臂式掘进机断面自动成形理论与控制策略研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
臂式掘进机在巷道施工中得到了广泛的应用。近年来,悬臂式掘进机的自动化及断面自动成形技术已成为国外的研究热点,且一部分成果已投入实际应用,而我国在这些领域尚处于起步阶段。研究自动化掘进机的最终目的是代替手动操纵掘进机,以拓展其应用领域,适应恶劣的工作环境,节约生产成本,提高巷道成形精度,同时降低劳动强度,提高生产效率。本论文以实现纵轴悬臂式掘进机断面自动成形为目标,对其的运动学、动力学及电液比例控制系统进行分析与建模,研究断面成形过程的监测理论以及截割轨迹的规划理论和控制策略。
     构建了悬臂式掘进机的全局坐标系统,建立了运动学闭链回路,运用齐次变换和机器人运动学理论对掘进机工作装置、掘进机车体和掘进机运动学进行了分析,建立了关节空间和驱动空间的运动学方程,确定了掘进机截割头的空间位置,并对运动学进行了仿真。
     论文对截割头的截割阻力进行了分析和研究,运用达朗贝尔原理计算了各关节的广义驱动力和广义驱动力矩,运用拉格朗日方程建立了掘进机工作装置的动力学模型。分析表明,动力学方程与工作装置的形位密切相关,具有非线性和强耦合特性。
     设计了压力补偿电液比例系统,分析了负载敏感系统LSS(LoadSensing System)的工作原理,对工作装置的液压控制系统进行了建模,对模型中的一些关键参数进行了近似估算和辨识。研究表明,液压系统模型是多变量、慢时变和非线性的。
     实时监测掘进机截割头的空间位置和断面轮廓尺寸是断面自动成形的重要保证。论文从截割头的结构入手,按照轮廓边界的位置建立了各截齿尖的坐标,分析了各截齿的极限截割范围与工作装置摆角、截割头钻进深度的关系,确定了成形巷道断面轮廓的边界点坐标,建立了断面轮廓的曲线方程和坐标系统,研究了巷道中心线的方向表达式。
     分析并归纳出截割轨迹的种类,运用以抛物线过渡的直线插值方法对掘进机工作装置进行了关节空间和驱动空间轨迹规划,提出了规划方法和步骤,进行了仿真研究。研究了非平行断面的校正和断面的调整问题。
     为了实现截割轨迹的精确跟踪控制,以工作装置的关节转角、驱动油缸的输出力、输出速度和行程为被控量,探索实现轨迹跟踪的最优控制策略。分别研究了关节转角的变参数非线性PID控制、驱动油缸输出力的变结构控制以及驱动油缸输出行程的模型参考自适应控制,设计了控制算法,并进行了仿真和试验。结果表明:采用基于参考模型的自适应控制,能够实现对掘进机工作装置截割轨迹的有效跟踪控制。试验结果证明了理论研究的正确性。
Boom-type roadheader has found widespread application in tunnel excavation. In recent years, research on automation and automatic cross section profiling of boom-type roadheader has become a focus abroad, and some of the results have been put into practical application. However, these studies are still in its infancy in our country. The final aim of researching on automatic roadheader is to replace the manually operated roadheader, develop its application domain, adapt to poor working conditions, cut production cost, improve tunnel profiling precision, reduce labor intensity and increase production efficiency. The goal of this thesis is to achieve automatic cross section profiling of longitudinal axis boom-type roadheader. Kinematics, dynamics and electro-hydraulic proportional control system for the roadheader are analyzed and modelled. Monitoring theory of cross section contour, as well as cutting trajectory planning theory and control strategy are studied.
     The overall coordinate system of roadheader is constructed, and close kinematics loop is established. Kinematics of manipulator, body and roadheader are analyzed using the theory of homogeneous transformation and robotic kinematics, and the kinematics equations in the joint space and the drive space are established, and spatial position of roadheader cutting head are given. Kinematics simulations are completed.
     Cutting resistance forces are analyzed and studied. Based on the D'Alembert principle and the Lagrange equation, the joint generalized force, the joint generalized torque and the dynamic model of the roadheader manipulator are established. Research showed that the dynamatics equation is closely related to the form and the position of the manipulator, and have the characteristics of non-linear and strong-coupling.
     The pressure compensation electro-hydraulic proportional system of the roadheader is designed, and the working principle of LSS (Load Sensing System) is analyzed. Models of the hydraulic control system for the roadheader manipulator are deduced. Some key parameters are estimated and identified. Study showed that the hydraulic control system model is multi-variable, slow time-varying and non-linear.
