用户名: 密码: 验证码:
以矿渣为主要组分的道路基层与面层专用水泥试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
适应高等级公路路面基层与面层结构的新材料始终是该领域的前沿性研究课题之一。添加矿渣微粉尤其是高掺量的使用矿渣粉,不仅能够减少水泥生产中的资源与能源消耗,减少温室气体的排放,而且能够改善各结构层的性能。本文从路面半刚性基层与路面混凝土对水泥性能的要求出发,以尽量多的使用矿渣微粉为基本原则,进行了以矿渣微粉为主要组分的道路上最常用的两种专用水泥胶结材料的研发。
     综合考虑路面基层材料的技术性能、施工要求和经济性因素,优选了合适的原材料,即矿渣微粉、碱钙硫激发材料(水泥、消石灰、石灰石和石膏)。以凝结时间、抗压强度为主要设计指标,研究矿渣微粉以及激发材料的种类与掺量对胶结材料技术性能的影响。通过凝结时间、抗压与抗折强度、收缩系数试验进行逐级筛选,优选出道路基层专用新型矿渣水泥结合料(New Slag Binder)NSB43A和NSB43B,这两种NSB中矿渣微粉的掺量皆为75wt%,NSB43A中采用的是内掺2wt%石灰石的矿渣微粉,NSB43B中采用了内掺4wt%石灰石的矿渣微粉。这两种矿渣结合料都具有缓凝、抗裂性好、强度高的优点,特别适合路面基层使用。
     综合考虑路面混凝土的技术性能、施工要求和经济性因素,优选了合适的原材料,即矿渣、碱钙硫激发材料(水泥熟料、石灰石、石膏)、碱性激发剂(Na2SiO3?9H2O和NaOH)、调凝剂。以水泥的凝结时间、抗弯拉强度、抗裂性为主要设计指标,研究矿渣微粉、激发材料以及调凝剂的种类与掺量对水泥胶结材料技术性能的影响,通过凝结时间、抗压与抗折强度、收缩系数试验逐级筛选,考虑尽量覆盖较多的矿渣粉用量范围,优选出了6种配比的性能优良的矿渣道路水泥胶结料(Slag Road Cement)(SRC)。混凝土面层SRC的研究表明:采用熟料、石膏、石灰石以及调凝剂为复合激发材料能够设计出路面混凝土系列水泥。方案中矿渣微粉与熟料用量范围变化比较大,矿渣粉从47~75wt%,熟料从25wt%到50wt%。SRC不仅能够大量使用矿渣粉,抗压强度等级符合道路用水泥技术标准的要求,而且具有抗折强度高、凝结时间合适、经济且环保的优点。
     在优选出水泥胶结材料最佳配比的基础上,通过室内试验,系统地研究了NSB稳定细粒土、NSB稳定级配碎石、SRC混凝土的路用性能,重点关注NSB稳定土的强度与抗裂性能及施工性能,SRC混凝土的强度与耐久性。采用模糊数学综合评判方法,对比分析了NSB稳定细粒土、稳定级配碎石与P.O32.5 R稳定细粒土、稳定级配碎石,SRC混凝土与P.O42.5R混凝土的综合性能,验证了以矿渣微粉作为主要组分的道路专用水泥的可行性,并分析了专用水泥结合料的适用场合。
     最后,采用X-射线衍射(XRD)和扫描电镜(SEM)两种方法,对新研制的NSB43A、NSB43B和参照对象P.O32.5R三种结合料及其稳定土进行微观测试,分析了在不同龄期时的水化产物及其形貌。从水泥的粒度分布、孔溶液的pH值、混凝土孔结构、SEM形貌等方面,分析了SRC及其混凝土的水化产物、微观形貌;利用热力学原理,剖析了以矿渣粉为主要组分的水泥孔溶液,在高pH值时引起水化产物C-S-H中低Ca/Si比的原因所在。对NSB、SRC及其稳定土、混凝土的强度形成机理进行了探讨。水化产物的形貌表明以矿渣为主要组分的专用水泥胶结材料的水化产物有较多的钙矾石AFt,而且几乎没有Ca(OH)2的存在,而普通硅酸盐水泥有大量的Ca(OH)2,几乎没有AFt的存在。
With the rapid development of road construction, especially the highway construction in China, the researches and application of new materiales for road base courses and pavements have become one of the leading research projects. It has been found that with the addition of ground granulated blast furnace slag (GBFS), especially with large amount of GBFS in addition, the consumption of resources and energy as well as the greenhouse emissions will be reduced, and the faults of the ordinary Portland cement(OPC) will be improved. According to the requirements of road base and concrete surface road on cement features as big as possible , two most commonly used cementitious materials with slag powders as the main component have been developed.
