchinger AE, Utz H F, Schon C C. Quantitative trait locus (QTL) mapping using different testers and independent population samples in maize reveals low power of QTL detection and large bias in estimates of QTL effects. Genetics, 1998,149:383-403.
    124.Mertz E F,L S Bates and O E Nelson.Mutant gene that changes protein composition and increase lysine content of maize endosperm.Science,1964,145:279-280.
    125.Moncada P, Martinez CP, Borrero J, Chatel M, Gauch H.et al. Quantitative trait loci for yield and yield components in an Oryza sativa x Oryza rufipogon BC2F2 population evaluated in an upland environment.Theor. Appl.Genet.,2001,102:41-52.
    126.Moreno-Gonzalez J. Genetics models to estimate additive and non-additive effects of marker-associated QTL using multiple regression techniques. Theor. Appl. Genet. 1992, 85:435-444
    127.Mizutani M, Ohta D and Sato R. Isolation of a cDNA and genomic clone encoding cinnamate 4 hydroxylase from arabidopsis and its expression manner in planta. Plant Physiol., 1997,113:755-763.
    128.Natalya S, McMullen MD, Schultz L, et al. Development and mapping of SSR markers for maize. Plant Mol. Bio., 2002,48:463-481
    129.Nelson JC, Sorrells ME, Van Deynze AE, Lu YH. Molecular mapping of wheat: major genes and rearrangements in homoeologous group 4,5 and 7. Genome, 1995,141:721-731.
    130.Pavesi A, Ficarelli A,Tassi F,et al. Cloning of two glutamate dehydrogenase cDNAs from Asparagus of ficinalis: sequence analysis and evolutionary implication. Genome, 2000, 43: 306-316.
    131.Piepho H P. A quick method for computing approximate thresholds for quantitative trait loci detection. Genetics, 2001,157:425-432.
    132.Pernet, A., D. Hoisington, J. Franco, M. Isnard, et al.Genetic mapping of maize streak virus resistance from the Mascarene source. I. Resistance in line D211 and stability against different virus clones. Theor. Appl. Genet. 1999,99:524-539.
    133.Robbins W A,Ashman R B. Parent-offspring popping expansion correlations in progeny of dentcorn×popcorn and flintcorn×popcorn crosses. Crop sci, 1984, 24(1): 119-121.
    134.Rommens CMT, Kneppers TA, Haring MA, Nijkamp HJJ, Hille J. A transposon tagging strategy with Ac on plant cell level in heterologous plant species. Plant Sci., 1991,74:99-106.
    135.Saghai Maroof M A, Soliman K M, Jorgensen R A, et al. Ribosomal DNA spacer-length polymorphisms in barley: Mendelian inheritance, chromosomal location, and population dynamics[J]. Proc. Natl. Acad. Sci. USA, 1984, 81:8014-8018.
    136.Sax K. The association of size differences with seed-coat pattern and pigmentation in Phaseolus vulgaris. Genetics, 1923,8:552-560.
    137.Schmalzing D, Belenky A, Novotny MA, Koutny L, Salas-Solano O, El-Difrawy S, Adourian A, Matsudaira P, and Ehrlich D. Microchip Electrophoresis: A Method for High-Speed SNP Detection. Nucl. Acids. Res. 2000 28: e43
    138.Sorrells ME, Van Deynze A, Nelson JC, and McCouch SR. Comparative Mapping in the Gramineae. 1995. Classical and Molecular Cytogenetic Analysis of Cereal Genomes (Gill BS and Raupp WJ eds), Proc. US-Japan NSF Symp., March 21-23, 1995, Kansas State University, Manhattan.
    139.Stuber C W, Edwards MD and Wendel J.F1 Molecular marker facilitated investigations of quantitative trait loci in maize., Ⅱ. Factors influencing yield and its component traits .Crop Sci, 1987, 27 :639-648.
    140.Stuber CW, Wolff DW, Helentjaris T, Lander ES. Identification of genetic factors contributing to heterosis in a hybrid from 2 elite maize inbred lines using molecular markers. Genetics, 1992, 132:823-839
    141.Stuber C.W., 1995, Mapping and maniqulating quantitative traits in maize, Trends Genet., 11: 477-481.