     Real-time monitor of the position of the cutting head and the size of the contour is very important to automatic cross section profiling. From structure of the cutting head, coordinates of pick are established according to position of contour boundary. Relations among the cutting limit scope of the pick, the joint angle of the manipulator, and the cutting depth are analyzed, and coordinates of the contour boundary are given. Curve equation and coordinate of the cross section contour and the directional expression of tunnel centerline are established.
     Shapes of the cutting trajectory are analyzed and summarized, and trajectory plannings of the manipulator in the joint space and the driving space are developed by straight-line interpolation method with parabola transition, and simulations are carried out. Calibrations of the non-parallel cross section and adjustments of the cross section are studied.
     With the joint angle, the cylinder drive force, the cylinder output speed and travel as controlled objects, control strategies of accurate trajectory tracking for the manipulator are studied, which include non-linear PID control of the joint angle, variable structure control of the cylinder drive force and model reference adaptive control of the cylinder output travel. Control algorithms are designed, and simulations and experiments are carried out. It is shown whatever for control precision and velocity the accurate trajectory tracking is reached using the adaptive control of the cylinder drive velocity and travel. So the adaptive control in the thesis can be utilized for trajectory tracking control of the manipulator. The results of experiment proved the validity of the fundamental research.
引文
[1]丛铁军.巷道掘进机[M].北京:煤炭工业出版社,1982.
    [2]张士勇.纵轴式悬臂掘进机断面成形控制基础研究[J].陕西理工学院学报.2005.9,21(3):18-21, 27.
    [3]赖涤泉,李建英,朱齐平.臂式掘进机现状及其在隧道施工中的应用[J].工程机械与维修.2001.11: 50-53.
    [4]邢印成,王凤林,郭滨.掘进机的发展[J].煤炭技术.2005.5,24(5):11-12.
    [5]毛君,吴常田,谢苗.浅谈悬臂式掘进机的发展及趋势[J].中国工程机械学报.2007.4,5(2): 240-242.
    [6]赵汗青,赵卉放.悬臂式巷道掘进机智能控制展望[J].煤矿机电.2008.3:60-62.
    [7]郝建生.悬臂式重型掘进机关键技术探讨[J].煤炭科学技术.2008.4,36(4):4-8.
    [8]隆泗,母洪都.自由断面掘进机的发展与研究[J].煤矿机械.2001.3:1-3.
    [9]汪昌龄,韩琦.我国掘进机发展分析[J].煤矿机械.1997.2:1-3.
    [10]马跃.谈我国悬臂式掘进机的发展及趋势[J].煤.2006.2,15(2):29-32.
    [11]宁仲良,陈加胜.悬臂式掘进机智化发展方向初探[J].煤矿现代化.2006.2:55-56.
    [12]汪胜陆,孟国营,田劼等.悬臂式掘进机的发展状况及趋势[J].煤矿机械.2007.6,28(16):1-3.
    [13]德米特拉克等.掘进机的技术水平及其改进方向[J].中州煤炭.1997.2:43-46.
    [14] Teruhisa Awata著,张淑胡,桂晚银.智能掘进控制系统[J].非开挖技术.2002.2:111-113.
    [15]丛日永,李晓豁.纵轴式掘进机钻进工况的运动学模型[J].辽宁工程技术大学学报.2006.6: 245-246.
    [16]童小冬,彭天好,汲方林等.横轴式掘进机截割头截齿空间运动方程的建立[J].煤矿机械. 2006.7,27(7):35-39.
    [17]郭迎福,张永忠,刘德顺等.横轴式掘进机截割头截齿运动学分析[J].中国矿业大学学报. 2001.5,30(3):281-295.
    [18]李晓豁.掘进机纵向截割头的运动学分析及简化计算[J].黑龙江矿业学院学报.1998.9, 8(3):24-29.
    [19]胡应曦,罗艳蕾.悬臂掘进机截割头牵引速度和牵引力的变化规律[J].贵州工学院学报.1995.6, 24(3):30-35.
    [20]陈淑莲.悬臂式掘进机切割头运动特性研究[J].矿山机械.1997(5):6~8.
    [21]项阳,陈楠,胡应曦等.悬臂式掘进机摆动机构分析与研究[J].煤矿机电.2001.3:4-8.
