熊果酸改善胰岛素抵抗及对肝脏PTP-1B、IRS-2表达的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
胰岛素抵抗是指正常剂量的胰岛素产生低于生物学效应的一种状态,是滋生多种代谢性疾病的共同危险因素,且往往存在于疾病的早期阶段。因此,对胰岛素抵抗进行干预和治疗,对防治各种代谢性疾病特别是糖尿病有重要意义。
     肥胖(主要是腹型肥胖)是胰岛素抵抗发生、发展的重要危险因素。肥胖可以通过内分泌、脂肪细胞因子、炎性反应和细胞内在信号通路导致胰岛素抵抗。目前已经认识到由脂肪分解产生的游离脂肪酸(FFA)和脂肪细胞因子常常参与肥胖介导的胰岛素抵抗发生,这些因子通过不同的机制影响糖、脂肪代谢,各因子之间也存在着复杂的联系。其中,肿瘤坏死因子-α(TNF-α)与胰岛素抵抗的发生、发展密切相关,TNF-α可以通过抑制脂蛋白酯酶,促进脂肪分解,使血浆FFA浓度升高。FFA水平增高既可增加胰岛素抵抗,又可引起高胰岛素血症。肝脏是胰岛素作用的主要靶器官,在胰岛素代谢效应方面,主要促进肝糖原合成和抑制肝糖输出。肝脏出现胰岛素抵抗时,肝糖原合成减少糖异生增加,从而导致血糖升高。胰岛素信号级联中的胰岛素受体底物-2(IRS-2)分支信号与肝细胞胰岛素敏感性密切相关。IRS-2/磷脂酰肌醇3激酶(PI-3K)信号通路是胰岛素在肝脏发挥生理效应的主要信号转导途径。IRS-2基因表达的降低、蛋白量的减少及磷酸化障碍都会影响其下游PI-3K/蛋白激酶B(Akt)信号的有效传递而导致胰岛素抵抗。目前发现诸多因素均可通过影响IRS-2信号转导而导致肝胰岛素抵抗。蛋白酪氨酸磷酸酶-1B (PTP-1B)是蛋白酪氨酸磷酸酶(PTP)家族中的主要成员之一,可与PTP家族其他成员及蛋白酪氨酸激酶联合作用调节细胞内底物酪氨酸磷酸化水平,使胰岛素受体(InsR)、胰岛素受体底物(IRS)等信号分子的酪氨酸去磷酸化而失活,阻断胰岛素信号级联反应的下传,是影响胰岛素信号转导的关键的负调控因子。我们设想能否通过抑制肝脏PTP-1B表达而增加IRS-2的表达及酪氨酸磷酸化,从而达到改善胰岛素抵抗的目的。
     本实验以中医“酸入肝”、“酸胜甘”为理论指导,通过动物实验,利用分子生物学手段,以肝脏为靶器官,对酸性活性成分熊果酸改善胰岛素抵抗的作用及机理进行深入研究,希望能够进一步印证传统中医“酸胜甘”理论对防治胰岛素抵抗与糖尿病的指导作用,并为糖尿病的防治和药物研发提供实验依据。
     第一部分高脂饮食诱导胰岛素抵抗大鼠模型
     目的:建立高脂饮食诱导的肥胖胰岛素抵抗大鼠模型。
     方法:8周龄雄性Wistar大鼠60只,体重180~200g,随机分为正常饮食组(12只)和高脂饮食组(48只)。正常饮食组饲以基础饲料(脂肪10%,碳水化合物67%,蛋白23%),高脂饮食组饲以高脂饲料:基础饲料(78.9g)基础上加猪油10g,胆固醇1g,蛋黄粉10g,胆盐0.1g(脂肪46%,碳水化合物40%,蛋白14%)。实验前后称取体重、检测空腹血糖(FBG)、血清总胆固醇(TC)、甘油三酯(TG)、高密度脂蛋白胆固醇(HDL-C)、低密度脂蛋白胆固醇(LDL-C)水平;酶联免疫吸附检测法(ELISA)测定空腹血清胰岛素(FINS);通过葡萄糖耐量试验、胰岛素耐量试验判断对糖代谢的调节功能;用胰岛素敏感指数(ISI)和胰岛素抵抗指数(HOMA-IR)来评价胰岛素敏感性。
     结果:与正常饮食组相比,高脂饮食组大鼠血浆FBG轻度升高,而体重、血脂(TC、TG、LDL-C)、FINS水平都明显升高;出现糖耐量受损和胰岛素耐量异常,呈胰岛素敏感性下降状态。
     结论:9周高脂饮食饲养成功建立肥胖胰岛素抵抗大鼠模型,该模型与人类肥胖所致的胰岛素抵抗表现特征相似,是研究肥胖胰岛素抵抗的经济实用的实验动物模型。
     第二部分熊果酸对胰岛素抵抗大鼠糖、脂代谢及FFA、TNF-α的影响
     目的:观察熊果酸对胰岛素抵抗大鼠糖、脂代谢及血清中FFA、TNF-α的影响。
     方法:60只大鼠随机分为5组,即正常对照组(正常饲料+PBS溶液灌胃),模型对照组(高脂饮食+PBS溶液灌胃),二甲双胍组(高脂饮食+二甲双胍200mg/kg·d灌胃)和熊果酸高、低剂量组(高脂饮食+熊果酸300mg/kg·d、150mg/kg·d灌胃),每组12只。分4周、8周两个时间点观察各组FBG、FINS、血脂、体重、肝重、腹腔脂肪重量,葡萄糖耐量、胰岛素耐量、肝糖原含量及血清FFA、TNF-α变化;计算肝脏指数(LI)、腹脂指数(AI)、胰岛素敏感指数(ISI)和胰岛素抵抗指数(HOMA-IR);观察各组肝组织(HE染色)病理变化。
     结果:熊果酸和二甲双胍治疗能够不同程度降低胰岛素抵抗大鼠血清FINS、TC、TG、LDL-C和FFA、TNF-α水平;降低体重、肝脏指数(LI)和腹脂指数(AI),减少腹腔脂肪堆积:改善葡萄糖耐量、胰岛素耐量,增加肝糖原含量,升高胰岛素敏感性指数(ISI)和降低胰岛素抵抗指数(HOMA-IR)。与模型对照组比较差异有统计学意义(P<0.05或P<0.01)。熊果酸高、低剂量组间无明显差异(P>0.05)。
     结论:熊果酸能够降低体重,调节糖、脂代谢,降低血清中FFA、TNF-α含量,改善胰岛素抵抗。
     第三部分熊果酸对胰岛素抵抗大鼠肝脏PTP-1B、IRS-2表达的影响
     目的:观察熊果酸对胰岛素抵抗大鼠肝脏中PTP-1B、IRS-2表达变化的影响,探讨PTP-1B、IRS-2在胰岛素抵抗发生中的作用。
     方法:60只大鼠随机分为正常对照组,模型对照组,二甲双胍组和熊果酸高、低剂量组,每组12只(方法同第二部分)。采用实时荧光定量PCR法观察各组大鼠肝组织内PTP-1B、IRS-2mRNA的表达情况,并用相对定量法计算表达量。采用蛋白免疫印迹法(Western Blot)检测各组肝组织内PTP-1B、IRS-2蛋白的表达及IRS-2酪氨酸磷酸化情况。
     结果:肝组织实时荧光定量PCR显示模型对照组的PTP-1BmRNA表达均明显高于正常对照组,IRS-2mRNA表达均明显低于正常对照组,而经过高、低剂量熊果酸和二甲双胍干预后,PTP-1BmRNA的表达减少,IRS-2mRNA表达增加,与模型对照组比较差异有统计学意义(P<0.05或P<0.01)。蛋白印迹结果显示PTP-1B蛋白表达减少,IRS-2蛋白增加,IRS-2酪氨酸磷酸化增强。
     结论:胰岛素抵抗大鼠肝脏PTP-1B表达升高,IRS-2的表达下降,熊果酸和二甲双胍均可抑制肝内PTP-1B表达,从而促进IRS-2表达增多及酪氨酸磷酸化增强,可能是熊果酸改善胰岛素抵抗的分子机制之一。
Insulin resistance (IR) is a state in which a given concentration of insulin produces a less-than-expected biological effect. It is a common risk factor for a variety of metabolic diseases and it often exists in the early stage of these diseases. So the treatment of insulin resistanceit is very important for the prevention and treatment of metabolic diseases, espec-ially diabetes.
     Obesity (mainly abdominal obesity) was the important risk factor resulting in insulin resistance. Obesity can lead to insulin resistance through endocrine, adipocytokines, infla-ammatory response and intrinsic cell signaling pathways. It is now recognized that free fatty acids (FFA) decomposed by the fat and adipocytokines are often involved in insulin resistance mediated by obesity. These factors can affect the sugar, fat metabolism through different mechanisms, and there are complex linkages among the various factors. Among them, free fatty acid (FFA) and tumor necrosis factor-a (TNF-a) are closely related to insu-lin resistance. TNF-a can promote fat decomposition and FFA concentration. By inhibiting lipoprotein lipase. Increased FFA levels can increase the insulin resistance and can also cause