基于流固耦合的高速客车气动特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
节能、环保、安全是当今汽车工业发展面临的三大主题。高速客车属于形状不规则钝头体,较大的迎风面导致行驶中气动阻力大,降低高速客车气动阻力对节省能耗、提高经济效益具有积极的现实意义;高速行驶中风窗玻璃承受前方气动压力,设计不合理将引起较大变形并产生应力集中,进而发生破碎现象,严重影响行车安全。因此,开展基于流固耦合的客车气动特性及风窗玻璃风致振动特性研究对高速客车节能与安全行驶具有重要意义。
     本文采用理论分析、数值模拟计算和实验研究相结合的方法对类客车体模型和某高速客车模型的气动特性及风窗玻璃风致振动特性进行了研究。
     首先,对某国产高速客车的稳态气动特性进行了研究。制作了与实车比例为1:10的高速客车模型,利用低速风洞和精密天平测得客车气动阻力系数;采用RNG k-ε湍流模型对该客车的气动特性进行数值模拟计算,风洞实验结果验证了稳态数值模拟计算方法的正确性。通过流场分析获得了高速客车稳态行驶工况下的气动特性。对风窗玻璃后倾角度、头部侧面圆化半径、头部下侧后倾角度、顶部后侧下倾角度、尾部侧面圆化半径、尾部上翘角度、底部前端上倾角度等七种车身结构参数变化对高速客车流场的影响进行了数值计算与分析,获得了各参数变化对气动特性的影响规律。研究结果表明这七种结构参数中,减阻效果最大的为尾部上翘角度,可达到8.5%。
     其次,对类客车体的气动特性及迎风面玻璃的风致振动特性进行了研究。自制了1:1比例的类客车体模型,迎风面采用400mm×400mm×2mm的薄玻璃,其余部分采用钢材,利用低速风洞、天平和高精度的电涡流位移传感器等实验设备测量了类客车体气动阻力系数及玻璃中心点的风压变形量。实验结果表明:玻璃的变形量与风速近似成正比关系,说明在一定风压作用范围内,玻璃可视为线弹性材料。采用流固耦合模型对类客车体在非稳态行驶工况下的气动特性和玻璃风致振动特性进行了数值模拟计算,并通过实验结果验证了计算方法的正确性。计算结果表明:考虑流固耦合作用的类客车体气动阻力系数比不考虑的情况大;前玻璃在风荷载作用下产生明显变形,最大变形量位于玻璃中心;不同风速时的玻璃变形和应力变化规律基本一致,均随风速增大而增大,且变形量与风速近似成正比关系;玻璃的最大应力区位于上、下及侧面边缘部位,最大应力点位于上、下边角附近,中心区域形成圆形的次应力区,二者构成了“梅花形”的应力分布,该区域易产生应力集中;变速工况时风荷载引起的应力值远远高于匀速过程的时均应力值。
     在上述研究的基础上,对某国产高速客车瞬态气动特性及PVB夹层风窗玻璃的风致振动特性进行了研究。PVB夹层玻璃采用等效厚度法进行处理,基于流固耦合研究方法分别研究了稳定风载荷、脉动风载荷作用下的客车气动特性和风窗玻璃风致振动特性,以及不同风窗玻璃厚度时的风窗玻璃风致振动特性。
     对稳态风载荷的研究结果表明:在稳定风压作用下,考虑流固耦合作用时客车气动阻力系数略大于不考虑流固耦合作用的气动阻力系数,增大程度与风压变形有关;在行驶过程中风窗玻璃产生风压变形,变形量随风速增大而增大;由加速过程进入匀速过程的初期,由于惯性力作用引发变形的剧烈波动变化,随后波动迅速衰减并趋于稳定,保持在某时均值附近小幅波动,整个过程的瞬时最大风压变形量远高于时均值。稳定风条件下风窗玻璃风压变形分布左右对称,最大变形点位于玻璃轴对称线中点偏下位置。风窗玻璃表面各节点瞬态应力变化趋势类似于瞬态风压变形量变化趋势。整个过程的瞬时最大应力值远高于时均应力值。稳定风条件下风窗玻璃主应力区位于上、下及侧面固定边缘部位,最大应力点位于上、下边角附近。
     对4mm+0.76mmPVB+4mm、3.5mm+0.76mmPVB+3.5mm和3mm+0.76mm PVB+3mm三种风窗玻璃厚度情况下的研究结果表明:风窗玻璃厚度变化对瞬态风窗玻璃变形及应力的变化规律有明显影响,即厚度减小,风压变形明显增大,但应力变化不规律。
     对于脉动风载荷的的研究结果表明:脉动风特性变化对高速客车瞬态气动特性影响显著。当正弦脉动速度的振幅和频率变化时,客车的气动阻力系数、风窗玻璃的风压变形及应力变化规律类似,时均值表现为余弦函数的曲线变化规律,完全不同于稳态风的恒定时均值。当振幅增大时,各参数瞬态波动剧烈程度增大,时均值的幅值明显增大;当频率增大时,各参数瞬态波动剧烈程度增大,时均值不仅频率相应增大,幅值也明显增大。
     本文研究了稳态工况下高速客车不同结构参数对气动特性的影响,并给出了参数变化对气动阻力特性的影响规律;采用流固耦合计算方法分别对类客车体和高速客车进行了数值模拟计算,获得了瞬态工况下气动阻力特性和风窗玻璃的风致振动特性变化规律,以及风窗玻璃厚度变化和脉动风特性对客车气动特性的影响规律,尤其是考虑脉动风情况时对客车气动阻力系数、风窗玻璃风压变形及应力的影响远远大于稳定风的情况。本文研究结果可以为高速客车的气动造型优化、安全行驶及轻量化设计提供理论指导,具有重要的理论意义及工程应用价值。
Energy conservation, environmental protection and safety are the main themes of the automotive industry. The high speed bus is the blunt body with a large windward area, which leads to a larger aerodynamic drag force. So it is significant to study the influence of the aerodynamic characteristics on high speed bus. The windshields suffered the front pressure can generate stress concentration even lead to be brokendue to an unreasonable design, and it is dangerous for the driving safety. Therefore, it is significant to study the aerodynamic characteristics and the wind-induced vibration characteristics of the windshields based on the fluid-structure interaction (FSI) for the energy conservation and the driving safety of the high speed bus.