    [22]杜以昌,李建英,赖涤泉.JSBZ132型臂式掘进机截割头受力分析关系[J].矿山机械.2004.8:7-9.
    [23]李晓豁.纵向截割头摆动截割时的运动学仿真.煤矿机电[J].2000.4:7-9.
    [24]郭迎福,张永忠,刘德顺等.纵轴式掘进机截割头横摆时的运动学分析及其仿真[J].煤炭学报. 2002.2,27(1):68-72.
    [25]刘春生,赵汗青,漆利平.悬臂式掘进机断面成形的几何尺寸检测转换模型[J].中国工程机械学报.2008.3,6(1):91-94.
    [26]李晓豁,田晶,黄艳.横轴式截割头截割过程的运动学仿真[J].黑龙江科技学院学报.2001.3, 11(1):17-20.
    [27]郭迎福,张永忠,彭佑多等.横轴式掘进机截割头真实运动与简化运动比较分析[J].煤矿机械. 2001.1:1-3.
    [28]任中全,李北平,张昆.EBH-132型悬臂掘进机截割头受力稳定性分析[J].煤矿机械.2008.1, 29(1):63-65.
    [29]李晓豁.横轴式掘进机垂直截割的动力学模型[J].中国工程机械学报.2006.1,4(1):1-3.
    [30]李晓豁.掘进机截割头随机载荷的模拟研究[J].煤炭学报.2000.10,25(5):525-530.
    [31]李晓豁,程东棠.掘进机截割头截荷的模拟研究[J].阜新矿业学院学报.1990.8,9(3):88-94.
    [32]何素梅,吴海彬.纵轴式掘进机回转机构的运动对截割力的影响[J].矿山机械.2000.6:20-23.
    [33]刘春生,漆利平,赵汗青.悬臂式掘进机悬臂水平摆动机构的建模与仿真[J].黑龙江科技学院学报.2008.1,18(1):1-4.
    [34]朱旬,秦剑秋,索双富等.纵轴式掘进机切割臂水平摆动速度的确定[J].矿山机械.1997.9:7-8.
    [35]杜军,贾文明,李宗锦.新型掘进机液压系统的设计[J].液压与气动.2008.6:78-79.
    [36]毛好喜.基于加速度传感器的掘进机姿态控制研究[J].煤矿机械. 2008.1,29(1):158-159.
    [37]张军.几种掘进机械液压系统的分析[J].煤矿机电.2006.6:49-51.
    [38]吕建乐.比例控制技术在掘进机工况中的应用[J].液压与气动.2004.5:68-69.
    [39]赵东升.悬臂掘进机工作机构自动控制系统的研究[D].西安科技大学.2005.
    [40]熊有伦,丁汉,刘恩沧.机器人学[M].北京:机械工业出版社1993.
    [41]蔡自兴.机器人学[M].北京:清华大学出版社2003.
    [42]王宗禹,孙建新.矿山机械重心位置测量系统研究[J].煤矿机电1996(4):34-35.
    [43] Zhu Xiangji,Xu Shifan. Study of Robotization for Excavator on the Kinematics and Dynamics[J]. Journal of China University of Mining & Technology.1996.12,6(2):26-38.
    [44] S.Kleinsteuber and N.Sepehrit.A Polynomial Network Modeling Approach to a Class of Large-scale Hydraulic Systems[J]. Computer.s Elect. Engng. 1996.2,22(2):151-168.
    [45] Honghai Liu, George M. Coghill, David J. Brown. Qualitative kinematics of planar robots: Intelligent connection[J]. International Journal of Approximate Reasoning.2007.12,46(3): 525-541.
    [46] Cui-hua MAN, Xun FAN, Cheng-rong LI, Zhong-hui ZHAO. Kinematics Analysis Based on Screw Theory of a Humanoid Robot[J]. Journal of China University of Mining and Technology. 2007.3,17(1):49-52.
    [47] M. Taylan Das, L. Canan Dülger. Mathematical modelling, simulation and experimental verification of a scara robot[J]. Simulation Modelling Practice and Theory. 2005.4,13(3): 257-271.
    [48] Tuna Balkan, M. Kemal ?zg?ren, M. A. Sahir Ar?kan, H. Murat Baykurt. A kinematic structure-based classification and compact kinematic equations for six-dof industrial robotic manipulators[J].Mechanism and Machine Theory. 2001.7,36(7):817-832.
    [49]熊有伦.机器人技术基础[M].武汉:华中科技大学出版社.2002.