hyperinsulinemia. The liver is the main target organ for insulin. In the metabolic effects of insulin, the main function of liver is in the promotion of liver glycogen synthesis and inhibiting glycogen output. When the liver insulin resistance occurs, the liver glycogen synthesis shoud be reduced and gluconeogenesis shoud be increased, resulting in hypergly-cemia. The insulin receptor substrate-2 (IRS-2) branch signal of Insulin signaling cascade is closely related to insulin sensitivity of liver cells. IRS-2/PI3-K signal pathway is the major signal transduction pathways of insulin playing a physiological effect in the liver. Reduction of insulin receptor substrate-2 (IRS-2) expressions in gene and protein and phosphorylation disorder will affect its the effective signa transmission of its downstream PI3K/Akt pathway, which can cause insulin resistance. At present, a number of factors can be found to lead to liver insulin resistance by affecting the IRS-2 signal transduction. Protein tyrosine phosphatase-1B (PTP-1B) is a major member of the protein tyrosine phosphatase (PTP) family. It could make the tyrosine residues of InsR, IRS and other signaling proteins to be dephosphorylated, and block insulin signaling cascade downstream. PTP-1B is a negative regulator of insulin signaling. So it is supposed that whether we can achieve the purpose of improving insulin resistance by inhibiting PTP-1B expression so as to increase the expression and phosphorylation of IRS-2.
     This study was carried out under the guidance of Chinese medicine theory of "sour restrains sweet" and "sour enters liver". This study attempts to conduct in-depth study about ursolic acid on the role and mechanism of insulin resistance through animal experiments, and molecular biology tools. The liver will be as a target organ in the study. Hopes to prove the guiding role of traditional Chinese medicine theory of "sour restrains sweet" to the prevention and treatment of insulin resistance and diabetes and provide experimental basis for diabetes prevention and drug discovery.
     Part I Rats of Insulin Resistance Model Induced by High-Fat-Fed
     Objective:To establish insulin resistance obesity rats model induced by high-fat-fed
     Methods:60 eight-week-old male Wistar rats, body weight 180-200g, were randomly divided into two groups:normal diet group(n=12) and high-fat diet group(n=48). Normal diet group rats were fed with basic feed(fat10%, carbohydrate67%, protein23%)and high-fat diet group rats were fed with high-fat feed(fat46%, carbohydrate40%, protein14%): basic diet(78.9g) plus lard 10g, cholesterol 1g, egg yolk powder 10g, bile salt 0.1g. Before and after the experiment, the body weight and fasting blood glucose, TC, TG, HDL-C and LDL-C levels were tested; serum insulin levels determined by enzyme-linked immuno-sorbent assay (ELISA); the regulatory function of glucose metabolism determined by the glucose tolerance test and insulin tolerance test; insulin sensitivity evaluated by the insulin sensitivity index (ISI) and insulin resistance index (HOMA-IR).
     Results:Compared with the normal diet group rats, the fasting blood glucose of high-fat diet group rats is not obvious or mildly elevated, while the body weight, blood lipids (TC, TG, LDL-C), fasting plasma insulin levels were significantly higher. The high-fat diet group rats appear impaired glucose tolerance and insulin tolerance and decline in insulin sensitivity.
     Conclusion:Insulin resistance obesity rats model can be successfully established by 9-week high-fat diet feeding. The model's characteristics is similar to human insulin resistance caused by obesity and we think it is a economic and practical animal model for the study of obesity and insulin resistance.
     PartⅡEffects of ursolic acid on glucose, lipid metabolism and FFA, TNF-a levels in insulin resistance rats
     Objective:To observe the effects of ursolic acid on glucose, lipid metabolism and free fatty acid (FFA), tumor necrosis factor-a (TNF-a) levels in insulin resistance rats.