     In this paper, the methods of theoretical analysis, numerical simulation and experimental study are combined to study the aerodynamics characteristics and the windshield's wind-induced vibration characteristics of the model car and the high speed bus.
     First, the aerodynamics characteristics of a homemade high speed bus of steady state are studied. A one-tenth high speed bus model is made. The aerodynamics drag coefficient of the bus model is measured by low speed wind tunnel and the precision balances. The RNG k-ε turbulence model are used to study the aerodynamic characteristics of the high speed bus, and experiment results verified the correctness of numerical simulation. The aerodynamic characteristics of steady state are obtained via flow field analysis. Then influence of seven different structures parameters of windshield of the bus on the aerodynamic characteristics are studied, i.e., the inclined angle of windshield, the arc radius of the front side, the inclined angle of the head underside, the inclined angle of the top rear side, the arc radius of the rear side, the dihedral angle of the rear floor panel, the dihedral angle of the front floor panel, and the influence law of the structure parameters changes on the aerodynamic characteristics are obtained. The results indicate that the dihedral angle of the tail underside influence most on the aerodynamics drag coefficient, which can decrease8.5%.
     Second, the aerodynamic characteristics and wind-induced vibration characteristics of the model car are studied. A steel model car with a400mm X400mm×2mm thin glass windshield is made. The aerodynamic drag coefficient of the model car and the deformation of the windshield's center point are measured by a wind tunnel experiment with a precision eddy current displacement sensor. The results of the experiments show that the deformation of the windshield is approximately proportional to the wind speed, in other words, the glass can be regarded as a linear elastic material under certain pressure range. The numerical calculation with the FSI model is carried out to study the aerodynamic characteristics of the model car and the wind-induced vibration characteristics of the windshield at transient state. And experiment results verify the numerical simulation methods. The results indicate that the aerodynamic drag coefficient considering the FSI is higher than that ignoring the FSI. The windshield undergoes a noticeable deformation under the wind load, and the maximum displacement is at the center of the windshield. Both of the deformation curves and the stress curves at different wind speed have the same regular pattern, and both of them increase with the speed. In addition, the deformation is approximately proportional to the wind speed. The maximum stress area locates on the upper, lower and side edge of the glass, and the maximum stress point locates on the upper and lower corner, while the minor main stress area locates in the central region of the glass, and the distribution of the main stress seems like a plum blossom, where the stress concentration occurs easily. Both of the transient maximum displacement and stress caused by variable wind load is much higher than the time average deformation caused by the uniform wind load.
     Based on the above researches, the transient aerodynamic characteristics of a homemade high speed bus and the transient wind induced vibration characteristics of the PVB windshield is studied finally. The equivalent thickness method is used to deal with the PVB windshield; The FSI model is used to study the aerodynamic characteristics of the bus, and the wind induced vibration characteristics of the PVB windshield under the steady wind load, the fluctuating wind load and different thickness of the windshields.
     The results under the steady wind load show that the aerodynamic drag coefficient of the bus considering the FSI is slightly higher than that regardless of the FSI under long-term steady wind load, and the increasing degree is related to the deformation. The windshield undergoes a slight deformation in the travelling process, which increases with the speed. The deformation is much higher when a accelerated motion just change to a uniform motion; The deformation descends quickly and fluctuates violently due to the action of the inertia force, then becomes stable quickly, at last the deformation is very approaching to the time average deformation. The transient maximum deformation is much higher than the time average deformation throughout the process. The deformation distribution of the windshield under long-term steady wind load is symmetrical, and the maximum displacement is slightly lower than the center point of the windshield. The transient stress trends of the windshield are similar to the transient deformation trends of the windshield. The transient maximum stress is much higher than the time average deformation throughout the process. The main stress areas of the windshield locate on the upper, lower and side edges, and the maximum stress point locates on the corners.
     Under three different thicknesses of the windshields, i.e.,4mm+0.76mmPVB+4mm,3.5mm+0.76mmPVB+3.5mm,3mm+0.76mmPVB+3mm, the results show that the influences of the windshield thickness on the transient deformation and stress of the PVB windshield are significant. The deformation increases significantly with the thickness decreases, but the stress changes irregularly.
     The results under the transient wind load show that the influences of the fluctuating wind's characteristics on the transient aerodynamics characteristics of the high speed bus are significant. While the amplitude and frequency of sine function pulsating speed load change, the time averaged value of the bus's aerodynamic drag coefficient varies with the cosine function regulation. It is entirely different to the constant time averaged value under steady wind load. The changing laws of the transient aerodynamic drag coefficient, transient wind induced deformation and the transient stress of the windshield are similar. The transient fluctuation intensity of the three parameters increases obviously with the increase of the amplitude, and the amplitude of time averaged value increases significantly. Analogously, the transient fluctuation intensity of the three parameters increases with the frequency. However, not only the frequency of time averaged value increases homogonously, the amplitude increases significantly.