     The new slag binder NSB43A and NSB43B of road base are chosen after the following three procedures: (A)The selection of the proper raw materials of road base materials such as GBFS and alkali calcium sulfur stimulate materials(cement, slaked lime,limestone, and gypsum), which is based on the consideration of the technical performances, construction requirements and economic factors. (B)The choice of the setting time and compressive strength as the main design index. (C)Relevant choices made in setting time, together with the compressive and flexural strength and contraction coefficient experiment. These two NSB both contain 75wt% GBFS. In NSB43A, 2wt% limestone is contained in its GBFS, whereas in NSB43B, 4wt%. There two slag binder NSB have been proved to be more suitable for road base course with their good performance of slow setting, better anti-crack and higher strength, resulting in economic benefits and environmental protection.
     Before the systematic research on such factors as GBFS, stimulate materials and the type and dosage of adjustable coagulant on the cementitious material technology performance, construction requirements and economical factors of pavement concrete , the following proper raw materials are chosen: GBFS, alkali calcium sulfur stimulate materials(cement clinker, limestone, gypsum), alkaline stimulate agent(Na2SiO3?9H2O and NaOH),and coagulation agents. Cement setting time, flexural tensile strength, cracking-resistance are taken as the main design index. As a result, six SRC projects have been recommended. The research of the pavement concrete surface of SRC indicates that with the use of adjustable coagulant and composite stimulate materials such as cement clinker, gypsum and limestone, a series of SRC can be designed. In the SRC projects, the amounts of GBFS and clinker dosage vary in comparatively larger ranges, with GBFS powder from 47~75wt% and clinker, 25wt% to 50wt%. These designs have turned out to satisfy cement road technical standard by using large amount of GBFS, producing pavement concrete of greater flexural tensile strength, ideal setting time and the higher compressive strength grade,all of which lead to favorable economic benefits and environmental protection.
     Based on the above-mentioned optimized compositions and with focus on the strength, anti-cracking performance and construction feature of the NSB stabilized soil,and SRC concrete’s strength and durability, systematic research has been conducted in the indoor experiments on NSB stabilized fine-grained soil, gradation gravel and SRC concrete road performance. Fuzzy comprehensive evaluation method is also used in the experiments in analyzing NSB stabilized fine soil, NSB stabilized gradation gravel and P.O32.5R stabilized soil, SRC concrete and P.O42.5R concrete comprehensive performance in order to testify the feasibility of special road cement with the GBFS powder as the main component and to analyze the applicable occasions of NSB and SRC.
     Finally, XRD and SEM are employed in the micro-analyses on the newly developed binders and its stabilized soil: NSB43A, NSB43B and their reference material P.O32.5R, and on their hydro-products as well as the photographs of them at different ages. Furthermore, the experiments have also explored into the features of SRC, its hydro-products and corresponding micro-photograph.The study has delved into the reasons of pore bigger solution pH value of newly developed cement and hydration pruductions C - S - H gel lower Ca/Si using thermodynamic principle, in addition to the research of NSB and its stabilized soil, SRC strength mechanism. The photographs of the hydro-products indicate that the biggest differences between special slag cementitious materials and OPC lie in the fact that the former has the comparatively larger amount of AFt and contains little Ca(OH)2, and the latter has larger amount of Ca(OH)2 but little AFt.
引文
[1]韩向东,刘贵森,吕嘉宁.浅谈我国水泥混凝土路面的现状及展望.山东建材,2000(3):39-41.