    [50]付京逊著,杨静宇等译.机器人学:控制、传感技术、视觉、智能[M].北京:中国科学技术出版社. 1989.
    [51]王立权.基于遗传算法的机械手运动学逆问题求解方法[J].哈尔滨工程大学学报.1998.12: 10-17.
    [52]黄志雄.水轮机叶形现场检测机械臂运动学模型及运动学求逆新方法研究[D].长沙:中南大学.2002.
    [53] Robert Muszy ski. A solution to the singular inverse kinematic problem for a manipulation robot mounted on a track[J]. Control Engineering Practice. 2002.1,10(1):35-43.
    [54] Tuna Balkan, M. Kemal ?zg?ren, M. A. Sahir Ar?kan, H. Murat Baykurt. A method of inverse kinematics solution including singular and multiple configurations for a class of robotic mani- pulators[J]. Mechanism and Machine Theory. 2000.9,35(9):1221-1237.
    [55] Bekir Karlik, Serkan Aydin. An improved approach to the solution of inverse kinematics problems for robot manipulators[J]. Engineering Applications of Artificial Intelligence. 2000.4, 13(2):159-164.
    [56] O. Altuzarra, O. Salgado, V. Petuya, A. Hernández. Point-based Jacobian formulation for computational kinematics of manipulators[J].Mechanism and Machine Theory. 2006.12,41(12): 1407-1423.
    [57]丁国富,吴晓,王金诺.机器人化液压挖掘机的运动学建模与仿真研究[J].机械科学与技术.2000, 19(5):736-737.
    [58]何清华,曾贵英.凿岩机器人的车体定位[J].中南工业大学学报.1999,30(3):299-302.
    [59] Manfred Hiller.Modelling, simulation and control design for large and heavy manipulators[J]. Robotics and Autonomous Systems. 1996(19):167-177.
    [60]刘卫国.MATLAB程序设计与应用(第2版)[M].北京:高等教育出版社.2006.
    [61]诸静.机器人与控制技术[M].浙江:浙江大学出版社.1992.
    [62]殷永龄,翟培祥译.采矿机械与综采机组的设计计算[M].北京:煤炭工业出版社.1989.
    [63] N.Gunes Yilmaz,M. Yurdakul,R.M. Goktan. Prediction of radial bit cutting force in high-strength rocks using multiple linear regression analysis[J].International Journal of Rock Mechanics and Mining Sciences. 2007.9,44(6):962-970.
    [64]项阳,陈楠,陈国华等.悬臂式掘进机截割头摆动力与截割力的匹配关系[J].煤矿机电.2003.3: 5-7.
    [65]李晓豁.掘进机截割的关键技术研究[M].北京:机械工业出版社.2008.
    [66]彭天好,汲方林,许贤良,张文祥.横轴式掘进机截割头运动参数优化及载荷模拟分析[J].矿山机械.2006.9:19-22.
    [67]沙永东.纵轴式掘进机截割不同对象的载荷模拟及优化设计[D].阜新:辽宁工程技术大学. 2007.
    [68]刘延柱.理论力学[M].北京:高等教育出版社.2001.
    [69]常琏.试论两种悬臂式掘进机截割头机构[J].煤矿机电.1994.6:13-15.
    [70]冯国平.机械式挖掘机的动力学分析与智能化设计[D].沈阳:东北大学.2006.
    [71]陈欠根,纪云锋,吴万荣.负载独立流量分配(LUDV)控制系统[J].液压与气动.2003.10:10-12.
    [72]张利平.液压控制系统及设计[M].北京:化学工业出版社.2007.
    [73]许益民.电液比例控制系统分析与设计[M].北京:机械工业出版社.2006.
    [74]祖炳洁,郭文武,王海花.负荷传感与压力补偿的技术应用与性能分析[J].建设机械技术与管理. 2005.10:80-83.
    [75]祖炳洁,潘存治,王海花.负荷传感与压力补偿技术的分析与探讨[J].工程机械.2006.2:45-50.
    [76]祖炳洁,郭文武,王海花.负荷传感与压力补偿技术的应用与性能分析[J].机床与液压.2006.6; 154-156.
    [77]兰箭,穆希辉,马振书等.负载敏感系统工作原理及分析[J].矿山机械.2007.10:133-136.
    [78]孔晓武.带长管道的负载敏感系统研究[D].杭州:浙江大学.2003.
    [79]何润生,孟小梅,陈强.A4VSO变量泵与工程机械节能技术研究[J].液压与气动.2008.1:68-70.