     In this paper, effects on the steady aerodynamic characteristics owing to structural parameters are investigated, and the influence rules are obtained. The transient aerodynamic characteristics and the transient wind-induced vibration characteristics of the model car and high speed bus with different thickness of windshields under the steady wind load, the fluctuating wind load are studied based on the FSI, and the relevant laws are obtained. Especially consider the effect of the fluctuating wind conditions on the drag coefficient, wind-induced windshield deformation and stress are far greater than the steady wind conditions. The results of this study can provide a theoretical basis for the aerodynamic shape optimization, the safety design and the lightweight design of the high speed bus, and have important theoretical and engineering application value.
引文
[1]杜广生.汽车空气动力学[M].北京:中国标准出版社,1999.
    [2]沈健,凌建寿,王杰,连汶,毛勇.基于货客车最高车速与道路发展相适应问题的探讨[J].汽车科技,2008,(2):10-13.
    [3]Richard M. Wood, Steven X.S. Bauer. Simple and low-cost aerodynamic drag reduction devices for tractor-trailer trucks[C]. SAE Paper,2003-01-3377.
    [4]龚春元,陈荫三,高利.改善国产客、货车空气动力特性是节能的主要途径[J].能源季刊,1991,(3):33-36.
    [5]GB9656-2003《汽车安全玻璃》[S].北京:中国标准出版社,2003.
    [6]刘仁喜,赵军奎.大客车前风挡玻璃爆裂原因分析[J].城市车辆,2003,(3):30-31.
    [7]Cnglass汽车用安全玻璃的发展趋势.企博:http://www.bokee.net/company/weblog_viewEntry/2053390.html.
    [8]张振.汽车安全玻璃发展研究[J].天津汽车,2005,(2):1-4.
    [9]赵军逵,刘仁喜,段海燕.大客车风窗玻璃安装结构及强度分析[J].客车技术与研究,2002,24(6):13-15.
    [10]JT/T325-2010《营运客车类型划分及等级评定》[S].北京:中国标准出版社,2003.
    [11]S.R. Ahmed, G Ramm and G. Faltin. Some salient features of the times-averaged ground vehicle wake [J]. SAE Paper,840300,1984.
    [12]Peter S. Bernard, Pat Collins, Mark Potts. Vortex Method Simulation of Ground Vehicle Aerodynamics[C]. SAE paper,2005-01-0549.
    [13]Hermann Lienhart, Stefan Becker. Flow and Turbulence Structure in the Wake of a Simplified Car Model[C]. SAE Paper,2003-01-0656.
    [14]Eric Serre, Matthieu Minguez, Richard Pasquetti, Emmanuel Guilmineau, Gan Bo Deng, Michael Kornhaas, Michael Schafer, Jochen Frohlich, Christof Hinterberger, Wolfgang Rodi. On simulating the turbulent flow around the Ahmed body:A French-German collaborative evaluation of LES and DES[J]. Computers & Fluids, In Press, Corrected Proof, Available online 2011,17.
    [15]R.J.A. Howard, M. Pourquie. Large eddy simulation on the Ahmed reference model[J]. Journal of Turbulence,2001,3 (1).
    [16]Sinisa Krajnovie, Joao Fernandes. Numerical simulation of the flow around a simplified vehicle model with active flow control[J]. International Journal of Heat and Fluid Flow,2011, 32(1):192-200.
    [17]Krajnovic'S, Davidson L. Flow around a simplified car-Part 1:Large eddy simulation[J]. J Fluids Eng 2005,127:907-918.
    [18]Fares E. Unsteady flow simulation of the Ahmed reference body using a Lattice Boltzmann approach[J]. Computers &Fluids,2006,35:940-50.
    [19]Gohlke M, Beaudoin JF, Amielh M, Anselmet F. Experimental analysis of flow structures and forces on a 3D-bluff-body in constant cross-wind[J]. Exp Fluids 2007,43(4):579-94.
    [20]Gohlke M, Beaudoin JF, Amielh M, Anselmet F. Thorough analysis of vertical structures in the flow around a yawed bluff body[J]. J Turbul 2008,9(15):1-28.
    [21]Guilmineau E, Chometon F. Effect of side wind on a simplified car model:experimental and numerical analysis[J]. J Fluids Eng 2009,31(2).
    [22]Emmanuel Guilmineau, Oussama Chikhaoui, GanBo Deng, Michel Visonneau. Cross wind effects on a simplified car model by a DES approach[J].Computers & Fluids, In Press, Corrected Proof, Available online 2011,12.
    [23]T. Lajos, L. Preszler, L. Finta. Effect of moving ground simulation on the flow past bus models J]. Journal of Wind Engineering and Industrial Aerodynamics,1986,22(2-3):271-277'.
    [24]Taeyoung Han, V. Sumantran, Clark Harris,Ted Kuzmanov etc.. Flow-Field Simulations of Three Simplified Vehicle Shapes and Comparisons with Experimental Measurements[C].SAE Paper 960678,1996.
    [25]Kenji Okumura, Toshihiko Kuriyama. Transient Aerodynamic Simulation in Crosswind and Passing an Automobile[C].SAE Paper 970404,1997.
    [26]Francis T. Makowski, Sung-Eun Kim. Advances in External-Aero Simulation of Ground Vehicles Using the Steady RANS Equations[C].SAE Paper,2000-01-0484.
    [27]Jeff Howell and Andrew Sheppard. Aerodynamic Drag Reduction for a Simple Bluff Body Using Base Bleed [C].SAE Paper,2003-01-0995.
    [28]Rajnish Sharma,Daniel Chadwick and Jonathan Haines. Aerodynamics of an intercity bus[J]. Wind and Structures,2008,11(4):257-273.
    [29]Cahit Gurlek, Besir Sahin, Gokturk Memduh Ozkan. PIV studies around a bus model[J]. Experimental Thermal and Fluid Science,2012,38:115-126.