    [2]沈卫国,周明凯,吴少鹏.胶凝材料的过去现在与未来[J].建筑砌块,2004(1):11-14.
    [3]张树青,黄士元.我国矿渣粉生产和应用情况[C].第一届全国化学激发胶凝材料研讨会论文集,南京工业大学出版社,2004:87-89.
    [4]王松成,李玉寿.提高混凝土耐久性的途径[J].盐城工学院学报,1998,11 (1):16-20.
    [5] Caijun Shi.Alkali-activated Cement and Concretes:Past Development and Future Challenge[C].第一届全国化学激发胶凝材料研讨会论文集,南京工业大学出版社,2004:7-12.
    [6]贾艳涛.矿渣和粉煤灰水泥基材料的水化机理研究[D].东南大学,2005.
    [7]袁润章主编.胶凝材料学[M] .武汉工业大学出版社,1996年10月第二版.
    [8] P.K.Metha.3rd International Coferance on Fly Ash, Silica Fume,and Natural Pozzolans in Concrete,Tronheim Norway,1989:1-43.
    [9]王聪.碱激发胶凝材料的性能研究[D] .哈尔滨工业大学,2006年.
    [10] Sanjay Kumar, etc. Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of Portland slag cement.Cement & Concrete Composites ,2008(30):679-685.
    [11]通用硅酸盐水泥(GB175-2007).中华人民共和国国家标准,中国标准出版社出版发行.2007年12月.
    [12]李相国,梁文泉,李北星.少熟料多废渣胶结料性能的研究[J].粉煤灰,2002(5):7-9.
    [13]李东旭.少熟料矿渣粉煤灰复合水泥的性能研究[J].材料科学与工程,2001,19(3):74-78.
    [14]李东旭.低钙玻璃态碱胶凝材料的研究进展[J].第一届全国化学激发胶凝材料研讨会论文,南京工业大学出版社,2004:30-40.
    [15] Collins F,Sanjayan JG.Effect of pore size distribution on drying shrinkage properits of alkali-activated slag concrete.Cem Concr Res,2000 30(9):1401-1406.
    [16] Caijun S.Strength,pore structure and permeability of alkali-activated slag mortars.Cem Concr Res,1999 26(11):1789-1799.
    [17] Frank Collins , J.G. Sanjayan. Strength and shrinkage properties of alkali-activated slag.Cement and Concrete Research,1999 (29) 659–666.
    [18] Frank Collins , J.G.,Sanjayan.Strength and shrinkage properties of alkali-activated slag.Cement and Concrete Research,1999 (29) 659–666.
    [19]王培铭、金左培、张永明.碱矿渣胶凝材料复合激发剂的研究.第一届全国化学激发胶凝材料研讨会论文,南京工业大学出版社,2004:255-259.
    [20]张英群、刘伟华、杨克锐.抗海水碱钢渣水泥的研制.第一届全国化学激发胶凝材料研讨会论文,南京工业大学出版社,2004:189-194.
    [21]吴其胜、李玉寿、莫祥银.含硅渣及废渣水的碱胶凝材料的制备与性能研究[C].第一届全国化学激发胶凝材料研讨会论文,南京工业大学出版社.2004:158-162.
    [22]王复生.济南大学化学激发胶凝材料研究综述[C].第一届全国化学激发剂材料研讨会论文集,南京工业大学出版社.2004:58-67.
    [23]吴其胜.碱矿渣水泥的研究与发展[J] .中国建材科技,1999(1):1-4.
    [24] M.LEFORT.Technique for limiting the consequences of shrinkage in hydraulic-binder-treated bases[J].Proceedings of the Third International RILEM Conference organized by Center for Research and Contract Standardization in Civil and Traffic Engineering, Delft University of Technology and Belgian Road Research Centre.1996:3-8.
    [25]杨红辉.掺膨胀剂及纤维水泥稳定碎石抗裂性能研究[D].长安大学,2003年3月.
    [26]蔚三艳.水泥类基层外加剂的研究[D].长安大学,2006年5月.
