LRP16基因对细胞胰岛素抵抗的影响及分子机制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:探讨人白血病相关蛋白16 (Leukemia Related Protein 16, LRP16)对3T3-L1脂肪细胞、C2-C12成肌细胞、HepG2肝癌细胞胰岛素抵抗的影响及可能的分子机制。
     方法:(1)利用脂质体转染及慢病毒介导的小干扰RNA(small interference RNA, siRNA)技术构建过表达LRP16细胞系、抑制表达LRP16细胞系及对照细胞系。(2)将3T3-L1前脂肪细胞常规诱导成熟,倒置显微镜观察及油红染色判断过表达及抑制表达LRP16对3T3-L1前脂肪细胞分化的影响;Q-PCR (Real-time Quantitative PCR)法检测过表达及抑制表达LRP16对3T3-L1脂肪细胞分化相关因子CAAT增强子结合蛋白α(CAAT/Enhancer Binding Protein alpha, C/EBPα)、过氧化物酶体增殖物激活受体γ(Peroxisome Proliferator activated receptor gamma, PPARγ),以及肿瘤坏死因子α(Tumor Necrosis Factor alpha, TNFα)、白介素(Interleukin, IL)-6、抵抗素(Resistin)、脂联素(Adiponectin) mRNA表达的影响。(3) 2-deoxy-[3H]-D-glucose检测过表达及抑制表达LRP16对3T3-L1脂肪细胞、C2-C12成肌细胞、HepG2肝癌细胞胰岛素刺激状态下葡萄糖摄取率的影响;Western Blot法检测上述细胞中过表达及抑制表达LRP16对胰岛素受体底物(Insulin Receptor Substrate, IRS)-1信号通路关键蛋白pIRS-1(Ser307)、pIRS-1(Tyr)、PI3-K(p85)、pAkt(Ser473)、pAkt(Thr308)表达的影响。(4)将pCMX-PPARy(pCMX-PPARα)、pGL3-PPRE、pcDNA-3.1、pcDNA-3.1-16、pRL-TK共转染COS-7细胞,双荧光素酶报告检测系统检测过氧化物酶体增生因子反应元件(Peroxisome Proliferator Response Element, PPRE)相对荧光素酶活性以反映PPARγ及过氧化物酶体增殖物激活受体α(Peroxisome Proliferator activated receptor alpha, PPARa)的转录活性;Western Blot法检测过表达及抑制表达LRP16对3T3-L1脂肪细胞、C2-C12成肌细胞PPARγ、葡萄糖转运蛋白(Glucose Transporter, GLUT)-4表达的影响,及对HepG2肝癌细胞PPARα、脂蛋白脂酶(Lipoprotein Lipase, LPL)蛋白表达的影响。
     结果:(1)成功构建了过表达及抑制表达LRP16的3T3-L1、C2-C12、HepG2细胞系与对照细胞系。(2)过表达LRP16的脂肪细胞脂滴大而少,分散而不均匀,呈明显指环样的脂滴较少,油红O染色示570nm OD值低于对照细胞;抑制表达LRP16的脂肪细胞脂滴小而多,密集而均匀,整个视野呈“油菜花样”改变,油红O染色示570nm OD值高于对照细胞。过表达LRP16的脂肪细胞C/EBPα、PPARγ及脂联素mRNA表达低于对照细胞,TNFα、IL-6、抵抗素的mRNA表达高于对照细胞;抑制表达LRP16的脂肪细胞C/EBPα、PPARyγ及脂联素mRNA表达高于对照细胞,TNFα、IL-6、抵抗素的mRNA表达低于对照细胞。(3)过表达LRP16抑制3T3-L1脂肪细胞、C2-C12成肌细胞及HepG2肝癌细胞胰岛素刺激的葡萄糖摄取,抑制表达LRP16则增加3T3-L1脂肪细胞、C2-C12成肌细胞及HepG2肝癌细胞胰岛素刺激的葡萄糖摄取。过表达LRP16上调三种细胞pIRS-1(Ser307)蛋白的表达,下调pIRS-1(Tyr)、PI3-K(p85)、pAkt(Ser473)、pAkt(Thr308)蛋白的表达,相反,抑制表达LRP16则下调三种细胞pIRS-1(Ser307)蛋白的表达,上调pIRS-1(Tyr)、PI3-K(p85)、pAkt(Ser473)、pAkt(Thr308)蛋白的表达。(4)LRP16剂量依赖性的降低PPARγ的转录活性,当pcDNA3.1-16量为0.4μg时,pGL3-PPRE的相对荧光素酶活性降低为对照组的43%(P<0.01),当pcDNA3.1-16量为0.5gg时,pGL3-PPRE的相对荧光素酶活性降低为对照组的27%(P<0.01);LRP16剂量依赖性的降低PPARa的转录活性:当pcDNA3.1-16量为0.4μg时,pGL3-PPRE的相对荧光素酶活性降低为对照组的38%(P<0.01),当pcDNA3.1-16量为0.5μg时,pGL3-PPRE的相对荧光素酶活性降低为对照组的35%(P<0.01)。过表达LRP16下调3T3-L1脂肪细胞、C2-C12成肌细胞PPARy、GLUT-4蛋白的表达,抑制表达LRP16则上调3T3-L1脂肪细胞PPARy、GLUT-4蛋白的表达;过表达LRP16下调HepG2肝癌细胞PPARa、LPL蛋白的表达。
     结论:(1)我们成功构建了过表达及抑制表达LRP16的3T3-L1、C2-C12、HepG2细胞系与对照细胞系,为后续实验提供了细胞模型。(2)LRP16通过抑制脂肪细胞分化,影响IRS-1信号通路,抑制PPARy及PPARa的转录活性等多条途径导致外周组织胰岛素抵抗。
Objective:To investigate the effect of LRP16 on insulin resistance in 3T3-L1 adipocyte, C2-C12 sarcoblast and HepG2 hepatoma carcinoma cell and the possible molecular mechanisms.