    [30]David Uystepruyst, Sinisa Krajnovic. Numerical simulation of the transient aerodynamic phenomena induced by passing manoeuvres[J]. Journal of Wind Engineering and Industrial Aerodynamics,2013,114:62-71.
    [31]Motoharu Yokouchi, Yoshikazu Kato. The aerodynamic interferences on a light van caused by a bus in front of or at the back of the light van[J].JSAE Review,1995,16(3):314.
    [32]C.A.J. Fletcher, GD.H. Stewart.Bus drag reduction by the trapped vortex concept for a single bus and two buses in tandem[J]. Journal of Wind Engineering and Industrial Aerodynamics,1986, 24(2):143-168.
    [33]Satoru Yamamoto, Kazuo Yanagimoto, Hitoshi Fukuda, Hiroshi China, Kunio Nakagawa. Aerodynamic influence of a passing vehicle on the stability of the other vehicles[J]. JSAE Review, 1997,18(1):39-44.
    [34]R.J. Corin, L. He, R.G. Dominy, A CFD investigation into the transient aerodynamic forces on overtaking road vehicle models[J]. Journal of Wind Engineering and Industrial Aerodynamics, 2008,96(8-9):1390-1411.
    [35]谷正气.汽车空气动力学[M].北京:人民交通出版社,2005.
    [36]谷正气,秦德甲,黄天泽.JT6120型大客车模型的气动力风洞实验研究[J].专用汽车,1994,1:32-34.
    [37]张志沛,欧阳鸿武,秦志斌.JT6120型客车气动特性的数值模拟和风洞实验[J].中国公路学报,2000,13(93):113-115.
    [38]高利,范炜,蔡红民,周瑞兴,上官云信.国产客车模型风洞实验研究[J].汽车技术,2002,(7):27-31.
    [39]朱炳哲.客车车身外流场的数值模拟计算[D].大连理工大学,2002.
    [40]王树孝,张东,马金胜.LCK6122大客车空气动力性仿真分析[J].客车技术与研究,2007,(2):14-17.
    [41]刘君,王振国,吴桂馥.类客车体绕流场的数值模拟[J].长沙交通学院学报,2000,16(2):40-43.
    [42]王靖宇.轻型客车的气动特性分析与造型优化研究[D].吉林大学,2008.
    [43]岳建雄.高速客车气动特性的研究[D].山东大学,2010.
    [44]李世伟.类客车体气动特性及减阻措施的实验研究和数值模拟[D].中国空气动力研究与发展中心,2010.
    [45]任风涛.基于内外流场耦合的大客车气动特性的模拟研究[D].吉林大学,2012.
    [46]张英朝,轿车大客车会车时的气动特性研究[D].吉林大学,2006.
    [47]张英朝,张喆,傅立敏,李杰.轿车客车隧道中会车过程的瞬态CFD仿真[J].哈尔滨工业大学学报,2009,41(9):105-108.
    [48]李杰,张英朝,张喆,傅立敏.轿车大客车会车时的气动特性[J].同济大学学报,2010,38(2):278-284.
    [49]邢景堂,周盛,崔尔杰.流固耦合力学概述[J].力学进展,1997,27(1):19-38.
    [50]H.J.P Morand, Roger Ohayon,etc.. Fluid-Structure Interaction[M]. John Wiley and Sons, Chichester,1995.
    [51]Earl H Dowell, Kenneth C Hall. Modeling of fluid-structure interaction [J]. Annual review of fluid mechanics,2001,33(1):445-489.
    [52]E.H.道尔,H.C小柯蒂斯,R.H.斯坎伦等著.陈文俊,尹传文等译,崔尔杰校.气动弹性力学现代教程[M].北京:宇航出版社,1991.
    [53]杨国伟,钱卫.飞行器跨声速气动弹性数值分析[J].力学学报,2005,37(6):769-776.
    [54]蒋跃文,张伟伟,叶正庚.基于CFD技术的流畅/结构时域耦合求解方法研究[J].振动工程报,2007,20(4):369-400.
    [55]余琰,袁新,申炳録.机翼大迎角下失速颤振的气动弹性研究[J].工程热物理学报,2002,23(5):573-575.
    [56]叶正庚,张伟伟,史爱明.流固耦合力学基础及其运用[M].哈尔滨:哈尔滨工业大学出版社,2010.
    [57]李迎,陈红岩,俞小莉.流固耦合仿真技术在发动机稳态传热计算中的应用[J].内燃机工程,2007,28(4):19-22.
    [58]任能,谷波.平翅片传热与流动特性的数值模拟[J].制冷与空调,2006,6(4):39-41.
    [59]Sun Xiaoying,Wu Yue,Shen Shi zhao. Numerical Simulation of Flows Around Long Span Flat Roof[J]. Journal of Harbin Institute of Technology,2005,12 (4):370-375.
    [60]Mura Kami S. Overview of Turbulence Models Applied in CWE21997 [J]. J Wind Eng Ind Aerodyn,1998,74 (6):1-24.
    [61]朱洪来,白象忠.流固耦合问题的描述方法及分类简化准则[J].工程力学,2007,24(10):92-99.
    [62]唐铭.薄膜结构与风的流固耦合作用[J].辽宁工程技术大学学报(增),2006,25:157-159.
    [63]沈世钊,武岳.膜结构风振响应中的流固耦合效应研究进展[J].建筑科学与工程学报,2006,23(1):1-9.
    [64]Tomohiro Sawada, Toshiaki Hisada. Fluid-structure interaction analysis of the two-dimensional flag-in-wind problem by an interface-tracking ALE finite element method[J]. Computers & Fluids,2007,36:136-146.
