掺杂式OLED的结构、EL特性及其工作机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
有机电致发光器件(OLED)的一个重要用途是在平板显示领域。另一方面,有机白光电致发光器件(WOLED)也越来越受到人们的关注。WOLED可以用于液晶显示的背照明光源,全色显示,还有可能用于普通照明。
     采用掺杂的方法可以显著提高OLED的效率和稳定性并获得理想的发光颜色。通常含8-羟基喹啉铝(AlQ)的OLED中产生的AlQ空穴阳离子造成了器件效率的降低。本论文以空穴传输材料NPB为基质,分别以DCJTB、C-545T、TBP和Rubrene为掺杂剂,并选用TPBI作空穴阻挡和电子传输层。通过改变NPB基质的厚度大大提高了效率。这归结于器件中形成的窄的限制复合区对载流子复合效率和激子能量传递效率的提高。
     同样以NPB和Rubrene分别为基质和掺杂剂,利用它们的蓝光和黄光获得了发光颜色稳定的白光器件。虽然电压升高引起的复合区移动使蓝光发射增强,但是Rubrene的陷获作用亦使黄光发射增强。这两种变化的共同作用使得白光颜色在一定电压范围内几乎不依赖于电场。该方法解决了白光器件中普遍存在的颜色随电场变化的现象。
     将C-545T、Rubrene和DCJTB分别掺杂在NPB中形成绿、黄、红三个发光层,并利用空穴传输层NPB的蓝光,获得了具有照明特性的白光。再用(btmp)2Ir(acac)替代DCJTB进一步提高器件的效率。
     (bpiq)2Ir(acac)的EL效率随电流密度的变化曲线证实了这类苯基异喹啉
Organic light-emitting device (OLED) is a promising candidate for next generation flat plane display (FPD). On the other hand, white organic light-emitting device (WOLED) has been attracting considerable attention recently due to their potential applications as backlights for liquid crystal displays, full-color displays, and even general lighting.
     The efficiency, stability and emission color can be improved by doping dye into suitable host. Usually, the AlQ cation is unstable and served as a quenching center in AlQ-based device. Thus, the efficiency and stability are decreased. In this thesis, DCJTB, C-545T, TBP and Rubrene are doped into NPB host respectively. TPBI acts as an electron-transporting and hole-blocking layer. The results show that the EL efficiencies of these devices can be improved by decreasing the thickness of NPB host, which attributed to the enhanced recombination and improved energy transfer efficiency in narrow confined recombination zone.
     An efficient WOLED is obtained by doping Rubrene into a thin layer of NPB host. The emission color is undependent on the bias, which is due to two factors, one is the blue emission will be enhanced with the increasing bias, the other is the yellow emission will also be enhanced
引文
[1] Pioneer News, 1995, Oct. 12. 5
    [2] A. Bernanose, M. Comte, P. Vouaux. Sur un nouveau mode d’émission lumineuse chez certains composés organiques [J]. J. Chim. Phys.,1953,50:64-68.
    [3] M. Pope, H. Kallman, P. Magnante. Electroluminescence in organic crystals [J]. J. Chem. Phys., 1963, 38:2042-2043.