     Methods:60 rats were randomly divided into five groups:normal group (normal diet+ intragastric administration with PBS solution), model group (high-fat diet+intragastric administration with PBS solution), metformin group (high-fat diet+intragastric administration with metformin,200mg/kg·d), ursolic acid high-dose group(high-fat diet+ ursolic intragastric administration with ursolic acid,300mg/kg·d), and ursolic acid low-dose group (high-fat diet+ursolic intragastric administration with ursolic acid, 150mg/kg-d). Each group is 12. At point 4 weeks and point 8 weeks after administration of each group, to observe the changes of fasting blood glucose (FBG), fasting serum insulin (FINS), blood lipids, body weight, liver weight, abdominal adipose weight, glucose tolerance, insulin tolerance, liver glycogen content and serum free fatty acids (FFA), tumor necrosis factor-a (TNF-a); to calculate the liver index(LI), abdominal adipose index(AI), insulin sensitivity index (ISI) and insulin resistance index (HOMA-IR); to observe the liver tissue pathological changes by light microscopy (HE staining).
     Results:Ursolic acid and metformin treatment can reduce serum FINS, TC, TG, LDL-C and FFA, TNF-a levels in insulin resistance rats, also they can lower body weight, liver index and abdominal adipose index; reduce intra-abdominal fat accumulation; improve glucose tolerance, insulin tolerance; add liver glycogen content; increase insulin sensitivity index (ISI) and lower insulin resistance index (HOMA-IR). Compared with the model control group, There were significant difference between treatment group and model control group (P<0.05 or P<0.01). There were no significant difference between ursolic acid high-dose group and low-dose group.
     Conclusion:Ursolic acid can reduce body weight, regulate glucose and lipid metabolism, reduce the levels of FFA, TNF-a in insulin resistance rats and improve insulin resistance.
     PartⅢEffects of ursolic acid on expressions of PTP-1B and IRS-2 in the liver of insulin resistance rats.
     Objective:To observe the effects of ursolic acid on expressions of PTP-1B and IRS-2 in the liver of insulin resistance rats and explore the role of PTP-1B and IRS-2 in the process of insulin resistance.
     Methods:60 rats were randomly divided into five groups:normal group, model group, metformin group, ursolic acid high-dose group, and ursolic acid low-dose group. Each group is 12(administration same to PartⅡ). The mRNA expressions of PTP-1B and IRS-2 in liver were detected by real-time fluorescent quantitative RT-PCR. Relative mRNA quantification methods was used for real-time PCR data analysis. The protein expressions of PTP-1B, IRS-2 and IRS-2 tyrosine phosphorylation in liver were detected by Western blot.
     Results:The content of liver PTP-1BmRNA expression of model control group detected by real-time fluorescent quantitative RT-PCR is higher than that of the normal control group, while IRS-2mRNA is lower than that of the normal control group. After the therapy of ursolic acid (high-dose and low-dose) and metformin, PTP-1BmRNA levels were decreased and IRS-2mRNA levels were increased. There were significant difference between treatment group and model control group (P<0.05 or P<0.01). Similar protein results were detected in Western blot assay. Western blot results showed that PTP-1B protein expression was decreased; IRS-2 protein expression and tyrosine phosphorylation was increased.
     Conclusion:PTP-1B expression was increased and IRS-2 expression was decreased in liver of insulin resistance rats. Ursolic acid and metformin can inhibit PTP-1B expression in the liver, thereby contributing to increased IRS-2 expression and IRS-2 tyrosine phosphorylation. That may be one of the molecular mechanisms of ursolic acid improving insulin resistance.
引文
[1]Reaven GM. Role of insulin resistance in human disease. Diabetes,1988,37(12):1595-1607.
    [2]Stem MP. Diabetes and cardiovascular disease. The "Common soil" hypothesis. Diabetes,1995, 44(4):369-374.
    [3]Yang W, Lu J, Weng J, et al. Prevalence of Diabetes among Men and Women in China. N Engl J Med,2010,362 (12):1090-101.
    [4]Sowers JR, Frohlich ED. Insulin and insulin resistance:impact on blood pressure and cardiovascular disease. Med Clin North Am,2004,88 (1):63-82.
    [5]邹大进.超重和肥胖—代谢综合征的主要病因.国外医学内分泌学分册,2005,25(3):145-147.
    [6]Saltiel AR, Kahn CR. Insulin signaling and the regulation of glucose and lipid metabolism. Nature, 2001,414 (6865):799-806.
    [7]Shulman GI. Cellular mechanisms of insulin resistance. J Chin Invest,2000,106:171-176.
    [8]臧丽,母义明.胰岛素抵抗机制的新认识.国际内分泌代谢杂志,2009,29(3):150-153.
    [9]Withers DJ, White M. Perspect ive:The insulin signaling system-a common link in the pathogenesis of type 2 diabetes. Endocrinology,2000,141 (6):1917-1921.
    [10]Ide T, Shim ano H, Yahagi N, et al. SREBPs suppress IRS-2-mediated insulin signalling in the liver. Nat Cell Biol,2004,6:351-357.
    [11]Taniguch CM, Ueki K, Kahnl CR. Complementary roles of IRS-1 and IRS-2 in the hepatic regulation of metabolism. J Clin Invest,2005,115:718-727.
    [12]Gum RJ, Gaede LL, Koterski SL, et al. Reduction of protein tyrosine phosphataselB increase insulin-dependent signaling in ob/ob mice. Diabetes,2003,52(1):21-28.
    [13]全山丛,邬旻,朱德增等.酸克糖颗粒的质量标准研究.药学服务与研究,2004,4(11):36-38.
    [1]邹大进.超重和肥胖—代谢综合征的主要病因.国外医学内分泌学分册,2005,25(3):145-147.
    [2]Storlien LH, Higgins JA, Thomas TC, et al. Diet composition and insulin action in animal models.Br J Nutr,2000,83(Suppl 1):S85-S90.
    [3]薛耀明,罗仁,朱波等.六味地黄丸对OLETF大鼠胰腺凋亡相关基因bcl-2和Bax表达的影响.中西医结合学报,2005,3(6),455-458.
    [4]李光伟,潘孝仁,Stephen Lillioja等.检测人群胰岛素敏感性的一项新指数.中华内科杂志,1993,32(10):656-660.
    [5]Sowers JR, Frohlich ED. Insulin and insulin resistance:impact on blood pressure and cardiovascular disease. Med Clin North Am,2004,88(1):63-82.
    [6]Schinner S, Scherbaum WA, Bornstein SR, et al. Molecular mechanisms of insulin resistance. Diabet Med,2005,22(6):674-682.