    [65]T. E. Tezduyar, M. Behr, J.Liou. A new strategy for finite element computations involving moving boundaries and interfaces -the deforming-spatial-domain/space-time procedure:Ⅰ.The concept and the preliminary tests[J]. Computer Methods in Applied Mechanics and Engineering, 1992,94(3):339-351.
    [66]S. Sathe, R. Benney, R. Charles, E. Doucette, J. Miletti b, M. Senga, K. Stein, T.E. Tezduyar. Fluid-structure interaction modeling of complex parachute designs with the space-time finite element techniques[J]. Computers & Fluids,2007,36(1):127-135.
    [67]Sahu J, Cooper G, Benney R.32D parachute descent analysis using coupled CFD and structural codes [R]. A IA4-95-1580,1995.
    [68]Tezduyar T.E. Computational mechanics in modeling of airdrop systems[C]. Proceedings of the Israel Annual Conference on Aerospace Sciences,2001:21-22.
    [69]杨青真,施永强,肖军,周新海.气固耦合振动叶栅非定常流动分析研究[J].应用力学学报,2006,23(2):167-171.
    [70]赵琳,胡江峰,刘振侠.流固耦合计算的应用研究[J].沈阳航空工业学院学报,2006,23(4):55-56.
    [71]Connors H J. Fluidelastc vibration of tube array excited by cross flow. Flow induced vibration in heat exchangers [J]. The American Society of Mechanical Engineers, NewYork.1970:42-56.
    [72]Mittal S, Kumar V. Flow-Induced oscillations of two cylindersin tandem and staggered arrangements [J]. Journal of fluids and structures,2001,15:717-736.
    [73]Rottmann M, Popp K. Influence of upstream turbulence on the fluidelastic instability of a parallel triangular tube bundle [J]. Journal of Fluids and Structures,2003, (18):595-612.
    [74]Hassan M.A, Weaver D.S, Dokainish M.A. A simulation of the turbulence response of heat exchanger tubes in lattice-bar supports[J].Journal of Fluids and Structures,2002,16(8):1145-1176.
    [75]Weaver D S, Ziada S, Au-Yang M K, Chen S S, Paidoussis M P, Pettigrew M J. Flow-induced vibration in power and process plants components-Progress and prospects [J]. ASME Journal of Pressure Vessel Technology,2000,122:339-348.
    [76]赵国桥.管道系统流固耦合振动分析[J].炼油设计,1995,25(3):49-53.
    [77]王少波.弹性板在粘性流体中的耦合震动分析[J].机械工程学报,2004,40(4):63-66.
    [78]Wissink J.G. DNS of separating, low Reynolds number flow in turbine cascade with incoming wakes[J].International Journal of Heat and Fluid flow,2003,24:626-635.
    [79]Timon Rabczuk, Esteban Samaniego, Ted Belytschko. Simplified model for predicting impulsive loads on submerged structures to account for fluid-structure interaction[J]. International Journal of Impact Engineering,2007,34:163-177.
    [80]Kalro V, Tezduyar T.E.3D computation of unsteady flow past a sphere with a parallel finite elementmethod[J]. Oceanographic Literature Review,1998,45:602.
    [81]Xing J.T, P rice W.G, Du Q.H. Mixed finite element substructure-subdomain methods for the dynamical analysis of coupled fluid-solid interaction problems[J]. Trans R. Soc Lond. A 354 (1995):259-295.
    [82]杨青真,施永强,肖军,周新海.气固耦合振动叶栅非定常流动分析研究[J].应用力学学报,2006,23(2):167-171.
    [83]金琰,袁新.三维透平叶片扭转颤振问题的流固耦合数值研究[J].工程热物理学报,2004,25(1):41-44.
    [84]李林凌,黄其柏.风机叶片气固耦合特性研究[J].流体机械,2006,34(94):23-27.
    [85]Williamson D.R. Implementation of a Fluid-Structure Interaction Formulation Using MSC/ NASTRAN [R]. TRW Space System,Redondo Beach,Calfornia,77-90.
    [86]Kotake S. Random Vortex Shedding Noise of Airfoils[J]. Journal of Sound and Vibration, 1975,40:87-99.
    [87]Lee C, Chung M.K, Kim Y.K. A Prediction Model for the Vortex Shedding Noise from the Wake of an Airfoil or Axial Flow Fan Blades[J]. Journal of Sound and Vibration,1993,164(2): 327-336.
    [88]肖若富,王正伟,罗永要.轴流转浆式水轮机桨叶的动应力特性[J].清华大学学报,2007,11:2014-2017.
    [89]刘德民,杨萍.基于流固耦合的水轮机振动分析[J].水科学与工程技术,2007,(6):29-32.
    [90]党小建,梁武科,廖伟丽.水力机组流固耦合的数学模型[J].机械强度,2005,27(6):864-866.
    [91]张立翔,王文全,姚激.混流式水轮机转轮叶片流激振动分析[J].工程力学,2007,24(8):143-150.
    [92]肖若富,王正伟,罗永要.基于流固耦合的混流式水轮机转轮静应力特性分析[J].水力发电学报,2007,26(3):120-123.
    [93]肖若富,韦彩新,韩凤琴,陈秋.液固耦合对水轮机固定导叶振频振型的影响[J].华中科技大学学报,2001,29(4):85-87.
    [94]梁权伟,王正伟,方源.考虑流固耦合的混流式水轮机转轮模态分析[J].水力发电学报,2004,23(3):116-120.
    [95]李田.高速列车流固耦合计算方法及动力学性能研究[D].西南交通大学,2012.
    [96]王悦东,蔡喜艳,兆文忠.流固耦合技术及在高速动车组结构设计中的应用[J].大连交通大学,2012,33(2):6-10.