    [4] P. S. Vincett, W. A. Barlow, R. A. Hann, et al. Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films [J]. Thin Solid Films, 1982, 94(2):171-183
    [5] C. W. Tang, S. A. Vanslyke. Organic electroluminescent diodes [J]. Appl. Phys. Lett. 1987, 51(12):913-915
    [6] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, et al. Light-emitting diodes based on conjugated polymers, Nature, 1990,347:539-541
    [7] D. Brown, A. J. Heeger, Electroluminescence from light-emitting diodes fabricated from conducting polymers [J]. Thin Solid Films, 1992, 216:96-98
    [8] G. Gustafsson, Y. Cao, G. M. Treacy, et al. Flexible light-emitting diodes made from soluble conducting polymer [J]. Nature, 1992, 357:477-479
    [9] Information Display, Vol. 16, 2000, 3: 12
    [10] C. Adachi, M. A. Baldo, S. R. Forrest, et al. High-efficiency organic electrophosphorescent devices with tirs(2-phenylpyridine)iridium doped into elctron-transporting materials [J]. Appl. Phys. Lett. 2000, 77(6):904-906
    [11] P. E. Burrows, S. R. Forrest, T. X. Zhou, et al. Operating lifetime of phosphorescent organic light emitting devices [J]. Appl. Phys. Lett. 2000, 76(18):2493-2495
    [12] C. H. Chen, C. W. Tang, J. Shi, K. P. Klubek, US Patent 6,020,078 (2002)
    [13] Y. Hamada, H. Kanno, H. Fujii, T. Tsujioka, H.Takahashi, ACS Poly Millennial 2000, Abs., 200,P. 167
    [14] J. Shi, C. W. Tang, Anthracene derivatives for stable blue-emitting organic electroluminescence devices [J]. Appl. Phys. Lett. 2002, 72(17):3201-3203
    [15] P. Destruel, P. Jolinat, R. Clergereaux et al. Pressure dependence of electrical and optical characteristics of Alq3 based organic electroluminescent diodes [J]. J. Appl. Phys. 1999, 85:397-400
    [16] Duggal A R, Shiang J J, Heller C M, et al. Organic light -emitting devices for illumination quality white light [J]. Appl. Phys. Lett. 2002, 80(19):3470-3472
    [17] J. Kido and K.Nagai, White light-emitting organic electroluminescentdevice, Oyobuturi, 1994, 63:1026-1029
    [18] Y. Shao and Y. Yang. White organic light-emitting diodes prepared by a fused organic solid solution method [J]. Appl. Phys. Lett. 2005, 86:073510.1-3
    [19] Y. Li, M. K. Fung, Z. Xie, et al. An efficient pure blue organic light-emitting device with low driving voltages [J]. Adv. Mater., 2002, 14(18):1317-1321.
    [1] A. Bernanose, M. Comte, P. Vouaux, Sur un nouveau mode d’emission lumineuse chez certains composés organiques [J]. J. Chim. Phys., 1953, 50:64-68.
    [2] M. Pope, H. Kallman, P. Magnante. Electroluminescence in organic crystals [J]. J. Chem. Phys., 1963, 38:2042-2043.
    [3] D. F. Williams and M. Schadt, Proc. IEEE, 1970, 58:476
    [4] W. Helfrich, W. G. Schneider, Recombination Radiation in Anthracene Crystals [J]. Phys. Rev. Lett. 1965, 14:229-231
    [5] P. S. Vincett, W. A. Barlow, R. A. Hann, et al. Electrical conduction and low voltage blue electroluminescence in vacuum-deposited organic films [J]. Thin Solid Films, 1982, 94:172-183
    [6] B. Parkinson, On the efficiency and stability of photoelectrochemical devices [J]. Acc. Chem. Res. 1984, 17:432-437
    [7] M. A. Fox, Organic heterogeneious photocatalysis: chemical conversions sensitized by irradiated semiconductors [J]. Acc. Chem. Res. 1983, 16:314-321
    [8] W. J. Albery, Development of photogalvanic cells for solar energy conversion [J]. Acc. Chem. Res. 1982, 15:142-150
    [9] D. Wohrle, D. Meissner, Organic Solar Cells [J]. Adv. Mater. 1991, 3(3):129-138.
    [10] Amal K. Ghosh, Don L. Morel, Tom Feng, et al. Photovoltaic and rectification properties of Al/Mg phthalaocyanine/Ag Schottky-barrier cells [J]. J. Appl. Phys., 1974, 45(1): 230-236.