    [27]萧赓.水泥稳定级配碎石基层路用结构性能及改善措施研究[D].长安大学,2001年10月.
    [28]周明凯、李北星、沈卫国.SGL结合料稳定土的性能、应用及其硬化机理研究[J].中国公路学报,1999 (12):9-17.
    [29] Puppala, A .J, Dunder. C,Hanchanloet.S, det.Swell and shrinkage characteristics of lime treated sulfate soil Texas ASCE spring meeting proceedings South padre island Texas[M],1998.
    [30] Wattanasanticharoen, E. Investigates to evaluate the performance of four selected stabilizations on soft subgrade soils of southeast Arlington.The University of Thesis at Arlington.
    [31] Chavva.P.K. Evaluation of strength, swell, and shrinkage characteristics of chemicallytreated soil from north Texas[J].The University of Thesis at Arlington,2002.
    [32] S.Wild,J.M.Kinuthia, G.I.Higgins. Suppression of swelling associated with ettringite formation in lime stabilized sulphate bearing clay soils by partial substitution of with granulated blast furnace slag. Engineering geology.1999 (51):257-277.
    [33] S.Wild,J.M.Kinuthia, G.I.Higgins. Effects of partial substitution of lime with granulated blast furnace slag (GGBS) on the strength properties of lime- stabilised sulphate bearing clay.Engineering geology, 1998(51):37-53.
    [34] Maurice Serruto, Lucas Pardo. Evaluation of Stablised Marginal Parement Materials Using Established and Newly Developd Cementitious binders. 20th ARRB conference,19-21 March 2001:1-13.
    [35]陈有治.碱矿渣水泥的理论基础[J].新世纪水泥导报,2000(5):10-12.
    [36]郑娟荣,周同和,吴杰.土壤固化剂[Z],专利号:CN02104284.5,北京:北京天筑杰特建筑材料技术开发有限公司.
    [37] Susan A. Bernal, Ruby Mejía de Gutiérrez, Alba L. Pedraz,etc. Effect of binder content on the performance of alkali-activated slag concretes. Cement and Concrete Research 41 (2011):1–8.
    [38] Aaron R. Sakulich , Edward Anderson, Caroline Schauer,etc. Mechanical and microstructural characterization of an alkali-activated slag/limestone fine aggregate concrete. Construction and Building Materials 23 (2009):2951–2957.
    [39] Chao Li ,Henghu Sun ,Longtu Li。Areview:The comparison between alkali-activated slag(Si+Ca) and metakaolin (Si+Al) cements。Cement and Concrete Research 40 (2010):1341-1349.
    [40]张海龙,葛志,张彩文.水泥混凝土路面修补材料的研制[C].第一届全国化学激发胶凝材料研讨会论文,南京工业大学出版社,2004:7-12.
    [41]薛彦平.高抗折强度路面混凝土研究[D].长安大学,2005年3月.
    [42]吉林省交通科技项目.公路水泥混凝土路面耐久性研究总报告,2008年6月.
    [43]中华人民共和国交通部行业标准.《公路水泥混凝土路面施工技术规范》(JTG F30-2003)[S].北京:人民交通出版社.
    [44]许建设.高等级公路半刚性基层分析[J].安徽职业技术学院学报,2006,5(1):19-22.
    [45]朴应模.无机激发剂对无熟料高炉矿渣水泥的作用机理及强度效果[J].延边大学学报(自然科学版)2003,29(3):220-224.
    [46]施惠生主编.生态水泥与废弃物资源化利用技术.化学工业出版社,2005.
    [47]傅智.高速公路水泥混凝土路面对水泥的技术要求[J].中国水泥,2002,(3):46-52.
    [48]孟庆超.混凝土耐久性与孔结构影响因素的研究[D].哈尔滨工业大学工学,2006.
    [49]中华人民共和国交通部行业标准.《公路路面基层施工技术规范》(JTJ 034-2000)[S].北京:人民交通出版社.
    [50]宋强.矿渣水泥的收缩性与其硬化水泥石组成的关系[D].西安建筑科技大学,2005.