    [7]Yoshii H, Lam TKT, Gupta N, et al. Portal delivery of free fatty acids compared to peripheral delivery has no greater effect on hepatic glucose production but results in greater peripheral hyperinsulinemia. Diabetes,2000,49(Suppl 1):A22.
    [8]Chen S, Wiesenthal SR, Lam L, et al. Oleate-induced decrease in hepatocyte insulin binding is mediated by protein kinase C (PKC) activation. Diabetes,1999,48(Suppl 1):A225.
    [9]Mohamed V, Goodrick S, Rawesh A. Subcutaneous adipose tissue releases interleukin-6, but not tumor necrosis factor-a in vivo. J Clin Endocrinol Metab,1997,82(12):4196-4200.
    [10]杨凌辉,邹大进.肥胖致胰岛素抵抗的机制.中华内分泌代谢杂志,2002,18(3):244-246.
    [11]Ascaso JF, Romero P, Real JT, et al. Abdominal obesity, insulin resistance, and metabolic syndrome in a southern European population. Eur J Intern Med,2003,14(2):101-106.
    [12]Maffeis C, Corciulo N, Livieri C, et al. Waist circumference as a predictor of cardiovascular and metabolic risk factors in obese girls. Eur J Clin Nutr,2003,57(4):566-572.
    [13]Janssen I, Katzmarzyk PT, Ross R. Body mass index, waist circumference, and health risk: evidence in support of current National Institutes of Health guideline. Arch Intern Med,2002,162(18): 2074-2079.
    [14]项坤三,贾伟平,路俊茜,等.中国上海地区40岁以上成人中肥胖与代谢综合征的关系.中华内科杂志,2000,39(4):224-228.
    [15]邹大进,吴鸿.腹型肥胖致胰岛素抵抗的机制及治疗展望.中国糖尿病杂志,2006,14(4):309-312.
    [16]邹大进,吴鸿.肥胖症及脂代谢紊乱的诊断.国际内分泌代谢杂志,2006,26(1):1-4,14.
    [17]Sharma AM, Chetty VT. Obesity, hypertension and insulin resistance. Acta Diabetologica,2005, 42(suppl 1):s3-8.
    [18]王树海,王文健.胰岛素抵抗的发病机制及中西医结合防治策略.中西医结合学报,2004,2(1):14-16.
    [19]姜萍.代谢综合征及其腹部肥胖的中医病机探讨.中西医结合心脑血管病杂志.2005,12(3),1124-1125.
    [20]崔博乐,李怡,张军等.论肥胖与代谢综合征的中医学认识.北京中医药,2009,28(1),32-33.
    [21]Defronzo RA, Tobin JD, Andres R. Glucose clamp technique:a method for quantifying insulin secretion and resistance. Am J Physiol,1979,237(3):E214-223.
    [22]Matthews OR, Hosker JP, Rudenski AS, et al. Homeostasis model assessment:insulin resistance and beta cell function from fasting plasma glucose and insulin concentrations in man. Diabetologia, 1985,28:412-419.
    [23]Haffner SM, Kennedy E, Gonzalez C, et al. A prospective analysis of the HOMA model. The Mexico City Diabetes Study. Diabetes Care.1996,19:1138-1141.
    [1]周亚兵,罗若茵,赵莉等.酸味中药复方对实验性2型糖尿病大鼠胰岛素抵抗的影响.中国中西医结合杂志,2005,25(5):441-444.
    [2]全山丛,邬旻,朱德增等.酸克糖颗粒的质量标准研究.药学服务与研究,2004,4(11):36-38.
    [3]李光伟,潘孝仁,Stephen Lillioja等.检测人群胰岛素敏感性的一项新指数.中华内科杂志,1993,32(10):656-660.
    [4]Grundy SM, Brewer HB, Cleeman JI, et al. Definidon of metabolic syndrome:report of the National Heart, Lung, and Blood Institute/American Heart Associmion conference on scientific issues related to definition Circulation,2004,109(3):433-438.
    [5]Cruciani-Guglielmacci C, Vincent-Lamon M, Rouch C, et al. Early changes in insulin secretion and action induced by high-fat diet are related to a decreased sympathetic tone. Am J Physiol Endocrinol Metab,2005,288:148-154.
    [6]Reaven GM. The metabolic syndrome:is this diagnosis necessary? Am J Clin Nutr,2006,83: 1237-1247.
    [7]Stem MP. Diabetes and cardiovascular disease. The "Common soil" hypothesis. Diabetes,1995, 44(4):369-374.
    [8]刘毅,王文健,陈伟华,等.黄芪多糖对3T3-L1前脂肪细胞增殖和分化的影响.中西医结合学报,2007,5(4):421-426.
    [9]徐远.中医治疗代谢综合征的思路与方法.中医杂志,2003,44(4):301.
    [10]吴深涛.对胰岛素抵抗宜用益肾化瘀、疏利少阳法.中医杂志,2001,42(6):332.
    [11]刘毅,王文健.王文健中西医结合防治代谢综合征的经验.上海中医药杂志,2008,42(8):7-9.
    [12]黄冬梅,陆付耳,黄光英.补肾通脉方对胰岛素抵抗大鼠胰岛素信号转导的影响.中国中西医结合杂志,2003,23(9):684.
    [13]朱德增,周松华,谷丽敏.“酸胜甘”法治疗糖尿病.中医杂志,1997,38(12):725-726.
    [14]周亚兵,朱德增,罗若茵等.酸味中药复方对2型糖尿病大鼠糖代谢的调节作用.成都中医药大学学报,2004,27(1):13-16.
    [15]朱德增,魏晓,赵莉,等.酸味中药复方对2型糖尿病大鼠细胞凋亡及相关基因表达的影响.中药新药与临床药理,2006,17(1):21-24.
    [16]朱德增,陶凯忠,张传森.酸味中药复方对糖尿病大鼠动脉硬化的作用.浙江中医学院学报,2002,26(2):38-40.
    [17]孟艳秋,陈瑜,王趱,等.熊果酸的研究进展.中国新药杂志,2007,1(16):25-28.
    [18]熊斌,雷志勇,陈虹.熊果酸药理学的研究进展.国外医学药学分册,2004,31(3):133-136.
    [19]崔岚,祝德秋,安富荣.熊果酸抗肿瘤机制研究进展.中国中医药信息杂志,2005,12(10):100-102.
    [20]舒晓燕,侯大斌,阮期平.山茱萸的研究进展.中国药业,2007,10(16):60-62.