    [80]徐成富.负载敏感控制在掘进机液压系统中的应用[J].煤炭技术. 2006.8,25(8):27-28.
    [81]赵军,王福才,左秀珍.负载传感控制系统及其应用[J].液压与气动.2001.5:15-16.
    [82]江国耀.力士乐LUDV系统—全新液压挖掘机解决方案[J].2004.6:45-47.
    [83]胡志坚.钻机负载自适应液压控制系统的研究[D].长春:吉林大学.2007.
    [84]黄宗益,李兴华,陈明.挖掘机力士乐液压系统分析[J].建筑机械化.2004.12:49-55.
    [85]刘钊,张珊珊.变量泵控制方式及其应用[J].中国工程机械学报.2004.7,2(3):304-307.
    [86]李永堂,雷步芳,高雨茁.液压系统建模与仿真[M].北京:冶金工业出版社.2003.
    [87]李力争.凿岩机器人双三角钻臂自适应控制策略研究[D].长沙:中南大学.2003.
    [88]张大庆.液压挖掘机工作装置运动控制研究[D].长沙:中南大学.2006.
    [89]何清华,李力争,周宏兵.双三角钻臂及其液压系统的建模与参数估计[J].中南大学学报.2001, 32(5): 519-522.
    [90]王传礼,丁凡,李其朋等.对称四通阀控非对称液压缸伺服系统动态特性研究[J].中国机械工程. 2004.3,15(6):471-474.
    [91]王传礼,许贤良.阀控非对称液压缸机构建模探讨[J].矿山机械.1998.7:66-68.
    [92]张伟汉.阀控非对称油缸控制系统及特性研究[D].长春:长春理工大学.2002.
    [93]周士昌,周恩涛.阀控非对称油缸正反向速度比的分析[J].机床与液压. 2002.1:90-93.
    [94]袁立鹏,赵克定,李海金.阀控液压缸统一流量方程的分析研究[J].机床与液压.2005.8:97-99.
    [95]李海金,袁立鹏,赵克定等.阀控液压缸正反向速度比及跟踪特性的理论分析[J].东北农业大学学报.2005.6:380-384.
    [96] Ke Li, M. A. Mannan, Mingqian Xu, Ziyuan Xiao. Electro-hydraulic proportional control of twin-cylinder hydraulic elevators[J]. Control Engineering Practice. 2001.4,9(4):367-373.
    [97] HE Qinghua,ZHANG Daqing,HAO Peng,ZHANG Haitao. Modeling and control of hydraulic excavators arm[J]. Journal of Central South University. 2006.8,13(4):422-427.
    [98]刘宏才.系统辨识与参数估计[M].北京:冶金工业出版社.1999.
    [99]吴麒.自动控制原理[M].北京:清华大学出版社.1999.
    [100]于长官.现代控制理论[M].哈尔滨:哈尔滨工业大学出版社.1998.
    [101]项阳,姜年朝,胡应曦.悬臂掘进机纵轴式截割头运动学分析[J].贵州工业大学学报.1998.6: 32-38.
    [102]王国瑾.计算机辅助几何设计[M].海德堡:施普林格出版社.2001.
    [103]王莉.计算机图形学及其在工程中的应用[M].北京:人民交通出版社.1992.
    [104]王国辉,冯洁,杨望星等.基于计算机辅助测量的隧道断面测量新方法[J].计算机工程与应用, 2005.26(4):208-211.
    [105]王礼学,陈卫东,贾昭清等.井眼轨迹计算新方法[J].天然气工程.2004.4:57-61.
    [106]刘春生,李春华,张才等.悬臂式掘进机工作机构功率模糊调速系统的研究[J].黑龙江矿业学院学报. 1998.3,8(1):26-29.
    [107]尹学勇.基于模糊控制的掘进机截割机构恒功率系统设计[J].南昌工程学院学报.2005.9,24(3): 43-45,49.
    [108]方菲,刘平安.抛物线过渡的并联机器人线性轨迹规划[J].华东交通大学学报.2005.8:113-116.
    [109] A.Gasparetto,V. Zanotto.A new method for smooth trajectory planning of robot manipulators[J]. Mechanism and Machine Theory. 2007.4,42(4):455-471.
    [110] T. Huang, P.F. Wang, J.P. Mei, X.M. Zhao, D.G. Chetwynd. Time minimum trajectory planning of a 2-DOF translational parallel robot for pick-and-place operations[J]. CIRP Annals Manufacturing Technology. 2007,56(1):365-368.