     Methods:(1) Lipidosome transfection and lentivirus mediated siRNA technology were used to construct the cell lines with over-expression of LRP16, down-expression of LRP16 and the conrtol cell lines. (2) 3T3-L1 preadipocytes were differentiated using the regular methods, the effect of LRP16 on differentiation of 3T3-L1 preadipocytes were detected using inverted microscope and red oil staining; The effect of LRP16 on mRNA expression of C/EBPα, PPARy, TNFa, IL-6, Resistin and Adiponectin were measured using Quantitative Real-time PCR. (3) 2-deoxy-[3H]-D-glucose was used to detect the effect of LRP16 on insulin stimulated glucose uptake in 3T3-L1 adipocyte, C2-C12 sarcoblast and HepG2 hepatoma carcinoma cell; Effect of LRP16 on the expression of key protein in IRS-1 signaling pathway, such as pIRS-1(Ser307)、pIRS-1(Tyr)、PI3-K(p85)、pAkt(Ser473)、pAkt(Thr308), was detected using Western Blot. (4) The strucural expression vectors, including pCMX-PPARy (pCMX-PPARa), pGL3-PPRE, pcDNA-3.1, pcDNA-3.1-16 and the internal conrtol vector pRL-TK were transiently co-transfected into COS-7 cells, then the PPRE relative luciferase activity which reflected the transcriptional activity of PPARy and PPARa was detected using Dual-luciferase Reporter Gene Assay system. Western Blot was used to detect the effect of LRP16 on the expression of PPARy and GLUT-4 in 3T3-L1 adipocyte, C2-C12 sarcoblast, and the expression of PPARa, LPL in HepG2 hepatoma carcinoma cell.
     Results:(1) We constructed the cell lines with over-expression of LRP16, down-expression of LRP16 and the conrtol cell lines in 3T3-L1 adipocyte, C2-C12 sarcoblast and HepG2 hepatoma carcinoma cell successfully. (2) The cytolipin in 3T3-L1 adipocyte with over-expression of LRP16 was large, few, uneven, the red oil staining showed that the value of OD in 570nm was lower than the control cells; On the contrary, the cytolipin in 3T3-L1 adipocyte with down-expression of LRP16 was small, intensive and even, the whole visual fields was cauliflower-like, the red oil staining showed that the value of OD in 570nm was higher than the control cells. The mRNA expression of C/EBPa, PPARy and Adiponectin in cells with over-expression of LRP16 was lower than the control cells, but the mRNA expression of TNFα, IL-6, Resistin was higher than the control cells. On the contrary, when the LRP16 was down-expressed, the results were just on the opposite. (3) Over-expression of LRP16 decreased the insulin stimulated glucose uptake in 3T3-L1 adipocyte, C2-C12 sarcoblast and HepG2 hepatoma carcinoma cell, but, down-expression of LRP16 increased the insulin stimulated glucose uptake in these cells. Protein expression of pIRS-1(Ser307) was increased when LRP16 was over-expressed, but, the expression of pIRS-1(Tyr). PI3-K(p85)、pAkt(Ser473)、pAkt(Thr308) were decreased. On the contrary, when the LRP16 was down-expressed, the results were just on the opposite. (4) LRP16 decreased the transcriptional activity of PPARy in a dose dependent manner, the relative luciferase activity of PPRE accounted for 38%(P<0.01) of the control group at pcDNA3.1-16 0.4μg, and 35%(P<0.01) of the control group at pcDNA3.1-16 0.5μg. LRP16 decreased the transcriptional activity of PPARa in a dose dependent manner, the relative luciferase activity of PPRE accounted for 43%(P<0.01) of the control group at pcDNA3.1-16 0.4μg, and 27%(P<0.01) of the control group at pcDNA3.1-16 0.5μg. overexpression of LRP16 decreased the protein expression of PPARy, GLUT-4 in 3T3-L1 adipocyte, C2-C12 sarcoblast, and the protein expression of PPARa、LPL in HepG2 hepatoma carcinoma cell, but, when LRP16 was down-expressed, the results were on the opposite.