    [11] D. L. Morel, E. L. Stogryn, A. K. Ghosh, et al. Organic photovoltaic cells, correlations between performance and molecular structure [J]. J. Phys. Chem. 1984, 88:923-949
    [12] Kock-Yee Law, Organic photoconductive materials: recent trends and developments [J]. Chem. Rev. 1993, 93:449-486
    [13] C. W. Tang, Two-layer organic photovotaic cell [J]. Appl. Phys.Lett. 1986, 48:183-185
    [14] C. W. Tang, S. A. Vanslyke, Organic electroluminescent devices [J]. Appl. Phys. Lett. 1987, 51:913-915
    [15] C. Adachi, T. Tsutsui, S. Saito, Organic electroluminescent devices having a hole conductor as emitting layer [J]. Appl. Phys. Lett. 1989, 55:1489-1491
    [16] P. E. Burrows, S. R. Forrest, T. X. Zhou, et al.Operating lifetime of phosphorescent organic light emitting devices [J]. Appl. Phys. Lett. 2000, 76:2493-2495
    [17] J. H. Burroughes, D. D. C. Bradley, A. R. Brown, et al. Light-emitting diodes based on conjugated polymers [J]. Nature, 1990, 34:7539-541
    [18] D. Brown, A. J. Heeger, Electroluminescence from light-emitting diodes fabricated from conducting polymers [J]. Thin Solid Films, 1992, 216:96-98
    [19] G. Gustafsson, Y. Cao, G. M. Treacy, et al. Flexible light-emitting diodes made from soluble conducting polymer [J]. Nature, 1992, 357:477-479
    [20] Information Display, 2000, 3/100, 12
    [21] I. M. Chan, W. C. Cheng, F. C. Hong, Asia Display/IDW’01, 2001, p.1483
    [22] S. A. Van Slyke, C. H. Chen, C. W. Tang, Organic electroluminescent devices with improved stability [J]. Appl. Phys. Lett.,1996, 69(15):2160-2162.
    [23] Y. Shirota, Y. Kuwabara, H. lnada, et al. Multilayered organic electroluminescent device using a novel starburst molecule, 4,4’,4”-tris(3-methylphenylphenylamino)triphenylamine, as a hole transport material [J]. Appl. Phys. Lett.,1996, 65(7):807-809.
    [24] Y. Yang, A. J. Heeger, Polyaniline as a transparent electrode forpolymer light-emitting diodes: Lower operating voltage and higher efficiency [J]. Appl. Phys. Lett.,1996, 64(10):1245-1247.
    [25] Y. Cao, G. Yu, C. Zhang, et al. Polymer light-emitting diodes with polyethylene dioxythiophene-polystyrene sulfonate as the transparent anode [J]. Synth. Met. , 1997, 87:171-174
    [26] Z. B. Deng, X. M. Ding, S. T. Lee, et al. Enhanced brightness and efficiency in organic electroluminescent devices using SiO2 buffer layers [J]. Appl. Phys. Lett.,1996, 74(15):2227-2229.
    [27] D.B. Romero, M. Schaer, L. Zuppiroli, et al. Effects of doping in polymer light-emitting diodes [J]. Appl. Phys. Lett., 1995, 67(12): 1659-1661.
    [28] F. Huang, A.G. MacDiamid, B.R. Hsieh, An iodine-doped polymer light-emitting diode [J]. Appl. Phys. Lett., 1997, 71(17):2415-2417.
    [29] J. Blochwitz, M. Pfeiffer, T. Fritz, et al. Low voltage organic light emitting diodes featuring doped phthalocyanine as hole transport material [J]. Appl. Phys. Lett., 1998 73(6):729-731.
    [30] A. Yamamori, C. Adachi, T. Koyama, et al. Doped organic light emitting diodes having a 650-nm-thick hole transport layer, Appl. Phys. Lett., 1998, 72(17):2147-2149.
    [31] Y. Sato, T. Ogata, S. Ichinosawa, et al. Proc. SPIE Org. Light Emitting Mater. Dev. III 3797 (1999) 198.
    [32] A. Elschner, F. Bruder, H. W. Heuer, et al. PEDT/PSS for efficient hole-injection in hybrid organic light-emitting diodes [J]. Synth. Met.,111 (2000) 139-143.
    [33] S.A. VanSlyke, C.W. Tang, US Patent 5,061,569 (1991).