    [111] Maria da Gra?a Marcos, J.A. Tenreiro Machado, T.-P. Azevedo-Perdicoúlis. Trajectory planning of redundant manipulators using genetic algorithms[J]. Communications in Nonlinear Science and Numerical Simulation. 2009.7,14(7):2858-2869.
    [112] ShihChung Kang, Eduardo Miranda. Planning and visualization for automated robotic crane erection processes in construction[J]. Automation in Construction. 2006.7,15(4):398-414.
    [113] Fabio M. Marchese. A directional diffusion algorithm on cellular automata for robot path plan- ning[J]. Future Generation Computer Systems. 2002.8,18(7): 983-994.
    [114]杨俭.电液比例位置系统复合控制及相关研究[D].杭州:浙江大学. 2005.
    [115] Mike Coboa,Richard Ingrama,Sabri Cetinkunt.Modeling identification and real-time control of bucket hydraulic system for a wheel type loader earth moving equipment[J]. Mechatronics.1998 (8):863-885.
    [116] C. Frangos, Y. Yavin. Inverse control of a three-link manipulator[J].Computer Methods in Applied Mechanics and Engineering. 2001.7,190(40):5311-5324.
    [117] Y. Measson, O. David, F. Louveau, J. P. Friconneau. Technology and control for hydraulic man- ipulators[J].Fusion Engineering and Design. 2003.9,69(1):129-134.
    [118] Rong-Jong Wai. Tracking control based on neural network strategy for robot manipulator[J]. Neurocom puting. 2003.4,51:425-445.
    [119] S. Purwar, I.N. Kar, A.N. Jha. Adaptive control of robot manipulators using fuzzy logic systems under actuator constraints[J]. Fuzzy Sets and Systems. 2005.6,152(3) :651-664.
    [120] H.F. Ho, Y.K. Wong, A.B. Rad. Robust fuzzy tracking control for robotic manipulators[J]. Simulation Modelling Practice and Theory. 2007.8,15(7):801-816.
    [121] Jose Alvarez-Ramirez, Rafael Kelly, Ilse Cervantes. Semiglobal stability of saturated linear PID control for robot manipulators[J]. Automatica, 2003.6,39(6):989-995.
    [122] Zhu Xiangji,Xu Shifan.Study of robotization for excavator on the automatic control system of the excavating process[J]. Journal of China University of Mining & Technology. 1997.6, 7(1):29-36.
    [123] L.Plonecki, W.Trampczyn′ski, J.Cendrowicz.A concept of digital control system to assist the operator of hydraulic excavators[J]. Automation in Construction. 1998.7:401-411.
    [124] Pyung Hun Chang, Soo-Jim Lee. A straight-line motion tracking contrl of hydraulic excavator system[J]. Mechatronics. 2002.12:119-138.
    [125] Masakazu Haga, Watanabe Hiroshi, Kazuo Fujishima. Digging control system for hydraulic excavator[J]. Mechtronics.2001.11:665-676.
    [126] Q.P.Ha, Q.H.Nguyen, D.C.Rye, H.F.Durrant-Whyte.Impedance control of a hydraulically actu- ated robotic excavator[J].Automation in Construction .2000.9:421-435.
    [127] Eugeniusz Budny, Miroslaw Chlosta, Witold Gutkowski. Load-independent control of a hydrau- lic excavator[J]. Automation in Construction. 2003.12:245-254.
    [128] A.S.Hall, P.R. McAree. Robust bucket position tracking for a large hydraulic excavator[J]. Mechanism and Machine Theory.2005.40:1-16.
    [129]周恩涛,廖生行,牟丹.电液比例阀控系统模糊-PID控制的研究[J].机床与液压.2003.6: 225-227.
    [130]魏华,李群,陈得宝.一种新型参数非线性模糊PID控制方法[J].计算机技术与发展.2008.2, 18(2): 219-227.
    [131]李祖欣,张迎,高迎慧.参数不确定对象的模糊非线性PID控制方法[J].辽宁工程技术大学学报. 2004.10,23(5):651-654.
    [132] W. Li, X. G. Chang, F. M. Wahl, Jay Farrell. Tracking control of a manipulator under uncertainty by FUZZY P+ID controller[J]. Fuzzy Sets and Systems. 2001.8,122(1):125-137.
    [133]罗安.电液比例系统的控制策略[J].中南工业大学学报.1995(2),26(1):114-118.