     Conclusions:(1) We successfully constructed the cell lines with over-expression of LRP16, down-expression of LRP16 and control cell lines, which provided cell model for the follow up experiment. (2) LRP16 caused insulin resistance through several pathways, including inhibiting the differentiation of adipocytes, influencing IRS-1 signaling pathway and inhibiting the transcriptional activity of PPARy and PPARa.
引文
1.潘长玉.糖尿病经济负担.中华内科杂志.2001,81:1-2.
    2. Jia WP, Xaiang KS, Chen L, et al. Epidemiological study on obesty and its commodities in urban Chinese older than 20 years of age in ShanHai, China. Obes Rev.2002,3:157-165.
    3. Cockram CS. The epidemiology of diabetes mellitus in the Asia-pacific region. HKMJ.2000,6:43-52.
    4. Iamilnd J. The double puzzle of diabetes. Nature.2003,423:599-602.
    5. Hirsch IB, The changing faces of diabetes. Prim Care.2003,30:499-511.
    6. Moller DE, New drug targets for type 2 diabetes and the metabolic syndrome. Nature.2001,414:821-827.
    7. Quinn L. Type 2 diabetes:epidemiology, pathophysiology, and diagnosis. Natrs Clin North Am.2001,36:175-192.
    8. Hotamisligil GS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha:direct role in obesity-linked insulin resistance. Science.1993, 259:87-91.
    9. Crook MA, Tutt P, Simpson H, et al. Serum sialic acid and acute phase proteins in type 1 and 2 diabetes. Clin Chim Acta.1993,219:131-138.
    10. Pickup JC, Chusney GC, Thomas SM, et al. Plasma interleukin-6, tumor necrosis factor alpha and blood cytokine production in types 2 diabetes. Life Sci.2000,67:291-300.
    11. Schmidt MI, Duncan BB, Sharrett AR, et al. Markers of inflammation and prediction of diabetes mellitus in adults (Atherosclerosis Risk in Communities Study):a cohort study. Lancer.1999,353:1649-1652.
    12. Freeman DJ, Norrie J, Caslake MJ, et al. C-reactive protein is an independent predictor of risk for t he development of diabetes in t he West of Scotland Coronary Prevention Study. Diabetes.2002,51:1596-1600.
    13. Pradhan AD, Manson J E, Rifai N, et al. C2reactive protein, interleukin 6, and risk of developing type 2diabetes mellitus. JAMA.2001,286:327-334.
    14. Peter R. SHEPHERD, Dominic J. WITHERS, et al. Phosphoinositide 3-kinase:the key switch mechanism in insulin signaling. Biochem.1998, 333:471-490.
    15. Yu ZW, Buren J, Enerback S, et al. Insulin can enhance GLUT4 gene expression in 3T3-L1 cells and this effect is mimicked by vanadate but counteracted by cAMP and high glucose-potential implications for insulin resistance. Biochim Biophys Acta.2001,1535:174-185.
    16. Mohammad A, Sharma V, McNeill JH. Vanadium increase GLUT4 in diabetic rat skeletal muscle. Mol Cell Biochem.2002,233:139-143.
    17. Esposito DL, Li Y, Cama A. et al. Tyr(612) and Tyr(632)in human insulin receptor substrate-1 are important for full activation of insulin-stimulated phosphatidylinoditol 3-kinase activity and translocation of GLUT-4 in adipose cells. Endocrinology.2001,142:2833-2840.
    18.于力,韩为东,楼方定等.新的白血病相关基因LRP16的克隆.军医进修学院学报.2000,21:81-84.
    19.韩为东,于力,楼方定等.RACE技术在钓取白血病相关基因LRP16全长cDNA中的应用.中国实验血液学杂志.2001,9:14-17.
    20.韩为东,于力,楼方定等.一个新的白血病相关基因—全长cDNA的克隆、序列分析及表达特征.中国生物化学与分子生物学报.2001,17:58-63.
    21.韩为东,楼方定,于力等.LRP16编码蛋白质的信息学分析及其细胞内定位的实验研究.军医进修学院学报.2002,23:14-17.
    22.韩为东,孟元光,廖代祥等.LRP16通过调控E-钙黏着蛋白的表达促进MCF-7细胞的侵袭生长.中国生物化学与分子生物学报.2006,22:724-732.
    23. Han WD, Mu YM, Lu XC. Up-regulation of LRP16 mRNA by 17beta-estradiol through activation of estrogen receptor alpha (ERalpha), but not ERbeta, and promotion of human breast cancer MCF-7 cell proliferation: a preliminary report. Endocr Relat Cancer.2003,10:217-24.
    24. Han WD, Zhao YL, Meng YG, Zang Li. Estrogenically regulated LRP16 interacts with estrogen receptor alpha and enhances the receptor's transcriptional activity. Endocr Relat Cancer.2007,14:741-53.