    [34] R. C. Kwong, M. R. Nugent, L. Michalski et al. High operational stability of electrophosphorescent devices [J]. Appl. Phys. Lett.,2002, 81(1):162-164.
    [35] Y. Li, M. K. Fung, Z. Xie, et al. An efficient pure blue organiclight-emitting device with low driving voltages [J]. Adv. Mater., 2002, 14(18):1317-1321.
    [36]L.S. Hung, C.H. Chen, Recent progress of molecular organic electroluminescent material and devices [J]. Mater. Sci. and Eng.,2002, R39:143-222
    [37]Zhang Zhilin, Jiang Xueying, Xu Shaohong, Energy transfer and white emitting organic thin film electroluminescence [J]. Thin Solid Film, 2000, 63:61-63
    [38] M. A. Baldo, S. Lamansky, P. E. Burrows, et al. Very high-efficiency green organic light-emitting devices based on electrophosphorescence [J]. Appl. Phys. Lett., 1999, 75(1):4-6.
    [39] C. W. Tang, S. A. VanSlyke, C. H. Chen, Electroluminescence of doped organic thin films [J]. J. Appl. Phys., 1989, 65(9):3610-3616.
    [40] C.H. Chen, J. Shi, K.P. Klubek, US Patent 5,908,581 (1999).
    [41] K.Yamashita, J. Futenma, T. Mori, et al. Effect of location and width of doping region on efficiency in doped organic light-emitting diodes [J]. Synth. Met.,2000,111:87-90.
    [42] J. L. Fox, C. H. Chen, US Patent 4,736,032 (1988).
    [43] S. A. Van Slyke, C. H. Chen, C. W. Tang, Organic electroluminescent devices with improved stability [J]. Appl. Phys. Lett.,1996, 69(15):2160-2162.
    [44] C. Hosokawa, H. Higashi, H. Nakamura, et al. Highly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopant [J]. Appl. Phys. Lett., 1995, 67:3853-3855.
    [45] W. R. Dawson, M. W. Windsor, J. Phys. Chem., 1968, 72:3251.
    [46] B. X. Mi, Z. Q. Gao, C. S. Lee, et al. Reduction of molecular aggregation and its application to the highperformance blue perylene-doped organic electroluminescent device [J]. Appl. Phys. Lett.,1999, 75(26):4055-4053.
    [47] J. Kido, H. Hayase, K. Hongawa, et al. Bright red light-emitting organic electroluminescent devices having a europium complex as a meitter [J]. Appl. Phys. Lett., 1994, 65(17):2124-2126.
    [48] Liang C J, Hong Z R, Li W L, et al. Improved performance of electroluminescent devices based on a europium complex [J]. Appl. Phys. Lett., 2000, 76(1):67-69.
    [49] Wenlian Li, Jiaqi Yu, Gang Sun, et al. Organic electroluminescent devices using terbium chelates as the emitting layers [J]. Synth. Met. 1997, 91:263–265
    [50] H. Xin, F. Y. Li, M. Shi, et al. Efficient Electroluminescence from a New Terbium Complex [J]. J. Am. Chem. Soc., (Communication); 2003; 125(24):7166-7167.
    [51] Ziruo Hong, Wenlian Li, Dongxu Zhao, et al. Spectrally-narrow blue light-emitting organic electroluminescent devices utilizing thulium complexes [J]. Synth. Met., 1999, 104:165–168
    [52] Ziruo Hong, Wen Lian Li, Dongxu Zhao, et al. White light emission from OEL devices based on organic dysprosium-complex [J]. Synth. Met. 2000, 111-112:43–45
    [53] Liang C J, Zhao D, Hong Z R, et al. Exciplex emissions in bilayer and doped thin films containing a non-fluorescense gadolinium complex [J]. Thin Solid Film, 2000, 371:207-210.
    [54] B. Chu, D. Fan, W. L. Li, et al. Organic-film photovoltaic cell with electroluminescence [J]. Appl. Phys. Lett., 2002, 81(1):10-12.