    [51]姚爱玲,张西玲.再生资源——矿渣粉在道路中的应用[C].中国公路学会2006年学术年会优秀论文集,内蒙古工业大学出版社,2006.
    [52]張大康.高细石灰石粉用作水泥混合材料的试验研究[J].水泥,2005,(7):7-11.
    [53]张育才等.球磨和立式磨矿渣微粉的粒度特性研究[J].昆明冶金高等专科学校学报,2007,23(1):12-16.
    [54]韩涛.矿渣粒度分布特征及其对水泥强度的影响[J].西安建筑科技大学学报(自然科学版),2004.
    [55]候新凯.高活性矿渣粉对矿渣水泥性能的效应[J].西安建筑科技大学学报(自然科学版),2006,38(1):9-17.
    [56]中华人民共和国交通部行业标准《公路工程沥青与沥青混合料试验规程》JTJ052-2000 [S].北京:人民交通出版社,2006.
    [57]中华人民共和国交通部行业标准《公路工程石料试验规程》(JTJ054-94)[S].北京:人民交通出版社,1993.
    [58]《公路工程无机结合料稳定材料试验规程》(JTJ057-94)[S].北京:人民交通出版社,1993.
    [59]姚爱玲,张西玲,王选仓.测试方法对沥青混合料抗压回弹模量的影响[J].长安大学学报(自然科学版),2005,25(6):21-24.
    [60]沙庆林编著.高等级公路半刚性基层沥青路面.北京:人民交通出版社,1999年8月.
    [61]胡宗文.路面材料收缩变形试验研究及路面结构热-力耦合分析[D].长安大学,2006.
    [62]胡力群.半刚性基层材料类型与组成设计研究[D] .长安大学,2004.
    [63]沙爱民,张登良.西三公路半刚性基层材料抗裂性能试验研究[J].聚珍求索:173-179.人民交通出版社,2004.
    [64]姚爱玲,徐德龙,孙治军.DE硅改沥青及其混合料的路用性能[J].中国公路学报,2006,19(6):25-29.
    [65]刘昌忠.半刚性基层材料冻融循环强度变化分析[J].中南公路工程,2004年3月第1期:61-63.
    [66]路艳.路面性能模糊综合评价模型及应用研究[J].安徽工程科技学院学报,2003.
    [67]张跃,邹寿平,宿芬.模糊数学方法及其应用[M].北京:煤炭工业出版社,1992.
    [68]中华人民共和国行业标准.《公路工程水泥及水泥混凝土试验规程》JTG E30-2005[S].人民交通出版社,北京:2005.
    [69]陈建奎.混凝土外加剂原理与应用[M].中国计划出版社,2004年4月第二版.
    [70]何廷树主编.混凝土外家剂[M].陕西科学技术出版社,2003年8月第一版.
    [71] Keun-Hyeok Yang , Jin-Kyu Song , Ashraf F. Ashour etc.Properties of cementless mortars activated by sodium silicate[J].Construction and Building Materials 22 (2008):1981–1989.
    [72] Sanjay Kumar , Rakesh Kumar, A. Bandopadhyay, etc.Mechanical activation of granulated blast furnace slag and its effect on the properties and structure of portland slag cement[J].Cement & Concrete Composites, 2008 (30):679–685.
    [73] Frank Collins, J.G. Sanjayan.Strength and shrinkage properties of alkali-activated slag [J].Cement and Concrete Research,1999 (29):659–666.
    [74]中华人民共和国行业标准.《公路水泥混凝土路面设计规范》(JTJ D40-2002).人民交通出版社,北京:2002.
    [75] Cincotto M.A, Melo A.A,and Repette W.L. Effect of Different Activators Type and Dosages and Relation to Autogenous Shrinkage of Activated Blast Furnace Slag Cement. Proceedings of the 11th International Congress on the Chemical of Cement Cement’s Contribution to the Development in the 21th Century.11-16 May 2003 Durban, South Africa:1878-1888.
    [76]陈瑜张大千.水泥混凝土路面磨损机理与耐磨性[J].混凝土与水泥制品,2004(2):16-19.