    142.Tanabe Sumiyo, Ashikari Motoyuki, Fujioka Shozo et al. A Novel Cytochrome P450 Is Implicated in Brassinosteroid Biosynthesis via the Characterization of a Rice Dwarf Mutant, dwarf11, with Reduced Seed Length. Plant Cell 2005 17: 776-790.
    143.Tanksley S D,Medina Hilho H,Rick C M. Use of naturally occurring enzyme variation to detect and map gene controlling quantitative traits in an interspecific backcross of tomato. Heredity,1982,49:11-25.
    144.Tanksley SD, Young ND, Paterson AH & Bonierbale MW. RFLP mapping in plant breeding: new tools for an old science. Bio/Technology, 1989,7:257-264.
    145.Tanksley SD,Ahn N,Caysse M.RFLP mapping of the rice genome.In Rice Genetics II.Los Banos,Laguna:IRRI,1991.435-442.
    146.Tanksley SD, Ganal MW, Prince JP, et al. High density molecular linkage map of the tomato and potato genomes. Genetics, 1992,132:1141-1160
    147.Tanksley S D. Mapping polygenes. Annu Rev Genet, 1993, 37: 205-233.
    148.Tanksley SD & JC Nelson,.Advanced backcross QTL analysis: a method for the simultaneous discovery and transfer of valuable QTLs from unadapted germplasm into elite breeding lines. Theor. Appl. Genet. 1996,92:191-203.
    149.Tanksley SD & SR McCouch.1997. Send banks and molecular maps:unlocking genetic potential from the wild.Science,277:1063-1066.
    150.Tuberosa R,Salvi S,Sanguineti M C, Landi P,Maccaferri M,Conti S. Mapping QTL regulating morpho-physiological traits and yield:case studies,shortcomings and perspectives in drought- stressed maize. Ann Bot,2002b,89:941-963.
    151.Van Berloo R (1999): GGT: software for the display of graphical genotypes. J Hered 90: 328-329.
    152.Veldboom, L.R.and M. Lee. Molecular-marker-facilitated studies of morphological traits in maize.2.Determination of QTLs for grain yield and yield components.Theor Appl Genet,1994,89:451-458.
    153.Veldboom L R,Lee M.Genetic mapping of quantitative trait loci in maize in stress and non-stress environments:I.grain yield and yield components[J].Crop Sci.1996,36:1310-1319.
    154.Visscher, P.M.,Thompson, R.and Haley, C.S.Confidence intervals for QTL locations using bootstrapping. Genetics 1996.143:1013-1020.
    155.Vuylsteke M, mank R, Antonise R, Bastiaans E, Senior ML, et al. Two high-density AFLP (R) linkage maps of Zea mays L.: analysis of distribution of AFLP markers. 1999. Theor. Appl. Genet., 99: 921-935.
    156.Walker D,Boerma HR, All J, Parrott W .Combining cry1Ac with QTLalleles from PI229358 to improve soybean resistance to lepidopteran pests. Molecular Breeding, 2002,9:43-51.
    157.Wang SM, Lue WL, Wu SY, Huang HW, and Chen J. Characterization of a Maize [beta]-Amylase cDNA Clone and Its Expression during Seed Germination. Plant Physiol., 1997, 113:403-409.
    158.Wang S,C.J.Basten,and Z-B.Zeng.Windows QTL Cartographer2.5 Department of Statistics, North Carolina State University, Raleigh, NC, 2006.
    159.Wassom J, Wong J, Martinez E, King J, Debaene J, Hotchkiss J, Mikkilenini V and Rocheford T. QTL associated with maize kernel composition and related traits among Illinois High Oil × B73 backcross-derived lines. Theor. Appl. Genet., 2003, in press.
    160.Wassom J., Wong J., Martinez E., King J., Debaene J., Hotchkiss J., Mikkilenini V and Rocheford T. QTL associated with maize kernel composition and related traits amng Illinois High Oil X B73 backcross-derived lines. Theor. Appl. Genet., 2004, in press
    161.Weller, J. I. Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers. Biometrics, 1986,(42), 627-640.
    162.Whitham S, Dinesh-Kumar S P, Choi D, Hehl R, Corr C, and Baker B. The product of the tobacco mosaic virus resistance gene N:similarity to toll and the interleukin 1 receptor. Cell, 1994,78:1101-1115.