    [55] W.L. Li, Z.Q. Gao, Z.Y. Hong, et al. Blue electrol- uminescent devices made from a naphthyl-substituted benzidine derivative and rare earth metal chelates [J]. Synth. Met., 2000, 111–112:53–56
    [56] C.J. Liang, Z.R. Hong, X.Y. Liu, et al. Organic electroluminescent devices using europium complex as an electron-transport emitting layer[J]. Thin Solid Films, 2000, 359:14-16
    [57] M. A. Baldo, D. F. O'Brien, Y. You, et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395:151-153.
    [58] D. F. O’Brien, M. A. Baldo, M. E. Thompson, et al. Improved energy transfer in electrophosphorescent devices [J]. Appl. Phys. Lett., 2001, 74(3):442-444.
    [59] Chihaya Adachi, Marc A. Baldo, Stephen R. Forrest, et al. High-efficiency red electro- phosphorescence devices [J]. Appl. Phys. Lett., 2001, 78(11):1622-1624.
    [60] M. A. Baldo, S. Lamansky, P. E. Burrows, et al. Very high-efficiency green organic light-emitting devices based on electrophosphorescence [J]. Appl. Phys. Lett., 1999, 75(1):4-6.
    [61] R. J. Holmes, S. R. Forrest, Y. J. Tung, et al. Blue organic electrophosphorescence using exothermic host-guest energy transfer [J]. Appl. Phys. Lett., 2003, 82(15):2422-2424.
    [62] B. W. D’Andrade, M. E. Thompson, S. R. Forrest, Controlling exciton diffusion in multilayer white phosphorescent organic light-emitting devices [J]. Adv. Mater., 2002, 14:147-151.
    [63] C. C. Wu, C. I. Wu, J. C. Sturm, et al. Organic electroluminescent devices with improved stability [J]. Appl. Phys. Lett., 1997, 70: 1348-1340
    [64] R. A. Hatton, S. R. Day, M. A. Chesters, et al. Organic electroluminescent devices: enhanced carrier injection using an organosilane self assembled monolayer (SAM) -derivatized ITO electrode [J]. Thin Solid Films, 2001, 394: 292-297
    [65] S. F. J. Appleyard, S. R. Day, R. D. Pickford, et al. Organic electroluminescent devices: enhanced carrier injection using SAM derivatized ITO electrodes [J]. J. Mater. Chem., 2000, 10: 169-173
    [66] M. G. Mason, L. S. Hung, C. W. Tang, et al. Characterization of treated indium-tin-oxidesurfaces used in electroluminescent devices [J]. J. Appl. Phys., 1999, 86: 1688-1692
    [67] D. J. Million, I. G. Hill, A. Kahn, et al. Surface Oxidation Activates Indium Tin Oxide for Hole Injection [J]. J. Appl. Phys., 2000, 87: 572-576
    [68] B. Choi, H. S. Yoon, H. H Lee, Surface Treatment of Indium Tin Oxide by SF6 Plasma for Organic Light-emiting Diodes [J]. Appl. Phys. Lett., 2000,76: 412-414
    [69] L. S. Hung, US Patent 2001, No. 6208077
    [70] F. Nüesch, L. J. Rothberg, E. W. Forsythe, et al. Appl. A Photoelectron Spectroscopy Study on the Indium Tin Oxide Treatment by Acids and Bases [J]. Appl. Phys. Lett., 1999, 74: 880-882
    [71] Q. T. Le, F. Nuesch, L. J Rothberg, et al. Photoemission Study of Phenyl-Diamine Treated Indium Tin Oxide Interface [J]. Appl. Phys. Lett., 1999, 75: 1357-1359
    [72] C. Ganzorig, K. J. Kwak, K. Yagi, et al. Fine tuning work function of indium tin oxide by surface molecular design: Enhanced hole injection in organic electroluminescent devices [J]. Appl. Phys. Lett., 2001,79: 272-274
    [73] G. Gustafsson , Y. Cao, G. M. Treacy, et al. Flexible light emitting diodes made from soluble conducting polymer [J]. Nature, 1992, 357(3): 477-479
    [74] H. Kim, J. S. Horwitz, W. H. Kim, et al. Anode material based on Zr-doped ZnO thin film for organic light-emitting diodes [J]. Appl. Phys. Lett., 2003, 83(18):3809-3811.