    [97]Li Tian, Zhang Jiye, Zhang Weihua. An Improved algorithm for fluid-structure interaction of high-speed trains under crosswind[J]. Journal of modern transportation,2011,9(2):75-81.
    [98]杨吉忠,毕海权,翟婉明.基于ALE方法的列车横风绕流动力学分析[J].铁道学报,2009,31(2):120-124.
    [99]Mehmet Zulfu Asik, Selim Tezcan. A mathematical model for the behavior of laminated[J]. Computers and Structures,2005,83:1742-1753.
    [100]R. Scigliano, M.Scionti, P.Lardeur. Verification, validation and variability for the vibration study of a car windscreen modeled by finite elements[J]. Finite Elements in Analysis andDesign, 2011,47:17-29.
    [101]M. Timmel, S. Kolling, P. Osterrieder, P.A. Du Bois. A finite element model for impact sim-ulation with laminated glass[J].International Journal of Impact Engineering,2007,34:1465-1478.
    [102]Zhao S, Dharani L.R, Chai L, et al. Analysis of damage in laminated automotive glazing subjected to simulated head impact[J]. Engineering Failure Analysis,2006,3(4):582-597.
    [103]Donne K.E, Thomas R.D, Davies C, et al. Photoelastic stress and thermographic measurements of automotive windscreen defects generated by projectile impact[J]. Quality and Reliability Engineering International,2008, (24):897-902.
    [104]Zhao S, Dharani L.R, Chai L, et al. Dynamic response of laminated automotive glazing impacted by spherical featureless headform[J]. International Journal of Crashworthiness,2006, 11(2):105-113.
    [105]Oda J, Zang M.Y. Analysis of impact fracture behavior of laminated glass of bi-layer type using discrete element method[J]. Key Engineering Materials,1998,145-149:349-354.
    [106]Zhang W, Ha Y, Guan G, et al. Experimental and numerical studies of laminated glass subject to hypervelocity impact[C]. Proceedings of the Fourth European Conference on Space Debris, European Space Agency, Darmstadi, Germany,2005,431-436.
    [107]许骏,李一兵.基于风挡玻璃凹陷量的人车事故车速计算模型[J],机械工程学报,2009, 45(7):210-215.
    [108]许骏,刘博涵,葛东云,等.低速冲击下的PVB夹层风挡玻璃动态响应研究[J].兵工学报,2010,31(增刊1):11-14.
    [109]臧孟炎,雷周,尾田十八.汽车玻璃的静力学特性和冲击破坏现象[J].机械工程学报,2009,45(2):268-272.
    [110]沈浩,谢硕,姚晓冬,赵吉.高速客车风窗玻璃破裂机理分析[J].客车技术与研究,2002,24(6):6-8.
    [111]陈黎.前挡风玻璃爆裂对比实验[J].客车技术与研究,2008,(1):40-43.
    [112]封进.大变形条件下客车前风挡玻璃的强度实验方法[J].城市车辆,2008,(7):42-43.
    [113]王立闯,臧曙光,马眷荣,庞世红,赵威.高速列车侧窗风压疲劳性能研究[J].武汉理工大学学报,2010,32(22):5-8
    [114]石得春.高速列车侧窗在交会压力波作用下的瞬态响应分析[J].铁道车辆,2002,40(4):71-73.
    [115]马眷荣,臧曙光,丁丽梅.夹层玻璃力学模型探讨[J].航空材料学报,1998,18(3):57-61.
    [116]陈俊,张其林,谢步瀛.基于APDL的夹层玻璃面板非线性有限元分析[J].计算机辅助工程,2010,19(1):22-26.
    [117]Zhu M, Liu B, Sun Y, et al. Experimental study of dynamic fracture behavior of PVB laminated glass by high-speed photography[J]. Applied Mechanics and Materials,2010,34-35: 636-640.
    [118]Albrecht G, Sackmann V, GRAF H, et al. Application and testing of laminated safety glass[M]. Pisana:Tipografla Editrice Pisana,2004.
    [119]Bati S.B, Ranocchiai G, Reale C, et al.Time-dependent behavior of laminated glass[J]. Journal of Materials in Civil Engineering,2010,22(4):389-396.
    [120]Asik M.Z, Tezcan S. A mathematical model for the behavior of laminated glass beams[J]. Computers &Structures,2005,83(21-22):1742-1753.
    [121]刘忠伟,胡明,马眷荣,孙志凯,李文才.玻璃抗风压性能的研究[J].硅酸盐通报,1996,(5):65-68.
    [122]洪天华.风荷载作用下点支式玻璃幕墙的动力性能研究[D].大连理工大学,2007.
    [123]王娜.风荷载作用下隐框玻璃幕墙力学行为研究[D].中国建筑材料科学研究总院,2011.
    [124]杜广生.厢式货车空气动力学特性的研究[D].中国船舶科学研究中心,2002.
    [125]龚春元.汽车风洞实验的地面模拟技术[J].汽车运输研究,1991,(1):80-91.
    [126]蔡国华,傅立敏.关于改造航空风洞为汽车试验风洞的技术探讨[J].航空学报,1999,20(1):44-47.
    [127]日本自勤卓研究所.中型風洞い お け る 实验テ タ.日本自勤卓研究所研究速報,1977,73.
    [128]张兆顺,崔桂香,许春晓.湍流理论与模拟[M].北京:清华大学出版社,2005.
    [129]Cao Jun, Application of a posteriori error estimation to finite element simulation of compressible Navier-Stokes flow[J].Computers and Fluids,2005,34(8):991-1024.
    [130]Oyama, Akira; Okabe, Yoshiyuki; Shimoyama, Koji.Aerodynamic multiobjective design exploration of a flapping airfoil using a Navier-Stokes solver [J] Journal of Aerospace Computing Information and Communication,2009,6(3):256-270.