    163. Wu WR,Li WM,Tang DZ,Lu HR. Worhand A J.Time-related mapping of quantitative trait loci underlying tiller number in rice.Genetics, 1999,151:297-303.
    164.Xiao J, Li J,Yuan L,Tanksley S D.Identification of QTLs affecting traits of agronomic importance in a recombinant inbred population derived from a subspecific rice cross. Theor Appl Genet, 1996, 92:230-244.
    165.XIAO, J., J.LI,S.GRANDILLO,S.N.AHN, and L. YUAN.et al.. Identification of trait-improving quantitative trait loci alleles from a wild rice relative, Oryza rufipogon. Genetics, 1998,150: 899-909.
    166.Xu ML, Melchinger AE, Xia XC, Lübberstedt T. High-resolution mapping of loci conferring resistance to sugarcane mosaic virus in maize using RFLP, SSR, and AFLP markers. Mol. Gen. Genet., 1999, 261: 574-581.
    167.Xu Chenwu, Li Zhikang, Xu Shizhong. Joint Mapping of Quantitative Trait Loci for Multiple Binary Characters.Genetics,2005,169:1045-1059 .
    
    168.Li Xueyong, Qian Qian, Zhiming Fu et al.Control of tillering in rice. Nature, 422, 618-621.
    169.Yamamoto Y,Kuboki Y,et al.Fine mapping of quantitative trait loci Hd-l,Hd-2 and Hd-3,controlling heading date of rice,as single Mendelian factors.Thero Appl Genet, 1998,97:37-44.
    170.Yano M, Sasaki T. Genetic and molecular dissection of quantitative traits in rice. Plant molecular Bio. 1997,35:145-153.
    171.Yano M, Katayose Y, Ashikari M,et al. Hd1, a Major Photoperiod Sensitivity Quantitative Trait Locus in Rice, Is Closely Related to the Arabidopsis Flowering Time Gene CONSTANS Plant Cell, 2000,12: 2473-2484.
    172.Yanofsky MF, Ma H, Bowman JL, Drews G, Feldmann K and Meyerowitz EM. The protein encoded by Arabidopsis homeotic gene agmous resemble transcription factors. Nature, 1990,346:35-39.
    173.Yoshimura S, Yoshimura A, Iwata N, et al. Tagging and combining bacterial blight resistance genes in rice using RAPD and RFLP markers. Mol. Breeding, 1995,1:375-387.
    174.Yu SB, Li JX, Xu CG, et al. Importance of epistasis as the genetic basis of heterosis in an elite rice hybrid. Proc. Natl. Acad. Sci., 1997, 94: 9226-9231.
    175.Yu Z H,Mackill D J,Bonman J M,et al. Tagging genes for blast resistance in rice via linkage to RFLP markers. Theor. Appl. Genet, 1991,81:471-476.
    
    176. Zeng Z B. Precision mapping of quantitative trait loci. Genetics, 1994,136:1457-1468.
    177.Zeng, Z.-B., C.-H. Kao, and C. J. Basten.Estimating the genetic architecture of quantitative traits. Genetical Research,1999,74:279-289.
    
    178. Zeng Zhao-Bang. QTL mapping and the genetic basis of adaptation: recent developments. Genetica,2005,123: 25-37.
    
    179. Zhao-Bang Zeng.QTL mapping and the genetic basis of adaptation: recent developments. Genetica,2005,123:25-37.
    180. Zhou WC, Kolb FL, Bai GH, Domier LL, Boze LK, Smith NJ.Validation of a major QTL for scabresistance with SSR markers and use of marker-assisted selection in wheat.Plant Breeding, 2003,122:40-44.
    181. Zhu J, Weir BS.Mixed model approaches for the genetics of quantitative traits. In: Chen LS, Ruan SG, Zhu J(eds) Advanced topics in biomathematics: Proc Int Conf on Mathematical Biology, World Scientific Publishing Co, Singapore, 1998:321-330.
    182. Ziegler, K.E., Ashman, B. Popcorn in Specialty Corns. Hallauer,Ed., A.R. Department of Agronomy, Iowa State University, CRC Press, 1994.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700