    [21]W.R. Cunha, GM. Arantes, D.S. Ferreira, et al. Hypoglicemic effect of Leandra lacunosa in normal and alloxan-induced diabetic rats. Fitoterapia,79(2008):356-360.
    [22]Zhang W, Hong D, Zhou Y, et al. Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B, enhancing insulin receptor phosphorylation and stimulating glucose uptake. Biochimica et Biophysica Acta-General Subjects,2006,1760(10):1505-1512.
    [23]Chen CC, Hsu CY, Chen CY, et al. Fructus Corni suppresses hepatic gluconeogenesis related gene transcription, enhances glucose responsiveness of pancreatic beta-cells, and prevents toxin induced beta-cell death. Ethnopharmacol, May 2008:117(3):483-490.
    [24]Jang SM, Yee ST, Choi J, et al. Ursolic acid enhances the cellular immune system and pancreatic beta-cell function in streptozotocin-induced diabetic mice fed a high-fat diet. Int Immunopharmacol, Jan 2009,9(1):113-119.
    [25]Jung SH, Ha YJ, Shim EK, et al. Insulin-mimetic and insulin-sensitizing activities of a pentacyclic triterpenoid insulin receptor activator. Biochem J, Apr 2007,403 (2):243-250.
    [26]Stevens RJ, Stratton IM, Holman RR, et al. UKPDS 58-modeling glucose exposure as a risk factor for photocoagulation in type 2 diabetes. J Diabetes Complications,2002,16(6):371-376.
    [27]陆在英,钟南山.内科学[M].7版.北京:人民卫生出版社,2008:783.
    [28]Johansen K. Efficacy of metformin in the treatment of NIDDM. Diabetes Care,1999,22:33-37.
    [29]任婷婷,郭晓蕙,徐国恒.二甲双胍改善脂质代谢及胰岛素敏感性的机制.临床药物治疗杂志,2007,5(4):11-13.
    [30]Boden G. Role of fatty acids in the pathogenesis of insulin resistance and NIDDM. Diabetes,1997, 46(1):3-10.
    [31]李小英,黄韵.代谢综合征发病机制研究进展.中国实用内科杂志,2008,28(11):915-919.
    [32]Howey DC, Bowsher RR, Brunelle RL, et al. [Lys(B28), Pro(B29)]-human insulin. A rapidly absorbed analogue of human insulin. Diabetes,1994,43(3):396-402.
    [33]Dresner A, Laurent D, Marcucci M, et al. Efects of free fatty acids on glucose transport and IRS-1 associated phosphatidylinositol 3-kinase activity. J Clin Invest,1999,103(2):253.
    [34]Tanti JF, Gual P, Gremeaux T, et al. Alteration in insulin action:Role of IRS-1 serine phosphorylation in the retroregulation of insulin signalling. Am Endocrinol(Paris),2004,65(1):43-48.
    [35]Boden G, Shulman G I. Free fatty acids in obesity and type 2 diabetes:defining their role in the development of insulin resistance and β-cell dysfunction. Eur J Clin Invest,2002,32(Suppl 3):14-23.
    [36]刘长锁,申竹芳.游离脂肪酸与胰岛素抵抗.中国药理学通报,2005,21(2):145-149.
    [37]杨生,岳桂英.2型糖尿病合并脂肪肝患者血清肿瘤坏死因子-α水平增高与胰岛素抵抗指数相关分析.世界华人消化杂志,2004,12(6):1485-1487.
    [38]周婷婷,秦波.脂肪细胞因子与非酒精性脂肪肝和胰岛素抵抗关系的研究进展.世界华人消 化杂志,2009,17(29):3014-3018.
    [39]Miura A, Ishizuka T, Kanoh Y, et al. Effect of tumor necrosis factor-alpha on insulin signal transduction in rat adipocvtes:relation to PKCbeta and zeta translocation. Biochim Biophys Acta 1999, 1449:227-238.
    [40]Brindley DN, Wang CN, Mei J, et al. Tumor necrosis factor-alpha and ceramides in insulin resistance. Lipids,1999,34 Suppl:S85-S88.
    [41]曲伸,邹大进.SOCS-3在瘦素抵抗及肥胖发病中的作用.第二军医大学学报,2003,24(9):1026-1028.
    [42]Steppan CM, Bailey ST, Bhat S, et al. The hormone resistin links obesity to diabetes. Nature,2001, 409(6818):307-312.
    [43]Dyck DJ. Adipokines as regulators of muscle metabolism and insulin sensitivity. Appl Physiol Nutr Metab,2009,34(3):396-402.
    [1]王文健.代谢综合征的中西医结合防治.中西医结合学报,2004,2(5):390-395.
    [2]王树海,王文健.胰岛素抵抗的发病机制及中西医结合防治策略.中西医结合学报,2004,2(1):14-16.
    [3]Goldstein BJ. Protein-tyrosine phosphatases and the regulation of insulin action. In:LeRoith D, Olefsky JM, Taylor SI, eds. Diabetes mellitus:a fundamental and clinical text.2nd ed. Philadelphia: Lippincott,2000,206-217.
    [4]Pessin J E, Saltiel A R. Signaling pathways in insulin action:molecular targets of insulin resistance. J Clin Invest,2000,106:165-169.
    [5]Taniguchi CM, Emanuelli B, Kahn CR, et al. Critical nodes in signailing pathways:Insights into insulin action. Nat Rev Mol Cell Biol,2006, (7):85-96.
    [6]Wellen KE, Hotamisligil GS. Inflammation, stress, and diabetes. J Clin Invest,2005,115(5): 1111-1119.
    [7]Cohen P, Alessi DR, Cross DA. PDK1, one of the missing links in insulin signal transduction. Febs Lett,1997, (410):3-10.
    [8]Gual P, Le Marchand-Brustel Y, Tanti J F. Positive and negative regulation of insulin signaling through IRS-1 phosphorylation. Biochimie,2005,87(1):99-109.
    [9]Vinciguerra M, Foti M. PTEN and SHIP2 phosphoinositide phosphatases as negative regulators of insulin signalling. Arch Physiol Biochem,2006,112(2):89-104.
    [10]Scapin G, Patel SB, Becker JW, et al. The structural basis for the selectivity of benzotriazole inhibitors of PTP1B. Biochemisty,2003,42(39):11451-11459.
    [11]Zhang Z Y. Protein tyrosine phosphatases:structure and function, substrate specificity, and inhibitor development. Annu Rev Pharmacol Toxicol,2002,42:209-234.