    [75] I. D. Parker and H. H. Kim, Fabrication of polymer light emitting diodes using doped silicon electrode [J]. Appl. Phys. Lett., 1994, 64(14): 1774-1776
    [76] K. Tada, Y. Yokota, K. Kobashi, et al. Characteristics ofheterojunction utilizing conducting polymer and diamond film on Si [J]. Jpn. J. Appl. Phys., Part 2, 1997, 36(12B):L1678-1680
    [77] A. Bsiesy, Y. F. Nicolau, A. Ermolieff, et al. Electroluminescent from n-type porous silicon contacted with layer-by-layer deposited polyaniline [J]. Thin Solid Films, 1995, 255:43-48
    [78] M. Stossel, J. Staudigel, F. Steuber, et al. Appl. Phys. A, 1998, 37: L872
    [79] M. Stossel, J. Staudigel, F. Steuber, et al. Electron injection and transport in 8-hydroxyquinoline aluminum [J]. Synth. Met., 2000, 111:19-24
    [80] C. W. Tang, S. A. Vanslyke, Organic electroluminescent diodes [J]. Appl. Phys. Lett., 1987, 51: 913-915
    [81] E. L. Haskal, A. Curioni, P. F. Seidler, et al. Lithium-Aluminum Contacts for Organic Light-Emitting Devices [J]. Appl. Phys. Lett., 1997, 71: 1151-1153
    [82] D. Braun, A. J. Heeger, H. Kroemer, Improved efficiency in semiconducting polymer light emitting diodes [J]. J. Electron Mater, 1991, 20(11): 945-948
    [83] D. Braun, A. J. Heeger, Visible light emission from semiconducting polymer diodes [J]. Appl. Phys. Lett., 1991, 58(18): 1982-1984
    [84] Y. Cao, K. T. Park, B. R. Hsieh, X-ray photoemission investigations of the interface formation of Ca and poly(p-phenylene vinylene) [J]. J. Chem. Phys., 1992, 97(9): 6991-6993
    [85] Y. Cao, K. T. Park, B. R. Hsieh, Interface formation of Ca and poly(p-phenylene vinylene) [J]. J. Appl. Phys., 1993, 73(11): 7894-7899
    [86] S. A. Jeglinnski, O. Amir, X. Wei, Symmetric light emitting devices from poly(p-diethynylene phenylene) (p-diethynylene phenylene) derivaties [J]. Appl. Phys. Lett., 1995, 67(26): 3960-3962
    [87] L. S. Hung, C. W. Tang, M. G. Mason, Enhanced electron injection inorganic electroluminescent devices using an LiF/Al electrode [J].Appl. Phys. Lett., 1997, 70: 152-154
    [88] G. E. Jabbour, B. Kippelen, N. R. Armstrong, et al. Aluminum based cathode structure for enhanced electron injection in electroluminescent organic devices [J]. Appl. Phys. Lett., 1998, 73:1855-1857
    [89] J. Kido and Y, Iizumi, Fabrication of highly efficient organic electroluminescent devices [J]. Appl. Phys. Lett., 1998, 73: 2721-2723
    [90] H. Fujikawa, T. Mori, K. Noda, et al. Organic electroluminescent devices using alkaline-earth fluorides as an electron injection layer [J]. J. Luminescence, 2000, 87-89: 1177-1179
    [91] C. H. Lee, Enhanced efficiency and durability of organic electroluminescent devices by inserting a thin insulating layer at the Alq3/cathode interface [J]. Synth. Met., 1997, 91:125-127
    [92] Z. Y. Xie, L. S. Hung and S. T. Lee, High-efficiency red electroluminescence from a narrow recombination zone confined by an organic double heterostructure [J]. Appl. Phys. Lett., 2001, 79(7):1048-1050.