    [131]Tinoco, Edward N; Venkatakrishnan, Venkat; Winklet, Chad; Mani, Mori.Structured and unstructured navier-stokes solvers for the third drag prediction workshop[J]. Journal of Aircraft, 2008,45(3):738-749.
    [132]J.H. Ferziger, M.Peric'. Computational Methods for Fluid Dynamics[M].Germany: Springer,2002.
    [133]Versteeg H.K, Malalasekera W. An introduction to computational fluid dynamics[M]. Berlin: Springer,1996,21-66.
    [134]苏铭德,黄素逸.计算流体力学基础[M].北京:清华大学山版社,1997.
    [135]王福军.计算流体动力学分析—CFD软件原理与应用[M].北京:清华大学出版社,2004.
    [136]Dong Ming, Zhang Yongming, Zhou Heng. A new method for computing laminar-turbulent transition and turbulence in compressible boundary layers-PSE+DNS. Applied Mathematics and Mechanics (English Edition),2008,29(12):1527-1534.
    [137]Satake, Shin-ichi; Yoshida, Naoshi; Kunugi, Tomoaki; Takase, Kazuyuki; Ose, Yasuo; Kano, Takuma; DNS of turbulent heat transfer under a uniform magnetic field at high Reynolds number[J].Fusion Engineering and Design,2008,83(7-9):1092-1096.
    [138]孙在,黄震,王嘉松.室内空气流动的直接数值模拟[J].上海交通大学学报,2007,41(5):677-680
    [139]杨小龙,符松.直接数值模拟/大涡模拟中数值误差影响的研究[J].应用数学和力学,2008,29(7):790-798.
    [140]马良栋,李增耀.高精度有限差分在湍流直接数值模拟中的应用[J].工程热物理学报,2007,28(5):859-861.
    [141]Sarwar M.W., Ishihara T., Shimada K., Yamasaki Y.,Ikeda T. Prediction of aerodynamic characteristics of a box girder bridge section using the LES turbulence mode[J]. Journal of Wind Engineering and Industrial Aerodynamics,2008,96(10-11):1895-1911.
    [142]Krajnovic S.,Davidson L.,Development of large-eddy simulation for vehicle aerodynamics [J]. American Society of Mechanical Engineers, Heat Transfer Division, (Publication) HTD,2002, 372(2):165-172.
    [143]Spencer Adrian,Hollis David,Gashi Sara.Investigation of the unsteady aerodynamics of an annular combustor using piv and les[J]. Proceedings of the ASME Turbo Expo,2008 Proceedings of the ASME Turbo Expo:Power for Land, Sea, and Air.2008,3(A):177-186.,
    [144]Nakamura S, Hively E.M, Conlisk A.T.. LES simulation of aerodynamic drag for heavy duty trailer trucks[J]. American Society of Mechanical Engineers, Fluids Engineering Division (Publication) FED,2002,257(1 B):1037-1043.
    [145]C. Fureby. ILES and LES of complex engineering turbulent flows[J]. Journal of Fluids Engineering.Transactions of the ASME,2007,129(12):1514-1523.
    [146]Zhang Mingliang, Shen Yongming. Three-dimensional simulation of meandering river based on 3-D RNG k-ε turbulence model[J]. Journal of Hydrodynamics(B),2008,20(4):448-455.
    [147]Zhang Ting,Wu Chao, Liao Huasheng, Hu Yaohua.3D Numerical simulation on water and air two-phase flows of the steps and flaring gate pier[J]. Journal of Hydrodynamics(B),2005, 17(3):338-343.
    [148]Li Yucheng,Lu Lin. Numerical simulation of moving scour boundary and turbulence flow around submarine pipelines[J]. Journal of Hydrodynamics(B),2005,17(4):404-411.
    [149]王远成,吴文权.方柱绕流流场的RNGκ-ε方法模拟研究[J].水动力学研究与进展A辑(增刊),2004,19:916-920.
    [150]Mohseni.Mahdi,Bazargan.Majid. The effect of the low Reynolds number k-ε turbulence models on simulation of the enhanced and deteriorated convective heat transfer to the supercritical fluid flows[J]. Heat and Mass Transfer,2011,47(5):609-619.
    [151]Du Guangsheng,Wang Dechang,Lei Li. Simulation of 3-D Flow around a Van-Body Truck with RNG k-ε Turbulence Model[J]. Journal of Hydrodynamics, Ser. B,2001,(4):98-101.
    [152]Jeong. Un Yong,Koh.Hyun-Moo, Lee.Hae Sung. Finite element formulation for the analysis of turbulent wind flow passing bluff structures using the RNG k-ε model[J]. Journal of Wind Engineering and Industrial Aerodynamics,2002,90(3):151-169
    [153]Simpson R.L.. Turbulent Boundary-Layer Separation[C].Annual Review of Fluid Mechanics, 1989,20:5-234
    [154]Murad N.M, Naser J, Alam F, Watkins S. CFD modelling of vehicle a-pillar aerodynamics. computational fluid dynamics [C].Proceedings of the second international conference on computational fluid dynamics.ICCFD.Sydney Australia,2002,809-810.
    [155]Nurul M. Murad, Jamal Naser Firoz and Alam et al.Simulation of vehicle A-pillar aerodynamics using various turbulence models [C].SAE Paper 2004-01-0231.
    [156]Toshio Kobayashi, Kozo Kitoh. A Review of CFD Methods and Their Application to Automobile Aerodynamics, SAE Paper 920338.
    [157]Mercker E and Wiedemann J. On the Correction of Interference Effects in Open Jet Wind Tunnel. Soc. Automot. Eng. SAE Paper 960671.