    [12]Tonks N K. PTP1 B:from the sidelines to the front lines. FEBS Lett,2003,546:140-148.
    [13]Ramachandran C, Kennedy B P. Protein tyrosine phosphatase1B:a novel target for type 2 diabetes and obesity. Curr Top Med Chem,2003,3:749-757.
    [14]ZhangSQ, Yang W, Kontaridis MI, et al.shp2 Regnlates Src Family Kinase Activity and Ras/Erk Activation by Controlling Csk Recruitment. Molecular Cell,2004,13:341-355.
    [15]Kennedy BP, Ramachandran C. Protein tyrosine phosphatase-1B in diabetes. Biochem Pharmacol, 2000,60(7):877-883.
    [16]Andre S, Lucia DJ, Se-Yeon K, et al. Development of an automated protein-tyrosine phosphatase 1B inhibition assay and the screening of putative insulin-enhancing vanadium(Ⅳ) and zinc(Ⅱ) complexes. Biotechnol Lett.2006,27(4):221-225.
    [17]Ramachandran C, Kennedy B P. Protein tyrosine phosphataselB:a novel target for type 2 diabetes and obesity. Curr Top Med Chem,2003,3:749-757.
    [18]Xie L, Lee SY, Andersen JN, et al. Cellular effects of small molecule PTP-1B inhibitors on insulin signaling. Biochemistry,2003,42:12792-12804.
    [19]Gum RJ, Gaede LL, Koterski SL, et al. Reduction of proteintyrosine phosphatase1B increase sinsulin-dependent signaling in ob/ob mice. Diabetes,2003,52(1):21-28.
    [20]Zobolotny JM, Haj FG, Kim YB, et al. Transgenic overexpression of protein-tyrosine phosphatase 1B in muscle causes isulin resistance, but overexpression with leukocyte antigen-related phosphatase does not additively impair insulin action. J Biol Chem,2004,279(23):24844-24851.
    [21]Clampit JE, Meuth JL, Smith HT, et al. Reduction of protein-tyrosine phosphatase 1B incrcases insulin signaling in FAO hepatoma cells. Biocbem Biophys Res Commun,2003,300(2):261-267.
    [22]Hirata AE, Alvarez-Rojas F, Carvalheira JB, et al. Modulation of IR/PTP-1B interaction and downstreamsignaling in insulin sensitive tissues of MSG-rats. Life Sci,2003,8:1369-1381.
    [23]Gum RJ, Gaede LL, Koterski SL. Reduction of protein tyrosine phosphatase 1B increases insulin-dependent signaling in ob/ob mice. Diabetes,2003,52(1):21-28.
    [24]Pessin JE, Saltiel AR. Signaling pathways in insulin action:molecular targets of insulin resistance. J Clin Invest,2000,106(1):165-169.
    [25]叶华.2型糖尿病患者及其一级亲属和非糖尿病者骨骼肌的胰岛素信号传导.中国糖尿病杂志,2003,11(2):151-152.
    [26]Valverde AM, Burks DJ, Fabregat I, et al. Molecular mechanisms of insulinresistance in IRS-2 deficient hepatocytes. Diabetes,2003,9:2239-2248.
    [27]张晶,张木勋,袁刚,等.罗格列酮对实验性2型糖尿病大鼠肝脏组织IRS-2表达的调节.中 国现代医学杂志,2004,14(14):9-13.
    [28]Yuan L, Ziegler R, Hamann A. Metformin modulates insulin post-receptor signaling transduction in chronically insulin-treated HepG2 cells. Acta Pharmacol Sin,2003,24(1):55-60.
    [29]Ide T, Shim ano H, Yahagi N, et al. SREBPs suppress IRS-2-mediated insulin signalling in the liver. Nat Cell Biol,2004,6:351-357.
    [30]Youn-Chul Kim.In vitro protein Tyrosphatase 1B Inhibitory Phenols from the Seeds of Psoralea corylifolia. Planta Med,2005,71:87-89.
    [31]Yong Wu, Jing Ping, Ou Yang, et al. Hypoglycemic effect of Astragalus polysaccharide and its effect on PTP1B. Acta Pharmacol Sin,2005,26(3):345-352.
    [32]陈广,陆付耳,王增四,等.小檗碱改善2型糖尿病大鼠胰岛素抵抗与PI-3K、GLUT4蛋白相关性的研究.中国药理学通报,2008,24(8):1007-1010.
    [33]Sivan E, Homko C J, Whittaker P G, et al. Free fatty acids and insulin resistance during pregnancy. The Journal of clinical endocrinology and metabolism 1998,83(7):2338-2342.
    [34]Kim SP, Ellmerer M, Van Citters GW, et al. Primacy of hepatic insulin resistance in the development of the metabolic syndrome induced by an isocaloric moderate-fat diet in the dog. Diabetes, 2003,52(10):2453-2460.
    [1]Zhang W, Hong D, Zhou Y, et al. Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B, enhancing insulin receptor phosphorylation and stimulating glucose uptake. Biochimica et Biophysica Acta-General Subjects,2006,1760 (10):1505-1512.
    [2]Chen CC, Hsu CY, Chen CY, et al. Fructus Corni suppresses hepatic gluconeogenesis related gene transcription, enhances glucose responsiveness of pancreatic beta-cells, and prevents toxin induced beta-cell death. Ethnopharmacol, May 2008:117(3):483-490.
    [3]Jang SM, Yee ST, Choi J, et al. Ursolic acid enhances the cellular immune system and pancreatic beta-cell function in streptozotocin-induced diabetic mice fed a high-fat diet. Int Immunopharmacol, Jan 2009,9(1):113-119.
    [4]Jung SH, Ha YJ, Shim EK, et al. Insulin-mimetic and insulin-sensitizing activities of a pentacyclic triterpenoid insulin receptor activator. Biochem J, Apr 2007,403(2):243-50.
    [5]殷峻,胡仁明,唐金凤,等.小檗碱的体外降糖作用.上海第二医科大学学报,2001,21(5):425-427.
    [6]殷峻,陈名道,唐金凤,等.小檗碱对实验大鼠糖脂代谢的影响.中华糖尿病杂志,2004,12(3):215-218.
    [7]殷峻,胡仁明,陈名道,等.二甲双胍、曲格列酮和小檗碱对HepG2细胞耗糖作用比较.中华内分泌代谢杂志,2002,18(6):488-489.
    [8]Yin J, Hu RM, Chen MD, et al. Effects of berberine on glucose metabolism in vitro. Metabolism, 2002,51(11):1439-1443.