    [93] G. Gu, D. Z. Garbuzov, P. E. burrows, et al. High-external-efficiency organic light-emitting devices [J]. Optics Letters, 1997, 22:396-398
    [94] M. A. Baldo, D. F. O'Brien, M. E. Thompson, et al. Excitonic singlet-triplet ratio in a semiconducting organic thin film [J]. Phys. Rev. B 1999, 60:14422-14428
    [95] Y. Cao, I. D. Parker, G. Yu, et al. Improved quantum efficiency for electroluminescence in semiconducting polymers [J]. Nature, 1999, 397: 414-416
    [96] G. Rajeswaran, M. Itoh, M. Boroson, et al. SID’00 Digest 40(2000)1.
    [97] Y. Fukuda, T. Watanabe, T. Wakimoto, et al. An organic LED display exhibiting pure RGB colors [J]. Synth. Met., 2000, 111:1-6
    [98] Y. Hamada, H. Kanno, T. Tsujioka, et al. Red organic light-emitting diodes using an emitting assist dopant [J]. Appl. Phys. Lett.,2003, 75(12):1682-1684.
    [99] Y. Hamada, H. Kanno, H. Fujii, et al. ACS Poly Millennial 2000 Abs., 2000, p. 167.
    [100] T.K. Hatwar, G. Rajeswaran, J. Shi, et al. Proceedings of the 10th International Workshop on Inorg. and Org. EL (EL’00), Hamamatsu, Japan, 4 December 2000, p. 31.
    [101] C.H. Chen, C.W. Tang, J. Shi, et al. Recent developments in the synthesis of red dopants for Alq3 hosted electroluminescence [J]. Thin Solid Films, 2000, 363:327-331.
    [102] B. Chen, X. Lin, L.F. Cheng, et al. Improvement of efficiency and colour purity of red-dopant organic light-emitting diodes by energy levels matching with the host materials [J]. J. Phys. D: Appl. Phys., 2001, 34:30-35.
    [103] X.T. Tao, S. Miyata, H. Sasabe, et al. Efficient organic red electroluminescent device with narrow emission peak [J]. Appl. Phys. Lett., 2001, 78(3):279-281.
    [104] M. Mitsuya, T. Suzuki, T. Koyama, et al. Bright red organic light-emitting diodes doped with a fluorescent dye [J]. Appl. Phys. Lett., 2000, 77(20):3272-3274.
    [105] L.C. Picciolo, H. Murata, Z.H. Kafafi, Organic light-emitting devices with saturated red emissionusing 6,13-diphenylpentacene [J]. Appl. Phys. Lett.,2001, 78(16):2378-2380.
    [106] S. Toguchi, Y. Morioka, H. Ishikawa, et al. Novel red organic electroluminescent materials including perylene moiety [J]. Synth. Met., 2000, 111:57-61.
    [107] M. Ichimura, T. Ishibashi, N. Ueda, et al. in: Proceedings of the 3rd International Conference on EL Mol. Mater. Relat. Phenom. (ICEL-3),O-29, Los Angelos, CA, USA, 5–8 September 2001 (Abstracts).
    [108] J. Shi, C. W. Tang, Doped organic electroluminescent devices with improved stability [J]. Appl. Phys. Lett., 1997, 70(13):1665-1667.
    [109] T. Inoe, K. Nakatani, Japanese Patent 6,009,952 (1994).
    [110] J. Ito, Japanese Patent 7,166,160 (1995).
    [111] C.H. Chen, C.W. Tang, J. Shi, K.P. Klubek, US Patent 6,020,078 (2000).
    [112] C.H. Chen, C.-H. Chien, T.-H. Liu, in: Proceedings of the International Conference on Mater. Adv. Tech. (ICMAT 2001), Singapore, 2001, p. 221 (Abstracts).
    [113] C. Hosokawa, H. Higashi, H. Nakamura, et al. Highly efficient blue electroluminescence from a distyrylarylene emitting layer with a new dopant [J]. Appl. Phys. Lett., 1995, 67(26):3853-3855.