    [134]胡包钢.非线性PID控制器研究—比例分量的非线性方法[J].自动化学报.2006.3, 32(2):219 -227.
    [135]刘金琨.先进PID控制及其MATLAB仿真[M].北京:电子工业出版社.2003.
    [136] TU Diep Cong Thanh, Kyoung Kwan Ahn. Nonlinear PID control to improve the control perfor- mance of 2 axes pneumatic artificial muscle manipulator using neural network[J]. Mechatronics. 2006.11,16(9):577-587.
    [137] Yu. K. Zotov. Linear stabilization of the programmed motions of non-linear controlled dynami- cal systems under parametric perturbations[J]. Journal of Applied Mathematics and Mechanics. 2008,72(4):391-409.
    [138] Chun-Qing HUANG, Xia-Fu PENG, Jun-Ping WANG. Robust Nonlinear PID Controllers for Anti-windup Design of Robot Manipulators with an Uncertain Jacobian Matrix[J]. Acta Automatica Sinica. 2008.9,34(9):1113-1121.
    [139] Ilse Cervantes, Jose Alvarez-Ramirez. On the PID tracking control of robot manipulators[J]. Systems & Control Letters. 2001.1,42(15):37-46.
    [140]郭彦青,姚竹亭,王楠.非线性PID控制器研究[J].中北大学学报.2006.5,27(5):423-425.
    [141]钟庆昌.变参数PID控制器.信息与控制[J].1999.8,28(4):273-276.
    [142]陈剑桥.非线性PID控制器的计算机辅助设计[J].扬州职业大学学报.2001.4,5(4):12-15.
    [143]朱建公,张俊俊.变参数PID控制器设计[J].西北大学学报. 2003.8,33(4):397-400.
    [144] Min Young Kim, Chung-Oh Lee. An experimental study on the optimization of controller gains for an electro-hydraulic servo system using evolution strategies[J]. Control Engineering Practice. 2006.2,14(2):137-147.
    [145]刘强.液压挖掘机器人高性能运动控制研究[D].杭州:浙江大学.2006.
    [146]张海涛.液压挖掘机器人工作装置运动控制系统的研究[D].长沙:中南大学.2004.
    [147]付永领,王岩,逄波.滑模模糊控制算法在液压机器人控制中的应用[J].中国机械工程.2007.6, 18(10):1168-1170.
    [148] C. C. Cheah, S. Kawamura, S. Arimoto. Stability of hybrid position and force control for robotic manipulator with kinematics and dynamics uncertainties[J]. Automatica.2003.5, 39(5): 847-855.
    [149] Wenjie Dong. On trajectory and force tracking control of constrained mobile manipulators with parameter uncertainty[J]. Automatica. 2002.9,38(9):1475-1484.
    [150] N. Niksefat, N. Sepehri. Design and experimental evaluation of a robust force controller for an electro-hydraulic actuator via quantitative feedback theory[J]. Control Engineering Practice, 2000.12,8(12):1335-1345.
    [151] Andrew Alleyne, Rui Liu. A simplified approach to force control for electro-hydraulic systems[J]. Control Engineering Practice. 2000.12,8(12): 1347-1356.
    [152]张海涛,何清华,李渊博等.液压挖掘机器人的力与位置混合控制系统的研究[J].机械与电子. 2004.10:48-51.
    [153] Jih-Hua Chin, Yen-His Sun, Yuan-Ming Cheng. Force computation and continuous path track- ing for hydraulic parallel manipulators[J]. Control Engineering Practice.2008.6,16(6):697-709.
    [154] F. Jatta, G. Legnani, A. Visioli, G. Ziliani. On the use of velocity feedback in hybrid force velocity control of industrial manipulators[J]. Control Engineering Practice. 2006.9,14(9): 1045-1055.
    [155] Shuanghe Yu, Xinghuo Yu, Bijan Shirinzadeh, Zhihong Man. Continuous finite-time control for robotic manipulators with terminal sliding mode[J]. Automatica. 2005.11,41(11):1957-1964.
    [156] Przemys?aw Herman. Sliding mode control of manipulators using first-order equations of motion with diagonal mass matrix[J]. Journal of the Franklin Institute. 2005.7,342(4):353-363.
    [157]田宏奇.滑模控制理论及其应用[M].武汉:武汉出版社.1995.
    [158]高为炳.变结构控制的理论及设计方法[M].北京:科学技术出版社.1998.