    [9]周丽斌,杨颖,尚文斌,等.小檗碱改善高脂饮食大鼠的胰岛素抵抗.放射免疫学杂志,2005,18(3),198-200.
    [10]陆付耳,冷三华,屠庆年,等.黄连解毒汤与黄连素对2型糖尿病大鼠葡萄糖和脂质代谢影响的比较研究.华中科技大学学报(医学版),2002,31(6):662-665.
    [11]欧阳礼枝,陆付耳,刘文军,等.小檗碱对胰岛素抵抗大鼠肝脏葡萄糖激酶及其调节蛋白的影响.世界华人消化杂志,2007,15(8):885-889.
    [12]高志强,陆付耳,冷三华,等.小檗碱对高果糖饲养诱导胰岛素抵抗大鼠肝组织HNF-4α表达的影响.世界华人消化杂志,2008,16(15):1681-1684.
    [13]陈广’,陆付耳,王增四,等.小檗碱改善2型糖尿病大鼠胰岛素抵抗与PI-3K、GLUT4蛋白相关性的研究.中国药理学通报,2008,24(8):1007-1010.
    [14]陈其明,谢明智.小檗碱对正常小鼠血糖调节的影响.药学学报,1987,22(3):161.
    [15]倪艳霞.黄连素治疗Ⅱ型糖尿病60例疗效观察及实验研究.中西医结合杂志,1988,8(12):711-713.
    [16]周云枫,吴勇,欧阳静萍.黄芪多糖对2型糖尿病大鼠肾组织胰岛素信号转导的影响.武汉大学学报:医学版,2005,26(2):139-142.
    [17]毛先睛,欧阳静萍.黄芪多糖对饮食诱导小鼠肝脏胰岛素抵抗的预防作用.中国病理生理杂志,2007,23(11):2222-2225.
    [18]邹丰,欧阳静萍,毛先晴.黄芪多糖对遗传性糖尿病小鼠肝糖原含量的影响.微循环学杂志,2007,17(1):12-14.
    [19]刘敏,欧阳.静萍,吴珂,等.黄芪多糖对KKAy小鼠骨骼肌蛋白激酶B丝氨酸磷酸化的影响.武汉大学学报:医学版,2006,27(2):135-139.
    [20]毛先睛,欧阳静萍,吴勇.中药黄芪多糖对糖尿病大鼠心肌GLUT4表达的影响.武汉大学学报:医学版,2005,26(4):457-459.
    [21]吴德红,王凤杰,邓娟,等.黄芪多2型糖尿病大鼠肝脏AMPK苏氨酸磷酸化的影响.微循环学杂志,2009,19(3):1-3.
    [22]王树海,王文健,汪雪峰,等.黄芪多糖和小檗碱对3T3-L1脂肪细胞糖代谢及细胞分化的影响.中国中西医结合杂志,2004,24(10):926-928.
    [23]刘毅,王文健,陈伟华,等.黄芪多糖对3T3-L1前脂肪细胞增殖和分化的影响.中西医结合学报.2007:5(4):421-426.
    [24]罗兰,殷惠军,张颖,等.人参果总皂苷对高脂饲养大鼠胰岛素敏感指数的影响.中西医结合学报.2005:3(6):463-465.
    [25]Shang W, Yang Y, Jiang, B, al. Ginsenoside Rbl promotes adipogenesis in 3T3-L1 cells by enhancing PPARgamma2 and C/EBPalpha gene expression. Life Sci,2007,80(7):618-625.
    [26]尚文斌,杨颖,姜博仁,等.人参皂甙Rb1促进3T3-L1脂肪细胞分化并抑制脂解.中华内分泌代谢杂志,2007,23(3):258-263.
    [27]Zhang Z, Li X, Lv W, et al. Ginsenoside Re reduces insulin resistance through inhibition of c-Jun NH2-terminal kinase and nuclear factor-kappaB. Mol Endocrinol,2008,22(1):186-195.
    [28]尚文斌,杨颖,陈名道.人参及其主要成分抗糖尿病作用机制.国际内分泌代谢杂志.2007,27(2):115-117.
    [29]李东辉,范丽波.大黄及其提取物治疗糖尿病肾病的实验研究进展.中国中西医结合肾病杂志,2006,7(12):741-742.
    [30]朱榕峰,金华,张强,等.大黄素对3T3-L1前脂肪细胞诱导分化的作用.诊断学理论与实践,2009,8(3):276-280.
    [31]杨丽娟,于海燕,母义明,等大黄素通过激活PPARy促进HepG2细胞葡萄糖摄取.中华内分泌代谢杂志,2007,23(3):262-268.
    [32]YANG Y, SHANG W, ZHOU L, et al. Emodin with PPARgamma ligand-binding activity promotes adipocyte diferentiation and increases glucose uptake in 3T3-L1 cells. Biochem Biophys Res Commun,2007,353(2):225-230.
    [33]G2 DONG H, LU FE, GAO ZQ, et al. Effects of emodin on treating murine nonalcoholic fatty liver induced by high calofic laboratory chaw. World J Gastroenterol,2005,11(9):1339-1344.
    [34]马晓莉,汪保安,邹效漫,等.中药单体成分大黄素对胰岛p细胞N1T-1的影响.中国现代医学杂志,2008,18(7):873-875.
    [35]于健.葛根素治疗2型糖尿病患者胰岛素抵抗的临床研究.山东中医杂志,2001,20(12):727-729.
    [36]曹莉,顾振纶,茅采萍.葛根素对糖尿病小鼠胰岛素抵抗的影响.中草药,2006,37(6):901-904.
    [37]曹莉,茅彩萍,顾振纶,等.葛根素对高脂饮食大鼠胰岛素敏感性的影响.中国药理学通报,2007,23(12):1598-1601.
    [38]郑王巧,宋丽华,李海菊,等.葛根素对Ⅱ型糖尿病大鼠胰岛素血糖和血脂的影响.长治医学院学报,2009,23(2):99-101.
    [39]潘晓微,李强,钱定良.葛根素对3T3-L1细胞PPAR-γ mRNA表达的影响.放射免疫学杂志,2009,22(2):176-177.
    [40]宋春宇,毕会民.葛根素对大鼠胰岛素刺激下骨骼肌细胞膜GLUT4蛋白含量的影响.中国中药杂志,2004,29(2):172-175.