    25. Siri PW, Ginsberg HN:Ovariectomy leads to increased insulin resistance in human apolipoprotein B transgenic mice lacking brown adipose tissue. Metabolism.2003,52:659-661.
    26. Collison M, Campbell IW, Salt IP:Sex hormones induce insulin resistance in 3T3-L1 adipocytes by reducing cellular content of IRS proteins. Diabetologia. 2000,43:1374-1380.
    27. Hollingsworth DR:Alterations of maternal metabolism in normal and diabetic pregnancies:differences in insulin-dependent, non insulin-dependent and gestational diabetes. Am J Obst Gynecol.1983,146:417-429.
    28. Tomazic M, Janez A, Sketelj A:Comparison of alterations in insulin signaling pathway in adipocytes from Type Ⅱ diabetic pregnant women and women with gestational diabetes mellitus. Diabetologia.2002,45:502-508.
    29. Polderman KH, Gooren LJG, Asscheman H:Induction of Insulin Resistance by Androgens and Estrogens. J Clin Endocrinol Metab.1994,79:265-271.
    30. Diamond MP, Simonson DC, DeFronzo RA:Menstrual cyclicity has a profound effect on glucose homeostasis. Fertil Steril.1989,52:204-208.
    31.Nagira K, Saito S, Wada T:Altered subcellular distribution of estrogen receptor a is implicated in estradiol-induced dual regulation of insulin signaling in 3T3-L1 adipocytes. Endocrinology.2006,147:1020-1028.
    32. Muraki K, Okuya S, Tanizawa Y, et al. Estrogen receptor alpha regulates sensitivity through IRS-1 tyrosine phosphrylation in muture 3T3-L1 adipocytes. Endrocrine J.2006,53:841-851.
    1.于力,韩为东,楼方定等.新的白血病相关基因LRP16的克隆.军医进修学院学报.2000,21:81-84.
    2.韩为东,于力,楼方定等.一个新的白血病相关基因—全长cDNA的克隆、序列分析及表达特征.中国生物化学与分子生物学报.2001,17:58-63.
    3.韩为东,孟元光,廖代翔等.LRP16通过调控E-钙黏着蛋白的表达促进MCF-7细胞的侵袭生长.中国生物化学与分子生物学报.2006,22:724-732.
    4. Han WD, Mu YM, Lu XC:Up-regulation of LRP16 mRNA by 17beta-estradiol through activation of estrogen receptor alpha (ERalpha), but not ERbeta, and promotion of human breast cancer MCF-7 cell proliferation: a preliminary report. Endocr Relat Cancer.2003,10:217-24.
    5. Zhao YL, Han WD, Li Q, Mu YM, Lu XC, Yu L, Song HJ, Lu JM, Pan CY: Mechanism of transcriptional regulation of LRP16 gene expression by 17-. estradiol in MCF-7 human breast cancer cell. J Mol Endocrinal.2005, 34:77-89.
    6. Meng YG, Han WD, Zhao YL, Huang K, Si YL, Wu ZQ, Mu YM:Induction of LRP16 gene by estrogen promotes the invasive growth of Ishikawa human endometrial cancer cells through down-regulation of E-cadherin. Cell Res. 2007,17:869-880.
    7. Han WD, Zhao YL, Meng YG:Estrogenically regulated LRP16 interacts with estrogen receptor alpha and enhances the receptor's transcriptional activity. Endocr Relat Cancer.2007,14:741-53.
    8. Siri PW, Ginsberg HN:Ovariectomy leads to increased insulin resistance in human apolipoprotein B transgenic mice lacking brown adipose tissue. Metabolism.2003,52:659-661.
    9. Collison M, Campbell IW, Salt IP:Sex hormones induce insulin resistance in 3T3-L1 adipocytes by reducing cellular content of IRS proteins. Diabetologia. 2000,43:1374-1380.
    10. Hollingsworth DR:Alterations of maternal metabolism in normal and diabetic pregnancies:differences in insulin-dependent, non insulin-dependent and gestational diabetes. Am J Obst Gynecol.1983,146:417-429.
    11. Tomazic M, Janez A, Sketelj A:Comparison of alterations in insulin signaling pathway in adipocytes from Type II diabetic pregnant women and women with gestational diabetes mellitus. Diabetologia.2002,45:502-508.
    12. Polderman KH, Gooren LJG, Asscheman H:Induction of Insulin Resistance by Androgens and Estrogens. J Clin Endocrinal Metab.1994,79:265-271.
    13. Diamond MP, Simonson DC, DeFronzo RA:Menstrual cyclicity has a profound effect on glucose homeostasis. Fertil Steril.1989,52:204-208.
    14. Nagira K, Saito S, Wada T:Altered subcellular distribution of estrogen receptor a is implicated in estradiol-induced dual regulation of insulin signaling in 3T3-L1 adipocytes. Endocrinology.2006,147:1020-1028.
    15. Muraki K, Okuya S, Tanizawa Y:Estrogen receptor alpha regulates insulin sensitivity through IRS-1 tyrosine phosphorylation in mature 3T3-L1 adipocytes. Endocr J.2006,53:841-51.
    16. Back O, Egelrud T. Topical glucocorticoids and suppression of contact sensitivity. A mouse bioassay of anti-inflammatory effects. Br J Dermatol, 1985,112:539-45.
    17. DuxburyMS, Ito H, Benoit E, et al. RNA interference demonstrates a novel role for integrin2linked kinase as a determinant of pancreatic adenocarcinoma cell gemcitabine chemoresistance. Clin Cancer Res.2005,11:3433-3438.
    1. Zuk PA, Zhu M, Hedrick MH, et al. Multipotent cells from human adipose tissue implications for cell-based therapies. Tissue Eng.2001,7:221-226.
    2. Rosriguez AM, Elzbd C, Delteil F, et al. adipocyte differentiation of multipotent cells established from human adipose tissue. Biochem Biophys Res Common.2004,315:255-263.
    3. Ntambi JM. Adipocyte differentiation and gene expression. Nature.2000,13: 3122s-3126s.
    4. Rosen ED, Sarraf P, TroyAE, et al. PPAR gamma is required for the differentiation of adipose tissue in vivo and in vitr. Mol cell.1999,4:611-617.
    5. Farmer SR. Regulation of PPAR gamma activity during adipogenesis. Int J Obes.2005,29:S13-16.
    6. Rosen ED, Spiegelman BM. Adipocyte as regulators of energy balance and glucose homeostasis. Nature.2006,444:847-853.
    7. Bruun JM, Lihn AS, Pedersen SB, er al. Monocyte chemoattractant protein-1 release is higher in visceral than subcutaneous human adipose tissue: implication of macrophages resident in the AT. J Clin Endocrinol Metab.2005, 90:2282-2289.
    8. Tsutsumic, et al. Retinoids and retinoid-binding protein expression in rat adipocyte. J Biol Chem.1992,267:1805-1810.
    9. Hirosumi J, Tuncman G, Chang L, et al. A central role for JNK in obesity and insulin resistance. Nature.2002,420:333-336.
    10. Cai D, Yuan M, Frantz DF, et al. Local and systemic insulin resistance resulting from hepatic activation of IKKβ and NF-κB. Nat Med.2005,11: 183-190.
    11. Fernander-Real JM, Broch M, Verdrell J, et al. Interleukin-6 gene polymorphism and insulin sensitivity. Diabetes. 2000,49:517-520.
    12. Senn JJ, Klover PJ, Nowak IA, et al. Suppressor of cytokine signaling-3 (SOCS):A potential mediator of IL-6 dependent insulin resistance hepatocytes. J Biol Chem.2003,178:13740-13746.
    13. Rotter V, Nagaev I,Smith U. IL-6 induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, over-expression in human fat cells from insulin-resistant subjects. J Biol Chem.2003,278: 45777-45784.
    14. Fasshauer M, Kralisch S, Kliver M, et al. Adiponectin gene expression and secretion is inhibited by interleukin-6 in 3T3-L1 adipocytes. Bio chem Biophys Res Commun.2003,301:1045-1050.
    15. Steppan CM, Bailey CT, Bha TS, et al. The hormone resistin links obesity to diabetes. Nature.2001,409:307-312.
    16. Diez JJ, et al. The role of the novel adipocyte derived hormone adiponectin in human disease. Eur J Endocrinol.2003,148:293-300.
    17. Combs TP, Pajvani UB, Berg AH, et al. A transgenic mouse with a deletion in the collagenous domain of adiponectin displays elevated circulating adiponectin and improved insulin sensitivity. Endocrinology.2004,145: 367-383.
    1. Solow BT, Harada S, Goldstein BJ, et al. Differential modulation of the tyrosine phosphorylation state of the insulin receptor by IRS protein. Mol Endocrinol.1999,13:1784-1798.
    2. De Fea K, Roth RA. Modulation on insulin receptor substrate-1 tyrosine phosphorylation and function by mitogen-activated protein kinase. Biol Chem. 1997,272:31400-31406.
    3. Staubs PA, Nelson JG, reichart DR, et al. Platelet-derived growth factor inhibits insulin stimulation of insulin receptor substrate-1 associated phoaphatidylinositol 3-kinase in 3T3-L1 adipocytes without affecting glucose transport. Biol Chem.1998,273:25-39.
    4. Basuki W, hiromura M, Adachi Y, et al. Enhancement of insulin signaling pathway in asipocutes by oxovanadium complexes. Biochem Biophys Res Common.2006,349:1163-1170.
    5. Yu ZW, Buren J, Enerback S, et al. Insulin can enhance GLUT4 gene expression in 3T3-L1 cells and this effect is mimicked by vanadate but counteracted by cAMP and high glucose-potential implications for insulin resistance. Biochim Biophys Acta.2001,1535:174-185.
    6. Mohammad A, Sharma V, McNeill JH. Vanadium increase GLUT4 in diabetic rat skeletal muscle. Mol Cell Biochem.2002,233:139-143.