    [158]庞加斌,林志兴,余卓平,王宏雁.TJ-2风洞汽车模型实验的修正方法[J].汽车工程,2002,24(5):371-375.
    [159]徐芝纶.弹性力学(第四版)[M].北京:人民教育出版社,2006,7.
    [160]张立翔,杨柯.流体结构互动理论及其应用[M].北京:科学出版社,2004.
    [161]叶正寅,张伟伟,史爱民.流固耦合力学基础及其应用[M].哈尔滨工业大学出版社,2010.
    [162]王瑁成.有限单元法基本原理(第二版)[M].北京:清华大学出版社,1997.
    [163]Spalart P.P, Jou W.H, Strelets M. Comments on the feasibility of LES for wings and on a hybrid RANS/LES approach[A]. Advances in DNS/LES[C].1st AFOSR International Conference on DNS/LES,1997,Columhus OH, Greyden Press,1997.
    [164]Spalart P.R. Strategies for turbulence modelling and simulations[J]. International Journal of Heat and Fluid Flow,2000,21:252-263.
    [165]Travin A, Shur M, Strelets M, et al. Detached-eddv simulations past a circular cylinder[J]. Flow Turbul Combust,2000,63:293-313.
    [166]陈江涛,张培红,周乃春,邓有奇.基于SA湍流模型的DES方法应用[J].北京航空航天大学学报,2012,38(7):1-5.
    [167]Scot T.N.W, Duque P.N. Using detached eddy simulaton and overset grids to predict flow around a 6:1 prolate spheroid [C].43rd Aerospace Science Meeting and Exihibit. Reno, Nevade: AIAA,2005.
    [168]Sagar Kapadia, Subrata Roy. Detached Eddy Simulation Over a Reference Ahmed Car Model[J]. AIAA,2003, No.0875.
    [169]朱晖,杨志刚.DES模型在类车体外流场计算中的对比研究[J].汽车工程,2008,30(9):796-800.
    [170]杨小龙,林铁平.汽车外流场DES/RANS模拟研究[J].湖南大学学报,2011,38(1):29-34.
    [171]Rodi W. DNS and LES of some engineering flows[J]. Fluid Dynamics Research,2006,38: 145-173.
    [172]肖志祥,陈海听,李启兵.采用RANS/LES混合方法研究分离流动[J].空气动力学学报,2006,24(2):218-222.
    [173]于向阳,刘巨斌,肖昌润.采用DES模型对6:1椭球体进行水动力数值计算[J].海军工程大学学报,2008,3(9):100-103.
    [174]陈江涛,张培红,周乃春,邓有奇.基于SA湍流模型的DES方法应用[J].北京航空航天大学学报,2012,38(7):905-908.
    [175]ADINA Theory and Modeling Guide Volume Ⅲ:ADINA CFD & FSI. ADINA R & D, Inc.2009.
    [176]岳戈,梁宇白,陈晨,马野.ADINA流体与流固耦合功能的高级应用[M].北京:人民交通出版社,2010.
    [177]Spalart P.R, Allmaras S.R. A one equation turbulence model for aerodynamic flows[C]. 29th Aero space Sciences Meeting. Reno, Nevada:AIAA,1992.
    [178]C.W.Hirt, A.A.Amsden, J.L.Cook. An arbitrary Lagrangian-Eulerian computing method for all flow speeds[J]. Journal of computational physics,1974,14(3):227-253.
    [179]匡江红,史平洋,丁士发.流动与传热数值模型的发展现状.发电设备,2001,(1):37-40.
    [180]王彤,谷传纲,杨波,黄建德.非定常流动计算的PISO算法[J].水动力学研究与进展,2003,18(2):233-239.
    [181]西北轻工业学院编.玻璃工艺学[M].北京:中国轻工业出版社,2006,94-117.
    [182]Timmen L, Kolling S, Osterrieder P, et al. A finite element model for impact simulation with laminated glass[J]. International Journal of Impact Engineering,2007,34(8):1465-1478.
    [183]Foraboschi P. Behavior and failure strength of laminated glass beams[J]. Journal of Engineering Mechanics-ASCE,2007,133(12):1290-1301.
    [184]Xu J, Li Y, Liu B, et al. Experimental study on mechanical behavior of PVB laminated glass under quasi-static and dynamic loadings[J]. Composite B,2011,42(2):302-308.
    [185]许骏,李一兵,葛东云,陈曦等.汽车聚乙烯醇缩丁醛夹层风挡玻璃冲击响应研究综述[J].机械工程学报,2011,47(18):93-100.
    [186]Wolfel E. Nachgiebiger Verbund Eine Noherungslosung Und Deren Anwendung smoglichkeita[J]. Stahlbau,1987,(6):173-180.
    [187]庞世红,马眷荣,马振珠.夹层玻璃等效厚度计算方法研究[J].武汉理工大学学报,2009,31(22):106-109.
    [188]庞世红.夹层玻璃等效厚度研究[D].中国建筑材料科学研究总院,2009.
    [189]中国建筑科学研究院.JGJ102-2003玻璃幕墙工程技术规范[S].北京:中国建筑工业出版社,2003.
    [190]European Committee for Standard. prEN13474-1:1999. Glass in building-design of glass panes-part 1:General basis of design[s]. London:British Standard Association.1999.
    [191]European Committee for Standard. prEN13474-2:2000. Glass in building-design of glass panes-part 2:Design for uniformly distributed loads[s]. London:British Standard Association. 2000.
    [192]克莱斯·迪尔比耶,斯文·奥勒·汉森著.薛素,李雄彦译.结构风荷载作用[M].北京:中国建筑工业出版社,2006.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700