    [41]张妍,毕会民,甘佩珍.葛根素对胰岛素抵抗大鼠骨骼肌中蛋白激酶B表达的影响.中国药理学通报,2004,20(3):307-310
    [42]曹莉,茅彩萍,顾振纶.葛根素对高胰岛素环境下大鼠肝细胞胰岛素降解酶基因表达的影响.苏州大学学报(医学版),2007,27(4):531-533.
    [43]尹义存,邹大进,鲁瑾.水飞蓟宾对高脂饮食大鼠胰岛素敏感性的影响.第二军医大学报,1999,20(4):231-233.
    [44]林妮,潘竞锵,肖柳英,等.甘草对抗D-半乳糖诱导大鼠糖耐量减低的作用.中国临床康复,2006,10(7):16-18.
    [45]Soto C, Recoba R, Barron H, et al. Silymarin increases antioxidant enzymes in alloxan-induced diabetes in rat Pancreas. Comp Biochem Physiol C Toxicol Pharmacol,2003,136(3):205-212.
    [46]Soto C, Mena R, Luna J, et al. Silymarin induces recovery of pancreatic function after alloxan damage in rats. Life Sci,2004,75(18):2167-2180.
    [47]徐向进,张家庆,黄庆玲.水飞蓟素对糖尿病大鼠主动脉非酶糖化及氧化的抑制作用.第二军医大学学报,1997,18(1):59-61.
    [48]郑冬梅,陈丽,陈青,等.水飞蓟素对糖尿病大鼠周围神经病变的影响.中国糖尿病杂志, 2003,11(6):406-408.
    [1]李杰,许良中,朱伟萍,等.熊果酸与齐墩果酸体外抗Jurkat淋巴瘤细胞的研究.中国癌症杂志,1999,9(5-6):395-397.
    [2]黄镜,孙燕,陆士新,等.芦笋有效成分熊果酸诱导HL60细胞凋亡的实验研究.中国中西医结合杂志,1999,19(5):296-298.
    [3]樊明文,王茜,边专,等.熊果酸对人舌鳞癌细胞株TSCCa的抑制作用及其机制探讨.武汉大学学报(医学版),2004,25(1):1-3,37.
    [4]Li J, Guo WJ, Yang QY. Efects of ursolic acid and oleanolic acid on human colon carcinoma cell line HCT15. World J Gastroenterol,2002,8(3):493-495.
    [5]Sohn KH, Lee HY, Chung HY, et al. Anti-angiogenic activity of triterpene acids. Cancer Lett,1995, 94(2):213-218.
    [6]王杰军,陈万生.熊果酸体外抑制血管形成的研究.第二军医大学学报,2000,21(11):1071-1073.
    [7]Subbaramaiah K, Michaluart P, Sporn MB, et al. Ursolic acid inhibits cyclooxygenase-2 transcription in human mammary epithelial cells. Cancer Res,2000,60(9):2399-2404.
    [8]欧阳灿晖,朱萱,张煜和,等.熊果酸对肝纤维化大鼠肝组织TGF-β1和α-SMA表达的影响.世界华人消化杂志,2009,17(22),2237-2243.
    [9]戴颖,朱萱.熊果酸抗实验性大鼠肝纤维化作用机制的研究.江西医药,2008,43(5),414-417.
    [10]Saraswat B, Visen PKS, Dayal R, et al. Protective action of ursolic acid against chemical induced hepatotoxicity in rats. Indian J Pharmacol,1996,28(4):232-239.
    [11]Martin-Aragon S, de las Heras B, Sanchez-Reus MI, et al. Pharmacological modification of endogenous antioxidant enzymes by ursolic acid on tetrachloride-induced liver damage in rats and primary cultures of rat hepatocytes. Exp Toxicol Pathol,2001,53(2/3):199-206.
    [12]陈国宝,陈宝田.番石榴叶提取物体外抗轮状病毒的实验研究.中国医药学报,2002,17(8):502-504.
    [13]Kashiwada Y, Nagao T, Hashimoto A, et al. Anti-AIDS agents 38.Anti-HIV activity of 3-O-acyl ursolic acid derivatives. J Nat Prod,2000,63(12):1619-1622.
    [14]Chattopadhyay D, Arunachalam G, Mandal AB, et al. Antimicrobial and anti-inflammatory activity of folklore:Mallotus peltatus leaf extract. J Ethnopharmacol,2002,82(2/3):229-237.
    [15]王茜,樊明文,边专,等.熊果酸的提取及其对牙周病原菌的作用.中华口腔医学杂志,2002,37(5):388-390.
    [16]Zhang W, Hong D, Zhou Y, et al. Ursolic acid and its derivative inhibit protein tyrosine phosphatase 1B, enhancing insulin receptor phosphorylation and stimulating glucose uptake. Biochimica et Biophysica Acta. General Subjects,2006,1760 (10):1505-1512.
    [17]Chen CC, Hsu CY, Chen CY, et al. Fructus Corni suppresses hepatic gluconeogenesis related gene transcription, enhances glucose responsiveness of pancreatic beta-cells, and prevents toxin induced beta-cell death. Ethnopharmacol, May 2008:117(3):483-490.
    [18]Jang SM, Yee ST, Choi J, et al. Ursolic acid enhances the cellular immune system and pancreatic beta-cell function in streptozotocin-induced diabetic mice fed a high-fat diet. Int Immunopharmacol, Jan 2009,9(1):113-119.
    [19]Jung SH, Ha YJ, Shim EK, et al. Insulin-mimetic and insulin-sensitizing activities of a pentacyclic triterpenoid insulin receptor activator. Biochem J, Apr 2007,403 (2):243-50.
    [20]林科,张太平,张鹤云.山楂中熊果酸的提取及其对小鼠的降血脂作用.天然产物研究与开 发,2007,19(6):1052-1054.
    [21]Somova LO, Nadar A, Rammanan P, et al. Cardiovascular, antihyperlipidemic and antioxidant effects of oleanolic and ursolic acids in experimental hypertension. Phytomedicine,2003,10(2/3): 115-121.
    [22]Chung YK, Heo HJ, Kim EK, et al. Inhibitory effect of ursolic acid purified from Origanum majorana L on the acetylcholinesterase. Mol Cells,2001,11(2):137-143.
    [23]You HJ, Choi CY, Kim JY, et al. Ursolic acid enhances nitric oxide and tumor necrosis factor-alpha production via nuclear factor-kappaB activation in the resting macrophages. FEBS Lett, 2001,509(2):156-160.
    [24]林科,张太平,朱顺,等.山楂熊果酸的制备及对小鼠免疫功能和肝癌细胞凋亡的影响.中国生化药物杂志,2006,27(3):137-141.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700