    7. Esposito DL, Li Y, Cama A. et al. Tyr(612)and Tyr(632)in human insulin receptor substrate-1 are important for full activation of insulin-stimulated phosphatidylinoditol 3-kinase activity and translocation of GLUT-4 in adipose cells. Endocrinology.2001,142:2833-2840.''
    8. Peter R. SHEPHERD, Dominic J. WITHERS, et al. Phosphoinositide 3-kinase:the key switch mechanism in insulin signaling. Biochem.1998,333: 471-490.
    9. Frauke Leenders, Kristin Mopert, Anett Schmiedeknecht, et al. PKN3 is required for malignant prostate cell growth downstream of activated PI 3-kinase. The EMBO Journal.2004,23:3303-3313.
    10. Siri PW, Ginsberg HN:Ovariectomy leads to increased insulin resistance in human apolipoprotein B transgenic mice lacking brown adipose tissue. Metabolism.2003,52:659-661.
    11. Collison M, Campbell IW, Salt IP:Sex hormones induce insulin resistance in 3T3-L1 adipocytes by reducing cellular content of IRS proteins. Diabetologia. 200,43:1374-1380.
    12. Hollingsworth DR:Alterations of maternal metabolism in normal and diabetic pregnancies:differences in insulin-dependent, non insulin-dependent and gestational diabetes. Am J Obst Gynecol.1983,146:417-429.
    13. Tomazic M, Janez A, Sketelj A:Comparison of alterations in insulin signaling pathway in adipocytes from Type II diabetic pregnant women and women with gestational diabetes mellitus. Diabetologia.2002,45:502-508.
    14. Polderman KH, Gooren LJG, Asscheman H:Induction of Insulin Resistance by Androgens and Estrogens. J Clin Endocrinal Metab.1994,79:265-271.
    15. Diamond MP, Simonson DC, DeFronzo RA:Menstrual cyclicity has a profound effect on glucose homeostasis. Fertil Steri.1989,52:204-208.
    16. Nagira K, Saito S, Wada T:Altered subcellular distribution of estrogen receptor a is implicated in estradiol-induced dual regulation of insulin signaling in 3T3-L1 adipocytes. Endocrinology.2006,147:1020-1028.
    17. Kiyofumi Nagira, Toshiyasu Sasaoka, Tsutomu Wada, et al. Altered Subcellular Distribution of Estrogen Receptor a Is Implicated in Estradiol-Induced Dual Regulation of Insulin Signaling in 3T3-L1 Adipocytes. Endocrinology.2005,147:1020-1028.
    18. Muraki K, Okuya S, Tanizawa Y:Estrogen receptor alpha regulates insulin sensitivity through IRS-1 tyrosine phosphorylation in mature 3T3-L1 adipocytes. Endocr J.2006,53:841-51.
    19. Aguirre V, Werner ED, Giraud J, Lee YH, Shoelson SE, White MF: Phosphorylation of Ser307 in insulin receptor substrate-1 blocks interactions with the insulin receptor and inhibits insulin action. J Biol Chem.2002,277: 1531-1537.
    20. Rui L, Aguirre V, Kim JK, Shulman GI, Lee A, Corbould A, Dunaif A, WhiteMF:Insulin/IGF-1 and TNF-α stimulate phosphorylation of IRS-1 at inhibitory Ser307 via distinct pathways. J Clin Invest.2001,107:181-189.
    21. Gual P, Gremeaux T, Gonzalez T, Le Marchand-Brustel Y, Tanti J-F:MAP kinases and mTOR mediate insulin-induced phosphorylation of insulin receptor substrate-1 on serine residues 307,612, and 632. Diabetologia.2003, 46:1532-1542.
    22. Aguirre V, Uchida T, Yenush L, Davis R, White MF:The c-Jun NH2-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser307. J Biol Chem.2000,275: 9047-9054.
    23. Hirosumi J, Tuncman G, Chang L, Go"rgu"n CZ, Uysal KT, Maeda K, Karin M:Hotamisligil GS 2002 A central role for JNK in obesity and insulin resistance. Nature.2002,420:333-336.
    24. Peraldi P, Hotamisligil GS, Buurman WA, White MF, Spiegelman BM:Tumor necrosis factor (TNF)-α inhibits insulin signaling through stimulation of the p55 TNF receptor and activation of sphingomyelinase. J Biol Chem.1996, 271:13018-13022.
    25. Hotamisligil GS, Peraldi P, Budavari A, Ellis R, White MF, Spiegelman BM: IRS-1 mediated inhibition of insulin receptor tyrosine kinase activity in TNF-a and obesity-induced insulin resistance. Science.1996,271:665-668.
    1. GUAN Y, BREYERMD, et al. Targeting peroxisome proliferator activated receptors(PPARs) in kidney and urologic disease. M inerva U rol N efrol.2002,54:65-79.