    [114] Y. Z. Wu, X. Y. Zheng, W. Q. Zhu,et al. Highly efficient pure blue electroluminescence from 1,4-bis[2-(3-N-ethylcarbazoryl)vinyl]benzene [J]. Appl. Phys. Lett., 2003, 83(24):5077-5079.
    [115] Z. Gao, C. S. Lee, I. Bello, et al. Bright-blue electroluminescence from a silyl-substituted ter-(phenylene–vinylene) derivative [J]. Appl. Phys. Lett., 1999, 74(6):865-867.
    [116] B. X. Mi, Z. Q. Gao, C. S. Lee, et al. Reduction of molecular aggregation and its application to the highperformance blue perylene-doped organic electroluminescent device [J]. Appl. Phys. Lett., 1999, 75(26):4055-4057.
    [117] J. Shi, C. W. Tang, Anthracene derivatives for stable blue-emitting organic electroluminescence devices [J]. Appl. Phys. Lett., 2002, 72(17):3201-3203.
    [118] M. Uchida, T. Izumizawa, T. Nakano, et al. Chem. Mater. 13 (2001) 2680.
    [119] H. Tokailin, M. Matsuura, H. Higashi, et al. SPIE 1910 (1995) 38.
    [120] C. Hosokawa, S. Sakamoto, T. Kusumoto, US Patent 5,389,444 (1995).
    [121] T. Kofuji, in: Proceedings of the Electro. J. 6th FPD Seminar, vol. 81, Tokyo, 1999.
    [122] TDK, in: Proceedings of the Electro. J. 6th FPD Seminar, vol. 31, Tokyo, 1999.
    [123] J. Shi, C.W. Tang, C.H. Chen, US Patent 5,935,721 (1999).
    [124] P. Destruel, P. Jolinat, R. Clergereaux, et al. Pressure dependence of electrical and optical characteristics of Alq3 based organic electroluminescent diodes [J]. J. Appl. Phys., 1999,85:397-400
    [125] J. Kido and K. Nagai, White light-emitting organic electroluminescent devices, Oyobuturi, 1994, 63:1026-1029
    [126] A. R. Duggal, J. J. Shiang, C. M. Heller, et al. Organic light-emitting devices for illumination quality white light [J]. Appl. Phys. Lett., 2002, 80:3470-3472
    [127] J. Kido, M. Kimura and K. Nagai, Multilayer white light-emitting organic electroluminescent device [J].Science, 1995, 267:1332-1334.
    [128] J. Kido, H. Shionoya H, K. Nagai, Single-layer white light-emitting organic electroluminescent devices based on dye-dispersed poly(N-vinylcarbazole) [J]. Appl. Phys. Lett., 1995, 67(16):2281-2283.
    [129] Deshpande R S, Bulovic V and Forrest S R, White-light-emitting organic electroluminescent devices based on interlayer sequential energy transfer [J]. Appl. Phys. Lett. 1999, 75:888-890.
    [130] Z. Y. Xie, J. S. Huang, C. N. Li, et al. White light emission induced by confinement in organic Multiheterostructures [J]. Appl. Phys. Lett. 1999, 74:641-643.
    [131] C. W. Ko, Y. T. Tao, Bright white organic light-emitting diode [J]. Appl. Phys. Lett. 2001, 79:4234-4236.
    [132] G. Li and J. Shinar, Combinatorial fabrication and studies of bright white organic light-emitting devices based on emission from rubrene-doped4,4″-bis(2,2″-diphenylvinyl)-1,1″-biphenyl [J]. Appl. Phys. Lett., 2003, 83:5359-5361
    [133] Y. Shao, Y. Yang, White organic light-emitting diodes prepared by a fused organic solid solution method [J]. Appl. Phys. Lett., 2005, 86:073510
    [134] J. Feng, F. Li, W. Gao, et al. White light emission from exciplex using tris-(8-hydroxyquinoline)aluminum as chromaticity-tuning layer, