遥感图像超分辨率重建技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
图像超分辨率重建是指利用同一场景的不同观测角度、不同观测时间或不同传感器获取的低分辨率图像序列重建出一幅或多幅高空间分辨率图像的技术。由于在图像获取过程中会因为大气扰动、目标景物和传感器之间的相对运动以及传感器光学系统自身因素的影响,图像中存在模糊、附加噪声等质量退化现象,使得图像的空间分辨率较低。超分辨率技术能够融合多幅图像中存在的信息,重建出质量较高的高分辨率图像。重建过程分为图像配准、插值、模糊函数估计、重建计算等步骤,本论文对图像序列配准、图像复原、图像中的附加噪声、重建算法等问题进行了研究。
     图像序列的配准方法进行了讨论,基于配准算法的基本理论提出了利用Powell优化算法和图像的多分辨率分解相结合的配准参数估计方法,首先对待配准图像和参考图像进行多分辨率分解,得到图像的金字塔表示,在最粗层上给出配准参数的初始估计值,然后利用Powell优化算法估算出该层上的配准参数值作为上一层的初始值,这样一直进行下去,在原始图像中估计出配准参数值。数值实验表明该算法能够准确估计预先设计的配准参数,对噪声和模糊退化干扰具有一定的稳健性。
     在对图像模糊函数分析后论文提出了基于神经网络的图像自适应复原算法,当模糊退化过程已知时,该算法能够估计出较好的图像复原效果。论文还讨论了图像中的噪声为泊松噪声和脉冲噪声时的图像超分辨率重建问题,分别建立了重建模型,利用数值实验说明了算法的有效性。
     对小波分析理论及其在超分辨率重建中的算法进行了研究,提出了小域多通道超分辨率重建算法,利用数值实验对算法进行了验证。基于小波系数的统计模型改进了已有文献中的小波域超分辨率重建算法。
     对遥感图像超分辨率重建问题进行了讨论,利用ETM+图像中的全色图像作为辅助图像,对多光谱图像进行了重建。首先建立重建模型,讨论了模型中参数的估计方法,提出了利用已知图像的局部方差对正则项系数进行估计的算法。将观测到的多光谱图像作为低分辨率图像序列,认为是由对应的高分辨率多光谱图像序列经过模糊变换、下采样和附加噪声后得到的,高分辨率图像为观测到的全色图像,可以看作是待估计多光谱图像序列的线性组合后得到的。将该算法进行了数值实验,并将实验结果与主成份图像融合及小波方法图像融合结果进行了比较,说明该算法是切实可行的。最后通过实例对超分辨率重建的不确定性问题进行了讨论。
Image super-resolution (SR) reconstruction refers to the techniques to reconstruct one or more images with high resolution (HR) from the low resolution image sequence which was taken about the same scene from different viewpoint, different time or from different sensors. Due to the influence of air turbulence, the relative motion between the object and the sensors and the influence of optical systems, the images obtained are unavoidable degraded by blurring, additive noises which decrease the spatial resolution. SR technique can be used to fuse the information contained in the image sequence to reconstruct a HR image with higher quality. The process of SR reconstruction can be seen as the following steps: image sequence registration, interpolation, blur function identification and reconstruction algorithm. In this thesis, the author did some work on the following problems: image registration, image restoration, image reconstruction under different noise model, remote sensing image SR reconstruction algorithm.
     Firstly, the image registration problem was discussed and a new registration algorithm based on the Powell optimal algorithm and the image’s pyramid decomposition was proposed to estimate the registration parameters. The images were decomposed using Gaussian pyramid method and then the initial registration parameters were initialized at the bottom level, then the Powell algorithm was used on the object function to estimate the parameters in this level. The estimated values were then used at another level as the initialized values to estimate the new parameters. This process was carried through at the finest level and the parameters were estimated finally. Numerical experiment shows that this algorithm can estimate the predetermined parameters with higher accuracy.
     Then, the blur function was discussed and after that an image restoration algorithm based on adaptive neural network was given. When the blur function was known, this algorithm could give better restoration results. This thesis also discussed the SR reconstruction algorithm when the LR images were degraded by different noise models such as Poisson noise and impulse noise. For different noise model, the reconstruction formulas were given and numerical experiments were made to show the performance of these algorithms.
     In this thesis the wavelet transform method was discussed and the SR algorithm based on the wavelet theory was given. Multi-channel SR algorithm was presented and the numerical experiments were given. Based on the statistics model of wavelet coefficients, the modified SR algorithm was proposed.
     Finally, this thesis discussed the problem of remote sensing image SR reconstruction. The panchromatic image in ETM+ was used to reconstruct the multi-spectral images. The reconstruction model was established and the parameter estimation algorithms were discussed. A new adaptive regularization parameters estimation algorithm based on the local variance of the images was proposed. The observed multi-spectral images were seen as the low resolution image sequences which were the degraded versions of the corresponding multi-spectral images with higher spatial resolution. The degradation process was blurring transform, under sample and additive noise. The panchromatic image was seen as the high resolution observed image which can be seen as the combination of unknown multi-spectral high resolution images. The task of SR reconstruction for remote sensing images was to merge the spatial information of the panchromatic image into the multi-spectral images. Numerical experiments were made to verify the performance of this algorithm and the reconstructed results were compared with that of principal component analysis fusion algorithm and wavelet transform fusion algorithm which demonstrate validity of the proposed algorithm. Finally, the uncertainty problem of SR reconstruction was discussed using some examples.
引文
[1]许录平.数字图像处理[M].北京:科学出版社, 2007.
    [2]余松煜,周源华,张瑞.数字图像处理[M].上海:上海交通大学出版社, 2007.
    [3]朱秀昌,刘峰,胡栋.数字图像处理与图像通信[M].北京:北京邮电大学出版社,2002.
    [4]冈萨雷斯.数字图像处理(第二版)[M].阮秋琦等译.北京:电子工业出版社,2003.
    [5]章毓晋.图像处理和分析(图像工程上册)[M].北京:清华大学出版社,1999.
    [6]阮秋琦.数字图像处理学[M].北京:电子工业出版社,2001.
    [7]梅安新,彭望琭,秦其明等.遥感导论[M].北京:高等教育出版社,2001.
    [8]孙家抦.遥感原理与应用[M].武汉:武汉大学出版社,2003.
    [9]汤国安,张友顺,刘咏梅等.遥感数字图像处理[M].北京:科学出版社,2004.
    [10]徐青,张艳,耿则勋等.遥感影像融合与分辨率增强技术[M].北京:科学出版社, 2007.
    [11] Borman. S, Stevenson. R. L. Spatial resolution enhancement of low-resolution image sequences: A comprehensive review with directions for future research. Notre Dame: Laboratory for Image and Signal Analysis in University of Notre Dame, 1998.
    [12] Park S C, Park M K. Super-ResolutionImage Reconstruction:A Technical Overview and Moon Gi Kang.[J] IEEE Signal Processing Magazine, 2003.
    [13] Chaudhuri S. Super-Resolution Image[M]. USA: Kluwer Academic Publishers, 2001.
    [14] Baker S, Fellow T K. Limits on super resolution and how to break them.[J]. IEEE Trans. on Pattern Analysis and Machine Intelligence. 2002, 24 (9).
    [15] Park S C, Park M K, Kang M G. Super-Resolution Image Reconstruction: A Technical Overview[J]. IEEE Signal Processing Magazine, 2003, 20(3): 21-36.
    [16] Tsai R Y, Huang T S. Multiframe Image Restoration and Registration[J]. Advances in Computer Vision and Image Processing, 1984, 1:
    [17]袁建华.超分辨率重建中若干问题的研究[D].中国科学院博士学位论文,2006.
    [18] Kim S P, Bose N K, Valenzuela H M. Recursive Reconstruction of High Resolution Image From Noisy Undersampled Multiframes[J]. IEEE Trans. On Acoustics, Speech and Signal Processing, 1990,38(6):1013-1027.
    [19] Kim S P, Su W. Recursive High-resolution Reconstruction of Blurred Multiframe Images[C]. in Proceedings of the IEEE International Conference on Acoustics Speech and Signal Processing, Toronto, Canada, May 1991, 4: 2977-2980.
    [20] Bose N K, Kim H C, Valenzuela H M. Recursive Total Least Squares Algorithm for Image Reconstruction from Noisy, Undersampled Multiframes [J]. Multidimensional Systems and Signal Processing, 1993,4(3): 253-268.
    [21] Tekalp A M, Ozkan M K, Sezan M I. High-resolution Image Reconstruction from Lower-resolution Image Sequences and Space-varying Image Restoration[C]. in Proceedings of the IEEE International Conference on Acoustics, Speech and Signal Processing, San Francisco CA, 1992, III: 169-172.
    [22] Kaltenbacher E, Hardie R C. High-resolution Infrared Image Reconstruction Using Multiple Low Resolution Aliased Frames[C]. in Proceedings of the IEEE National Aerospace Electronics Conference, Dayton OH, May 1996, 2: 702-709.
    [23] Keren D, Peleg S, Brada R. Image Sequence Enhancement Using Subpixel Displacements[C]. in Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, June 1988: 742-746。
    [24] Aizawa K, Komatsu T, Saito T. A Scheme for Acquiring very High Resolution Images Using Multiple Camers[C]. in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, San Francisco, CA, Mar. 1992, 3: 289-292.
    [25] Frieden B R, Aumann H G. Image Reconstruction from Multiple 1-D Scans Using Filtered Localized Projection[J]. Applied Optics, 1987, 26(17): 3615-3621.
    [26] Irani M, Peleg S. Super Resolution From Image Sequences[C]. in Proceedings of the 10th International Conference on Pattern Recognition, Atlantic City, NJ, June 1990, 2: 115-120.
    [27] Irani M, Peleg S. Improving Resolution by Image Registration[J]. CVGIP: Graphical Models and Image Processing, 1991, 53(3): 231-239.
    [28] Mann S, Pickard R W. Virtual Bellows: Constructing High Quality Stills from Video[C]. in Proceedings of the IEEE International Conference on Image Processing, Austin, TX, 1994, 363-367.
    [29] Tom B C, Katsaggelos A K, Galatsanos N P. Reconstruction of a High Resolution Image From Registration and Restoration of Low Resolution Images[C]. in Proceedings of the IEEE International Conference on Image Processing, Austin, TX, 1994, III: 553-557.
    [30] Tom B C, Katsaggelos A K. Multi-Channel Image Identification and Restoration Using the Expectation Maximization Algorithm[C]. in Applications of Digital Image Processing XVII, San Diego, CA, July 1994, vol. 2298 of Proceedings of the SPIE, 316-331.
    [31] Tom B C, Katsaggelos A K. Reconstruction of a High-resolution image by Simultaneous Registration, Restoration and Interpolation of Low-resolution Images[C]. in Proceedings of the IEEE International Conference on Image Processing, Washington DC, 1995, 2: 539-542.
    [32] Tom B C, Katsaggelos A K. A Iterative Algorithm for Improving the Resolution of Video Sequences[C]. in Visual Communications and Image Processing, Orlando, FL, Mar. 1996, vol. 2727 of Proceedings of the SPIE, 1430-1438.
    [33] Tom B C, Katsaggelos A K. Resolution Enhancement of Video Sequences Using Motion Compensation[C]. in Proceedings of the IEEE International Conference on Image Processing, Lausanne, Switzerland, Sept. 1996, I:713-716.
    [34] Schultz R R, Stevenson R L. A Bayesian Approach to Image Expansion for Improved Definition[J]. IEEE Trans. On Image Processing, 1994, 3(3): 233-242.
    [35] Schultz R R, Stevenson R L. Bayesian Estimation of Subpixel-resolution Motion Fields and High-resolution Video Stills[C]. in Proceedings of the IEEE International Conference on Image Processing, Santa Barbara, CA, Oct. 1997, vol.III, 62-65.
    [36] Hardie R C, Barnard K J, Armstrong E E. Joint MAP Registration and High-Resolution Image Estimation Using a Sequence of Undersampled Images[J]. IEEE Trans. On Image Processing, 1997, 6(12): 1621-1633.
    [37] Youla D C, Webb H. Image Restoration by the Method of Convex Projection: Part 1-theory[J]. IEEE Trans. On Medical Imaging, 1982, vol.MI-1, no. 2: 81-94.
    [38] Oskoui-Fard P, Stark H. Tomographic Image Reconstruction Using the Theory of Convex Projections[J]. IEEE Trans. On Medical Imaging, 1988, 7(1):45-58.
    [39] Sezan M I, Stark H. Tomographic Image Reconstruction from Incomplete View Data by Convex Projections and Direct Fourier Inversion[J]. IEEE Trans. On Medical Imaging, 1984, vol. MI-3, no. 2: 91-98.
    [40] Stark H, Oskoui P. High-resolution Image Recovery from Image-plane Arrays, Using Convex Projections [J]. Journal of the Optical Society of America A, 1989, 6(11): 1715-1726.
    [41] Patti A J, Sezan M, Tekalp A M. Robust Methods for High Quality Stills from Interlaced Video in the Presence of Dominant Motion[J]. IEEE Trans. On Circuits and Systems for Video Technology, 1997, 7(2): 328-342.
    [42] Patti A J, Sezan M, Tekalp A M. Superresolution Video Reconstruction with Arbitrary Sampling Lattices and Nonzero Aperture Time[J]. IEEE Trans. On Image Processing, 1997, 6(8): 1064-1076.
    [43] Elad M, Feuer A. Super-Resolution Reconstruction of an Image[C]. in Proceedings of the 19th IEEE Conference in Israel, Jerusalem, Israel, Nov. 1996, 391-394.
    [44] Elad M, Feuer A. Restoration of a Single Super-resolution Image from Several Blurred, Noisy, and Undersampled Measured Images[J]. IEEE Trans. On Image Processing, 1997, 6(12): 1646-1658.
    [45] Patti A J, Sezan M, Tekalp A M. A New Motion Compensated Reduced Order Model Kalman Filter for Space-Varying Restoration of Progressive and Interlaced Video[J]. IEEE Trans. On Image Processing, 1998, 7(4): 543-554.
    [46] Erdem A T, Sezan M I, Ozkan M K. Motion-Compensated Multiframe Wiener Restoration of Blurred and Noisy Image Sequences[C]. in Proceedings of IEEE International Conference on Acoustics, Speech and Signal Processing, San Francisco, CA, Mar. 1992, 3: 293-296.
    [47] Elad M, Feuer M. Superresolution Restoration of an Image Sequence: Adaptive Filtering Approach[J]. IEEE Trans. on Image Processing, 1999, 8:387-395。
    [48] Nguyen N, Milanfar P, Golub G. A Computationally Efficient Super-resolution Image Reconstruction Algorithm [J]. IEEE Trans. on Image Processing, 2001, 10(4): 573-583.
    [49] Nguyen N, Milanfar P. An Efficient Wavelet-Based Algorithm for Image Super-resolution[C]. in Proceedings of International Conference Image Processing, 2000, 2:351-354.
    [50] Szu H, Kopriva I. Artificial Neural Networks for Noisy Image Super-Resolution[J]. Optics Communications, 2001, 198: 71-81.
    [51] Rajan D, Chaudhuri S. Data Fusion Techniques for Super-Resolution Imaging[J]. Information Fusion, 2002, 3: 25-38.
    [52] Farsiu S, Robinson D, Elad M, et al. Fast and Robust Multiframe Super Resolution[J]. IEEE Trans. on Image Processing, 2004, 13(10): 13271344.
    [53] Molina R, Vega M, Abad J, et al. Parameter Estimation in Bayesian High-Resolution Image Reconstruction with Multisensors [J]. IEEE Trans. on Image Processing, 2003, 12(12): 1655-1667.
    [54] Park S C, Kang M G, Segall A, et al. Spatially Adaptive High-Resolution Image Reconstruction of DCT-Based Compressed Images[J]. IEEE Trans. on Image Processing, 2004, 13(4): 573-585.
    [55] Huang Y, Long Y. Super-resolution Using Neural Networks Based on the Optimal Recovery Theory[J]. J. Comput. Electron, 2006, 5: 275-281.
    [56] Tong C S, Leung K T. Super-resolution Reconstruction Based on Linear Interpolation of Wavelet Coefficients [J]. Multidim. Syst. Sign. Process, 2007, 18: 153-171.
    [57] Woods N A, Galatsanos N P, Katsaggelos A K. Stochastic Methods for Joint Registration, Restoration, and Interpolation of Multiple Undersampled Images[J]. IEEE Trans. on Image Processing, 2006, 15(1): 201-213.
    [58] Robinson D, Milanfar P. Statistical Performance Analysis of Super-Resolution[J]. IEEE Trans. on Image Processing, 2006, 15(6): 1413-1428.
    [59]陈光盛,李树涛.MAP和POCS算法实现超分辨率图像的重建[J].科学技术与工程,2006,6(4):396-399.
    [60]王振国,张建军,耿则勋.一种基于先验知识约束的图像盲解卷积恢复算法[J].测绘科学技术学报,2006,23(3):195-197.
    [61]沈焕峰,李平湘,张良培.一种自适应正则MAP超分辨率重建方法[J].武汉大学学报信息科学版,2006,31(11):949-952.
    [62]苏秉华,金伟其,牛丽红等.基于Markov约束的泊松最大后验概率超分辨率图像复原法[J].光子学报,2002,31(4):492-496.
    [63]王程,王润生.基于MAP框架的图像序列超分辨率和模板匹配[J].计算机学报,2003,26(8):961-967.
    [64]盛琳阳,解凯,张田文.超分辨率图像复原中的快速L曲线估计[J].小型微型计算机系统,2006,27(6):1120-1123.
    [65]钟山,陈洪光,沈振康.基于MAP估计的图像超分辨率重建[J].国防科技大学学报,2003,25(4):59-62.
    [66]苏秉华,金伟其.基于Poisson-Markov场的超分辨力图像复原算法[J].电子学报,2003,31(1):41-44.
    [67]张新明,沈兰荪.基于多尺度边缘保持正则化的超分辨率复原[J].软件学报,2003,14(6):1075-1081.
    [68]袁小华,刘纯平,夏德深.基于小波内插的遥感图像超分辨率增强[J].计算机工程与应用,2005,11:53-54.
    [69]赵书斌,彭思龙.基于小波域HMT模型的图像超分辨率重构[J].计算机辅助设计与图形学学报,2003,15(11):1347-1352.
    [70]张新明,沈兰荪.在小波变换域内实现图像的超分辨率复原[J].计算机学报,2003,26(9):1183-1189.
    [71]袁小华.超分辨率图像恢复中的方法研究[D].南京理工大学博士学位论文,2005.
    [72]程光权.基于小波的超分辨率图像重建[D].国防科技大学硕士学位论文,2005.
    [73]刘良云,李英才,相里斌.超分辨率图像重构技术的仿真实验研究[J].中国图象图形学报,2001,6(7):529-535.
    [74]徐青,王敬东,李鹏等.基于图像分割的快速立体匹配算法[J].计算机工程,2006,32(22):209-211.
    [75]钦桂勤.超分辨率遥感影像重建技术的研究[D].中国人民解放军信息工程大学硕士学位论文,2002.
    [76]胡燕.遥感图像的超分辨率重建技术研究[D].解放军信息工程大学硕士学位论文,2004.
    [77]郭晓新.超分辨率重建问题的研究[D].吉林大学博士学位论文,2005.
    [78]李盛阳.图像盲复原与改善空间分辨率研究[D].中国科学院博士学位论文,2006.
    [79]杨再华,李玉和,李庆祥等.基于边缘特征提取的图像清晰度评价函数[J],计算机工程与应用,2005.10,35-36.
    [80]王鸿南,钟文,汪静等.图像清晰度评价方法研究[J],中国图象图形学报,2004, Vol.9,No.7:828-831.
    [81]王勇,谭毅华,田金文.一种新的图像清晰度评价函数[J],武汉理工大学学报,2007,Vol.29,No.3:124-126.
    [82]杨守义,罗伟雄.一种基于高阶统计量的图像质量客观评价方法[J],北京理工大学学报,2001,Vol.21,No.5:610-613.
    [83] Wang Z, Bovik A C, Sheikh H R, et al. Image Quality Assessment: From Error Measurement to Structural Similarity[J]. IEEE Trans. on Image Processing, 2004, 13(1): 1-14.
    [84] Wang Z, Bovik A C. A Universal Image Quality Index[J]. IEEE Signal Processing Letters, 2002, vol.9, pp: 81-84.
    [85] Molina R, Vega M, Mateos J, et al. Variational Posterior Distribution Approximation in Bayesian Super Resolution Reconstruction of Multispectral Images[J]. Applied and Computational Harmonic Analysis, 2008, 24: 251-267.
    [86]张永生.天基多源遥感信息融合[M].北京:科学出版社,2005.
    [87] Zitova B, Flusser J. Image Registration Methods: a Survey[J]. Image and Vision Computing, 2003,21: 977-100.
    [88] Viola P, Wells W M. Alignment by Maximization of Mutual Information[J]. International Journal of Computer Vision, 1997, 24: 137-154.
    [89] Johnson K, Rhodes A C, Iavorin I, et al. Mutual Information as a Similarity Measure for Remote Sensing Image Registration[J]. SPIE[C], 2001, 4383: 51-61.
    [90]田伟刚,郭雷,李晖晖等.基于区域互信息的特征级多光谱图像配准[J].光电子激光,2008,19(6):799-803.
    [91]陈北京,李均利,陈刚.改进的基于二阶互信息的配准技术[J].计算机应用,2007,27(6):1475-1478.
    [92]臧丽,王敬东.基于互信息的红外与可见光图像快速配准[J].红外与激光工程,2008,37(1):164-168.
    [93]张继贤,李国胜,曾钰.多源遥感影像高精度自动配准的方法研究[J].遥感学报.2005.Vol.9,No.1
    [94]郑志彬,叶中付.基于相位相关的图像配准算法[J].数据采集与处理.2006.Vol.21,No.4
    [95]甘亚莉,涂丹,李国辉.基于梯度相位相关的自动图像配准方法[J].微电子学与计算机,2007,24(7):1-3.
    [96] Foroosh H, Zerubia J B, Berthod M. Extension of Phase Correlation to Subpixel Registration[J]. IEEE Trans. on Image Processing, 2002, 11(3):188-200.
    [97] Stone H S, Orchar M, Chang E C, et al. A Fast Direct Fourier-Based Algorithm for Subpixel Registration of Images[J]. IEEE Trans. on Geosci. Remote Sensing, 2001, 39(10): 2235-2243.
    [98] Reddy B S, Chatterji B N. An FFT-Based Technique for Translation, Rotation, and Scale-Invariant Image Registration[J]. IEEE Trans. on Image Processing, 1996, 5(8): 1266-1271.
    [99] Vandewalle P, Susstrunk S, Vetterli M. A Frequency Domain Approach to Registration of Aliased Images with Application to Super-resolution[J]. Journal on Applied Signal Processing, Special Issue on Super-Resolution, vol.2006, pp: 1-14.
    [97]张剑清,董明,张宏伟.TM影像与GIS矢量数据的自动配准[J].武汉大学学报信息科学版,2005, 30(11):950-954.
    [98]禄丰年.多源遥感影像配准技术分析[J].测绘科学技术学报,2007,24(4):251-254.
    [99]倪国强,刘琼.多源影像配准技术分析与展望[J].光电工程,2004,31(9):1-6.
    [100]牛力丕,毛士艺,陈炜.基于Hausdorff距离的图像配准研究[J].电子与信息学报,2007,29(1):35-38.
    [101]舒丽霞,周成平,彭晓明等.基于Hausdorff距离图像配准方法研究[J].中国图象图形学报,2003,8(A)(12):1412-1417.
    [102]刘汉洲,郭宝龙,冯宗哲.基于傅立叶变换的遥感图形配准[J].光电子激光,2006,17(11):1393-1397.
    [103]高军,李学伟,张建等.基于模板匹配的图像配准算法[J].西安交通大学学报,2007,41(3):307-311.
    [104]孙兴波,杨平先.基于塔形分解的局部熵差图像配准[J].光电工程,2005,32(7):82-85.
    [105]韦燕凤,赵忠明,闫冬梅等.基于特征的遥感图像自动配准算法[J].电子学报,2005,33(1):161-166.
    [106] Keren D, Peleg S, Brada R. Image Sequence Enhancement Using Sub-pixel Displacement[J]. in Proceedings IEEE Conference on Computer Vision and Pattern Recognition, June 1988, pp: 742-746.
    [107] Lucchese L, Cortelazzo G M. A Noise-robust Frequency Domain Technique for Estimating Planar Roto-Translations[J]. IEEE Trans. on Signal Processing, 2000, 48(6): 1769-1786.
    [108] Sakano M, Suetake N, Uchino E. A Robust Point Spread Function Estimation for Out-of-Focus Blurred and Noisy Images Based on a Distribution of Gradient Vectors on the Polar Plane[J]. Optical Review, 2007, 14(5): 297-303.
    [109] Likas A C, Galatsanos N P. A Variational Approach for Bayesian Blind Image Deconvolution[J]. IEEE Trans. on Signal Processing, 2004, 52(8): 2222-2233.
    [110] Chantas G K, Galatsanos N P, Likas A C. Bayesian Restoration Using a New Nonstationary Edge-Preserving Image Prior[J]. IEEE Trans. on Image Processing, 2006, 15(10): 2987-2997.
    [111] Molina R, Mateos J, Katsaggelos A K. Blind Deconvolution Using a Variational Approach to Parameter, Image, and Blur Estimation[J]. IEEE Trans. on Image Processing, 2006, 15(12): 3715-3727.
    [112] Justen L, Ramlau R. A Non-iterative Regularization Approach to Blind Deconvolution[J]. Inverse Problems, 2006, 22: 771-800.
    [113] Pruessner A, O’Leary D. Blind deconvolution Using a Regularized Structured Total Least Norm Algorithm[J]. SIAM J. Matrix Anal. Appl. 2003, 24(4): 1018-1037.
    [114] Chan T F, Wang C K. Total Variation Blind Deconvolution[J]. IEEE Trans. on Image Processing, 1998, 7(3): 370-375.
    [115] Banham M R, Katsaggelos A K. Spatially Adaptive Wavelet-based Multiscale Image Restoration[J]. IEEE Trans. on Image Processing, 1996, 5(4): 619-634.
    [116] Belge M, Kilmer M, Miller E. Wavelet Domain Image Restoration With Adaptive Edge-Preserving Regularization[J]. IEEE Trans. on Image Processing, 2000, 9(4): 597-608.
    [117] Bruneau J M, Mathieu P. Image Restoration Using Biorthogonal Wavelet Transforms[J]. Optical Engineering, 1994, 33(7): 2378-2384.
    [118] Kundur D, Hatzinakos D. Blind Image Deconvolution[J]. IEEE Signal Processing Magazine, 1996, 13(3): 43-64.
    [119] Jalobeanu A, Zerubia L L, Josiane J. An Adaptive Gaussian Model for Satellite Image Deblurring[J]. IEEE Trans. on Image Processing, 2004, 13(4): 613-621.
    [120] You Y, Kaveh M. A Regularization Approach to Joint Blur Identification and Image Restoration[J]. IEEE Trans. on Image Processing, 1996, 5: 416-427.
    [121] Vogel C R, Oman M R. Iterative Methods for Total Variation Denoising[J]. SIAM Journal of Scientific Computing, 1996, 17(1): 1-12.
    [122] Kundur D, Hatzinakos D. Blind Image Deconvolution Revisited[J]. IEEE Signal Processing Magazine, 1996, 13(6): 61-63.
    [123] Fish D A, Brinicombe A M, Pike E R, et al. Blind Deconvolution by means of the Richardson-Lucy Algorithm[J]. Journal of the Optical Society of America A: Optics, Image Science, and Vision, 1995, 12(1): 58-65.
    [124] Molina R, Nunez J, Cortijo F J, et al. Image Restoration in Astronomy: A Bayesian perspective, IEEE Signal Processing Magazine, 2001, 18(2): 11-29.
    [125] Katsaggelos A K. Iterative Image Restoration Algorithms[J]. Optical Engineering, 1989, 28(7): 735-748.
    [126] Hopfield J J, Tank D W. Neural Computation of Decisions in Optimization Problems[J]. Biological Cybernetics, 1985, 52: 141-152.
    [127] Zhou Y T, Chellappa R. Image restoration using a neural network. IEEE Trans. Acoust., Speech, Signal Processing, 1988,36(7): 1141-1151.
    [128] Paik J K, Katsaggelos A K. Image Restoration Using a Modified Hopfield Networks[J]. IEEE Trans. on Image Processing, 1992, 1(1): 49-63.
    [129] Sun Y, Li J, Yu S. Improvement on Performance of Modified Hopfield Neural Network for Image Restoration[J]. IEEE Trans. on Image Processing, 1995, 4(5): 688-692.
    [130]王磊,戚飞虎,莫玉龙.精确复原退化图像的连续Hopfield网络研究[J].上海交通大学学报,1997,31(12):43-46.
    [131]韩玉兵,吴乐南.基于改进型的Paik型Hopfield网络的图像复原[J].应用科学学报,2005,23(2): 126-130.
    [132]韩玉兵,吴乐南.基于状态连续变化的Hopfield神经网络的图像复原[J].信号处理,2004,20(5):431-435.
    [132] Wu Y D, Zhu Q X, Sun S X, et al. Image Restoration Using Variational PDE Based Neural Network[J]. Neurocomputing, 2006, 69(16-18): 2364-22368.
    [133]王光新,王正明,谢美华等.泊松噪声模糊图像的边缘保持变分复原算法[J],光电子.激光,2007,18(3): 359-363.
    [134] Tret Le, Rick Chartrand, Thomas J.Asaki. A Variational Approach to Reconstructing Images Corrupted by Poisson Noise[J]. J Math Imaging Vis. 2007, 27:257-263.
    [135] Slatwomir L, Wojciech N. A Version of the Swendsen-Wang Algorithm for Restoration of Images Degraded by Poisson Noise[J]. Pattern Recognition, 2003, 36: 931-941.
    [136] Hudson H M, Malcolm Hudson, Thomas C.M.Lee. Maximum Likehood Restoration and Choice of Smoothing Parameter in Deconvolution of Image Data Subject to Poisson Noise[J]. Computational Statistics & Data Analysis, 1998, 26: 393-410
    [137]黄启宏,段昶,刘钊.基于独立分量分析的图像特征提取及泊松噪声去除[J],光电工程,2006,33(11):128-132.
    [138] Han X H, Chen Y W, Nakao Z. An ICS-Based Method for Poisson Noise Reduction[J], Springer-Verlag KES 2003, LNAI 2773: 1449-1454.
    [139] Han X H, Li J, Dai S Y. Application of Poisson Image Denoising by ICA to Penumbral Imaging[C], Fourth International Conference on Fuzzy Systems and Knowledge Discovery, 2007.
    [140]周宏潮,朱炬波,王正明.混合泊松-高斯分布模型的参数估计[J],中国空间科学技术,2005,2:1-5.
    [141]徐志平,钟亦平,张世永.新型红外图像脉冲噪声滤波算法[J],小型微型计算机系统,2008,29(3):520-523.
    [142]王博,潘泉.基于相关度量的高椒盐噪声软阈值直方图滤波算法[J],电子学报,2007,35(7):1347-1351.
    [143]范立南,韩晓微,张广渊.图像处理与模式识别[M],北京:科学出版社,2007.
    [144]王明佳,张旭光,韩广良等.自适应权值滤波消除图像椒盐噪声的方法[J],光学精密工程,2007,15(5):779-783.
    [145]徐冠雷,王孝通,徐晓刚等.噪声概率快速估计的自适应椒盐噪声消除算法[J],光电工程,2005,32(12):34-38.
    [146]曲延锋,徐健,李卫军等.有效去除图像中脉冲噪声的新型滤波算法[J],计算机辅助设计与图形学学报,2003,15(4):397-401.
    [147]朱磊,徐佩霞.一种稳健快速的椒盐噪声抑制算法[J],小型微型计算机系统,2007,28(4):692-696.
    [148]王红梅,李言俊,张科.一种改进型椒盐噪声滤波算法[J],光电子激光,2007,18(1):113-116.
    [149]徐值平,钟亦平,张世永.新型红外图像脉冲噪声滤波算法[J],小型微型计算机系统,2008,29(3):520-523.
    [150]谈新权,金顺哲,陈筱倩.消除图像脉冲噪声的模糊结合滤波器[J],光电工程,2004,31(8):61-64.
    [151]李双全,张宇,孙广明等.消除椒盐噪声的改进滤波算法[J],计算机工程,2008,34(10):171-173.
    [152]张旭明,徐滨士,董世运等.去除脉冲噪声的自适应开关中值滤波[J],光电工程,2006,33(6):78-83.