    [77]中华人民共和国标准.《普通混凝土长期性能和耐久性能试验方法》[S] (GB J82-85).
    [78]黄士元.混凝土的抗冻性及其试验方法[J].混凝土及加筋混凝土,1983.
    [79] American Society for Testing and Materials. C666. Standard Test Method for Resistance of Concrete to Rapid Freezing and Thawing[S], 1995.
    [80]姚爱玲,孙治军,徐德龙.矿渣粉作为填料的沥青混合料性能试验[J].长安大学学报(自然科学版),2006,26(5):5-8.
    [81]魏风艳.高性能水泥中低Ca/Si的C-S-H凝胶形成及其抑制ASR机理[D].南京工业大学,2005.
    [82] P.K.METHA.in Proceddings of the 3nd International Conference on Fly Ash,SiliacaFume,and Natural Pozzolans in Concretes.Tronheim,Norway,1989:1-43.
    [83] P.K.Mehta , M..K.M.Yang . APPlication of fiy ash in the agglomeration of reactive mine tailings[J].Joumal of HaZardous Materials,1996,51(3):181一192.
    [85] S.SONG,D.SOHN ,H.M.JENING,T.O.MASON.Hydration of alkali-activated ground granulated blast furnace slag.Journal of materials science 2000 (35):249-257.
    [86] S.A.GREENBERG and T.N.CHANG, J.Phys. Chem. 1965(699):182.
    [87] H.M.JENING.The Developing Microstructure in Portland Cement in“Advances in Cement Technology”,edited by S.N.Ghosh(pergamon Press,Newyork,1983.
    [88] T.Hakkinen.Cement Concrete Research, 1993(23):407-421.
    [89]印永嘉等编.物理化学简明教程(第4版)[M] .高等教育出版社,2007年8月.
    [90]傅玉普,王新平主编.物理化学简明教程(第2版)[M].大连理工大学出版社,2007年2月.
    [91]高丕英,李江波编.物理化学,北京:科学出版社.2007年9月第1版.
    [92] T.Hakkinen, Cement Concrete Research 23.518-530.1993.
    [93] Hakkinen,Cement Concrete Research 23.407-421.1993.
    [94] M.S.Tang, S.F.Han,S.H.Zheng . A rapid method of identificatio of alkali activity aggregate[J].Cem.Coner.Res. 1983,13(3):417一422.
    [95] M.S.Tang,S F Hna.Rapid method of detemrining the Preventive of mineral admixtuers on alkali silica reaction.Pore of the 6th international conference on alkali in concrete.Danish Conerete Association,CoPenhagen,JUNE,1983:383-386.
    [96]孟庆超.混凝土耐久性与孔结构影响因素的研究[D].哈尔滨工业大学工学,2006年.
    [97]张永娟.石灰石与石膏在水泥中的作用比较[J] .四川水泥,2000(6):8-10.
    [98]杨南如.碱胶凝材料形成的物理化学基础(I)[J].硅酸盐学报1996,24(2):209-215.
    [99]杨南如.碱胶凝材料形成的物理化学基础(II)[J].硅酸盐学报1996,24(4):459-463.
    [100]重庆建筑工程学院等.混凝土学[M],中国建筑工业出版社,1980.
    [101]蒲心诚等.高效活性矿物掺料与混凝土的高性能化[J].混凝土, 2002,148(2):3-6.
    [102]张登良.石灰加固土原理.西安公路学院,1980.
    [103]蒲心诚译.接触硬化胶凝材料及复合材料[M].重庆大学出版社,2004.
    [104]中国水泥网[Z].
    [105]李涛,臧疆文.八钢矿渣微粉项目对促进我区工业CO2减排的分析[J].新疆钢铁,2010, 114(2):55-57.
    [106]李伦,雷莉.矿渣微粉资源优势与利用--对建筑节能与循环经济中资源综合利用的探讨[J].科技风,2010(8)下:115-116.
    [107]王善拔.矿渣粉的另一减排作用[J].水泥,2010(5):48.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700