    2. ISSEMANN I, GREEN S. Activation of a member of the steroid hormone receptor super family by peroxisome proliferators. Nature.1990,347:645-650.
    3. Gearing KL, Gottlicher M, Teboul M, et al. Interation of the peroxisome proliferator-activated receptor and retinoid X receptor. Proc Natl Acad Sci USA.1993,10:1440-1444.
    4. Juge-Aubry C, Pernin A, Favez T, et al. DNA binding properties of peroxisome proliferator-activated receptor subtypes on various natural peroxisome proliferator response element. Biol Chem.1997,72: 25252-25259.
    5. Jean-Charles Fruchart, et al. peroxisome proliferator-activated receptor-a activation and high density lipoprotein metabolism. Am J Cardiol.2001,8: 24n-29n.
    6. Willson TM, Brown P J, Sternbach D D, et al. The PPARs:from orphan receptors to drug discovery. Med Chem.2000,3:527-550.
    7. Desvergne B, Michalik L, Wahli W, et al. Be fit or be sick:peroxisome proliferator-activated receptors are down the road. Mol Endocrinol.2004,8: 1321-1332.
    8. Argmann CA, Cock TA, Auwerx J,et al. peroxisome proliferator activated receptor gamma:the more the merrier? Eur J Clin Invest.2005,35:82-92.
    9. Auwerx J. PPAR gamma, the ultimate thrifty gend. Diabetologia.1999,2: 1033-1049.
    10. Lazar MA. PPAR gamma,10 years later. Biochimie.2005,87:9-13.
    11.Lehmann JM, Moore LB, Smith-Oliver, et al. An antidiabetic thiazolidinedione is a high affinity lifand for peroxisome proliferator activated receptor gamma (PPARy). Bio Chem.1995,70:12953-12956.
    12. J Yang, Y-L Zhao, Z-Q Wu, et al. The single-macro domain protein LRP16 is an essential cofactor of androgen receptor. Endocrine-Related Cancer.2009,6: 139-153.
    13. Kudo M, Sugawara A, Uruno A, Takeuchi K, Ito S. Transcription suppression of peroxisome proliferator-activated receptor gamma2 gene expression by tumor necrosis factor alpha via an inhibition of CCAAT/enhancer-binding protein delta during the early stage of adipocyte differentiation. Endocrinology. 2004,45:4948-4956.
    14. Zhang B, Berger J, Hu E, Szalkowski D, White-Carrington S, Spiegelman BM, Moller DE. Negative regulation of peroxisome proliferator-activated receptor-gamma gene expression contributes to the antiadipogenic effects of tumor necrosis factor-alpha. Mol Endocrinol.1996,10:1457-1466.
    15. Ruan H, Hacohen N, Golub TR, Van Parijs L, Lodish HF. Tumor necrosis factor-alpha suppresses adipocyte-specific genes and activates expression of preadipocyte genes in 3T3-L1 adipocytes:nuclear factor-kappaB activation by TNF-alpha is obligatory. Diabetes.2002,51:1319-1336.
    16. Hu E, Kim JB, Sarraf P, Spiegelman BM. Inhibition of adipogenesis through MAP kinase-mediated phosphorylation of PPAR gamma. Science.1996,274: 2100-2103.
    17. Suzawa M, Takada I, Yanagisawa J, Ohtake F, Ogawa S, Yamauchi T, Kadowaki T, Takeuchi Y, Shibuya H, Gotoh Y, Matsumoto K, Kato S. Cytokines suppress adipogenesis and PPAR-gamma function through the TAK1/TAB1/NIK cascade. Nat Cell Biol.2003,5:224-230.
    18. Ruan H, Pownall HJ, Lodish HF. Troglitazone antagonizes TNF-alpha-induced reprogramming of adipocyte gene expression by inhibiting the transcriptional regulatory functions of NF-kB. J Biol Chem.2003,278:28181-28192.
    1. Gual P, Gonzalez T, Gremraux T, et al. Hyperosmotic stress inhibits insulin receptor substrate-1 function by distinct mechanisms in 3T3-L1 asipocytes. Bio Chem.2003,278:26550-26557.
    2. Ogihara T, Shin BC, Anai M, et al. Insulin receptor substrate(IRS)-2 is dephosphorylated more rapidly than IRS-1 cia its association with phosphatidylinositol 3-kinase in skeletal muscle cells. Biol Chem.1997,272: 12868-12873.
    3. Aizawa S, Cushman SW, Akanuma Y, et al. Role of insulin receptor substrate-1 and pp60 in the regulation of insulin-induced glucose transport and GLUT4 tanslocation in primary adipocytes. Biol Chem.1997.272: 25839-25844.
    4. Solow BT, Harada S, Goldstein BJ, et al. Differential modulation of the tyrosine phosphorylation state of the insulin receptor by IRS protein. Mol Endocrinol.1999,13:1784-1798.
    5. De Fea K, Roth RA. Modulation on insulin receptor substrate-1 tyrosine phosphorylation and function by mitogen-activated protein kinase. Biol Chem. 1997,272:31400-31406.
    6. Farhang-Fallsh J, Randhawa VK, Nimnual A, et al. the plechstrin homology(PH) domain-interacting peotein couples the insulin receptor substrate 1 PH domain to insulin signaling pathways leading to mitogenesis and GLUT-4 translocation. Mol Cell Biol.2002,22:7325-7326.
    7. Staubs PA, Nelson JG, reichart DR, et al. Platelet-derived growth factor inhibits insulin stimulation of insulin receptor substrate-1 assocoated phoaphatidylinositol 3-kinase in 3T3-L1 adipocytes without affecting glucose transport. Biol Chem.1998,273:25-39.
    8. Basuki W, hiromura M, Adachi Y, et al. Enhancement of insulin signaling pathway in asipocutes by oxovanadium complexes. Biochem Biophys Res Commun.2006,349:1163-1170.
    9. Peter R. SHEPHERD, Dominic J. WITHERS, et al. Phosphoinositide 3-kinase:the key switch mechanism in insulin signalling. Biochem.1998, 333:471-490.
    10. Frauke Leenders, Kristin Mopert, Anett Schmiedeknecht,et al. PKN3 is required for malignant prostate cell growth downstream of activated PI 3-kinase. The EMBO Journal.2004,23:3303-3313.
    11. Aytug S, Reich D, Sapiro LE, et al. Impaired IRS-1/PI3-kinase signaling in patients with HCV:a mechanism for increased prevalence of type 2 diabetes. Hepatology.2003,38:1384-1392.
    12. Brozinick JT, Etgen GJ, Yaspelkis BB, et al. Glucose uptake and Glut-4 protein distribution in skeletal muscle of the obese Zucker rat. Am J Physiol. 1994,267:236-243.
    13. Schalin Jantti C, Yki Jarvinen H, Koranyi L, et al. Effect of insulin on GLUT-4 mRNA and protein concentrations in skeletal muscle of patients with NIDDM and their first-degree relatices. Horm Metab Res.1994,26: 129-132.
    14. Guma A, Zierath JR, Wallberg-Henriksson, et al. Insulin induces translocation of GLUT-4 glucose transporters in human skeletal muscle. Am J Physiol. 1995,268:613-612.
    15. Rao R, Hao CM, Redha R, et al. Glycogen synthase kinase 3 inhibition improves insulin-stimulated glucose metabolism but not hypertension in high-fat-fed C57BL/6J mice. Diabetologia.2007,50:452-460.
    16. Laakso M, Malkk, Kekalainen P, et al, insulin receptor substrate-1 variants in non-insulin-dependent diabetes. Clin Invest.1994,94:1141-1146.
    17. Almind K, Bjrback C, Vestergaard H, et al. Aminoacid polymorphism of insulin receptor substrate-1 non-insulin dependent mellitus. The Lancet.1993, 342:828-830.
    18. Heydrick SJ. Gautier N, Olichon-berthe C, et al. Early alteration of insulin stimulation of PI3-kinase in muscle and asipocyte from gold thioglucose obese mice. Am J Phsiol.1995,268:604-612.
    19. Giorgino F, Logoluso F, Dacalli AM, et al. Islet transplantation restores normal levels of insulin receptor and substrate tyrosine phosphorylation and phosphatidylinositol 3-kinase acticity in skeletal muscle and myocardium of streptozocin-induced diabetic rats. Diabetes.1999,48:801-812.
    20. Tang X, Powelka Am, Soriano NA, et al. PTEN, but not SHIP2, suppresses insulin signaling through the phosphatidylinositol 3-kinase/Akt pathway in 3T3-L1 adipocytes. Biol Chem.2005,280:22523-22529.
    21.Uysal KT, Wiesbrock SM, Marino MW,et al. Protection from obestity induced insulin resistance in mice lacking TNFa function. Nature.1997,389: 610-614.
    22. Fernander-Real JM, Broch M, Verdrell J, et al. Interleukin-6 gene polymorphism and insulin sensitivity. Diabetes,2000,49:517-520.
    23.李伟民,徐魁,贺冶冰.肥胖的2型糖尿病患者血中白细胞介素-6含量与胰岛素抵抗.临床荟萃.2004,196:72-674.
    24. Senn JJ, Klover PJ, Nowak IA, et al. Suppressor of cytokine signaling-3 (SOCS):A potential mediator of IL-6 dependent insulin resistance hepatocytes. J Biol Chem.2003,178:13740-13746.
    25. Rotter V, Nagaev I,Smith U. IL-6 induces insulin resistance in 3T3-L1 adipocytes and is, like IL-8 and tumor necrosis factor-alpha, overexpression in human fat cells from insulin-resistant subjects. J Biol Chem.2003,278: 45777-45784.
    26. Miura A, Ishizuka T, Kanoh Y, et al. Effect of tumor necrosis factor-alpha on dignal teansduction in rat adipocytes:relation to PKC-beta and zeta translocation. Biophys Acta.1999,1449:227-238.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700