    [153]宋宇,李满天,孙立宁.基于相似度函数的图像椒盐噪声自适应滤除算法[J],自动化学报,2007,33(5):474-479.
    [154]马义德,张红娟.PCNN与灰度形态学相结合的图像去噪方法[J],北京邮电大学学报,2008,31(2):108-112.
    [155] Bouman C, Sauer K. A Generalized Gaussian Image Model for Edge-preserving MAP Estimation[J]. IEEE Trans. on Image Processing, 1993, 2(3): 296-310.
    [156] Pun W H, Jeffs B D. Adaptive Image Restoring Using a Generalized Gaussian Model for Unknown Noise[J]. IEEE Trans. on Image Processing, 1995, 4(8): 1451-1456.
    [157]李水根,吴纪桃.分形与小波[M].北京:科学出版社,2002.
    [158]成礼智,王红霞,罗永.小波的理论与应用[M].北京:科学出版社,2004.
    [159] Richard O.Duda, Peter E.Hart, David G.Stork著,李宏东,姚天翔译,模式分类[M],北京:机械工业出版社,2003.
    [160]汪雪林,韩华,彭思龙.基于小波域局部高斯模型的图像复原[J],软件学报,2004,15(3):444-447.
    [161]汪雪林,赵书斌.基于小波域隐马尔可夫树模型的图像复原[J],计算机学报,2005,28(6):1006-1012.
    [162]曹光学,易沫,汪雪林,彭思龙等.小波域边缘保持规整化图像复原[J],中国图象图形学报,2006,11(2):224-229.
    [163]汪雪林,文伟,彭思龙.基于小波域局部高斯模型的图像超分辨率[J],中国图象图形学报,2004,9(8):941-946.
    [164] John R. Jensen著,陈晓玲,龚威,李平湘等译.遥感数字影像处理导论[M].北京:机械工业出版社,2007.
    [165] Nishii R, Kusanobu S, Tanaka S. Enhancement of Low Spatial Resolution Image Based on High Resolution Bands[J]. IEEE Trans. on Geosci. and Remote Sensing, 1996, 34(5): 1151-1158.
    [166] Eismann M T, Hardie R C. Hyperspectral Resolution Enhancement Using High-Resolution Multispectral Imagery with Arbitrary Response Functions[J]. IEEE Trans. on Geosci. and Remote Sensing, 2005, 43(3): 455-465.
    [167] Maria G A, Jose L S, Raquel G C, et al. Fusion of Multispectral and Panchromatic Images Using Improved IHS and PCA Mergers Based on Wavelet Decomposition[J]. IEEE Trans. on Geosci.and Remote Sensing, 2004, 42(6): 1291-1299.
    [168] Price J C, Combining Multispectral Data of Differing Spatial Resolution[J]. IEEE Trans. on Geosci. and Remote Sensing, 1999, 37(3): 1199-1203.
    [169] Eismann M T, Hardie R C. Application of the Stochastic Mixing Model to Hyperspectral Resolution Enhancement[J]. IEEE Trans. on Geosci. Remote Sensing, 2004, 42(9): 1924-1933.
    [170] Haydn R, Dalke G W, Henkel J. Application of the IHS Color Transform to the Processing ofMultisensor Data and Image Enhancement[C]. Proceeding International Symposium on Remote Sensing of Arid and Semi-arid Land, 1982, 599-616.
    [171]陈玉春.多源图像融合算法研究[D].西北工业大学硕士学位论文,2006.
    [172]张林玲.TM及SPOT遥感图像融合算法研究[D],河海大学硕士学位论文,2007.
    [173] Toygar Akgun, Yucel Altunbasak, Russell M. Mersereau. Super-Resolution Reconstruction of Hyperspectral Images[J]. IEEE Transactions on Image Processing, 2005, 14(11): 1860-1875.
    [174] Russell C. Hardie, Michael T. Eismann, Gregory L W. MAP Estimation for Hyperspectral Image Resolution Enhancement Using an Auxiliary Sensor[J]. IEEE Transactions on Image Processing, 2004, 13(9): 1174-1184.
    [175]葛志荣,王斌,张立明.基于Bayes线性估计的遥感图像融合[J],中国科学E辑:信息科学,2007,37(4):501-513.
    [176] Molina R, Vega M, Abad J, et al. Parameter Estimation in Bayesian High-resolution Image Reconstruction with Multisensors [J]. IEEE Trans. on Image Processing, 2003, 12(12): 1655-1667.
    [177] Babacan S D, Molina R, Katsaggelos A K. Parameter Estimation in TV Image Restoration Using Variational Distribution Approximation [J]. IEEE Trans. on Image Processing, 2008, 17(3): 326-339.
    [178] Rudin L I, Osher S, Fatemi E. Nonlinear Total Variation Based Noise Removal Algorithms [J]. Phys. D, 1992, 60: 259-268.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700