    [159] Noureddine Goléa, Amar Goléa, Kamel Barra, Tarek Bouktir. Observer-based adaptive control of robot manipulators: Fuzzy systems approach[J]. Applied Soft Computing.2008.1,8(1): 778-787.
    [160] Rafael Kelly, Javier Moreno. Manipulator motion control in operational space using joint velo- city inner loops[J]. Automatica. 2005.8,41(8):1423-1432.
    [161] Brice Le Boudec, Maarouf Saad, VahéNerguizian. Modeling and adaptive control of redundant robots[J]. Mathematics and Computers in Simulation. 2006.6,71(4): 395-403.
    [162] Stefano Liuzzo, Patrizio Tome. A global adaptive learning control for robotic manipulators[J]. Automatica. 2008.5,44(5):1379-1384.
    [163] S. Purwar, I.N. Kar, A.N. Jha. Adaptive output feedback tracking control of robot manipulators using position measurements only[J]. Expert Systems with Applications. 2008.5,34(4):2789- 2798.
    [164]张立春.自适应控制器及其在阀控非对称缸力系统中的应用[D].哈尔滨:哈尔滨工业大学. 2006.
    [165]赵春雷.自适应控制器及其在阀控非对称缸速度系统中的应用[D].哈尔滨:哈尔滨工业大学. 2006.
    [166]吴振顺,郑慧奇,于华艳.基于误差多项式的模型参考自适应控制在阀控非对称缸系统中的应用[J].机械工程学报.2006.8:56-59.
    [167]于华艳,吴振顺,郑慧奇.基于Diophantine方程自适应控制器在阀控非对称液压缸系统中的应用[J].机床与液压.2007.9,35(9):123-126.
    [168]吴振顺,肖原.基于Simulink仿真平台上的随机干扰液压自适应控制系统[J].机床与液压.2007.8,35(8):104-106.
    [169] S. Torres, J.A. Méndez, L. Acosta, V.M. Becerra. On improving the performance in robust con- trollers for robot manipulators with parametric disturbances[J]. Control Engineering Practice, 2007.5,15(5):557-566.
    [170] Przemys?aw Herman. On using generalized velocity components for manipulator dynamics and control[J]. Mechanics Research Communications,2006.5,33(3):281-291.
    [171] Arun D. Mahindrakar, Shodhan Rao, R.N. Banavar. Point-to-point control of a 2R planar hori- zontal underactuated manipulator[J]. Mechanism and Machine Theory,2006.7,41(7):838-844.
    [172] F. Alonge, F. D’Ippolito, F. M. Raimondi. An adaptive control law for robotic manipulator with- out velocity feedback[J]. Control Engineering Practice, 2003.9,11(9):999-1005.
    [173] Kwang Sik Eom, Il Hong Suh, Wan Kyun Chung. Disturbance observer based path tracking con- trol of robot manipulator considering torque saturation[J]. Mechatronics.2001.4,11(3):325-343.
    [174] Jee-Hwan Ryu, Jinil Song, Dong-Soo Kwon. A nonlinear friction compensation method using adap- tive control and its practical application to an in-parallel actuated 6-DOF manipulator[J]. Control Engineering Practice. 2001.2,9(2):159-167.
    [175]何清华,张大庆,黄志雄等.液压挖掘机工作装置的自适应控制[J].同济大学学报.2007.9, 35(9):1259-1264.
    [176]李兰生,邹占江.液压挖掘机工作装置专家模糊控制系统的研究[J].矿山机械.1998.3:26-28.
    [177]赵波,牛卉原,刘杰.液压挖掘机轨迹规划与模型参考自适应控制方案研究[J].机械制造.2007.9:13-15.
    [178]刘艳菊,戴学丰,石岩.机器人末端臂轨迹跟踪自适应控制设计[J].机器人技术.2006.12: 265-267.
    [179]张海涛,何清华,陈欠根.遥控挖掘机器人轨迹跟踪的电液比例控制系统[J].液压与气动. 2004.7:11-13.
    [180]吴振顺.自适应控制控制理论及应用[M].哈尔滨:哈尔滨工业大学出版社.2005.
    [181]韩曾晋.自适应控制[M].北京:清华大学出版社.1995.
    [182]岂兴明,周建兴,矫津毅. Labview8.2中文版入门与典型实例[M].北京:人民邮电出版社.2008.
    [183]陈锡辉,张银鸿. Labview8.20程序设计从入门到精通[M].北京:清华大学出版社.2007.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700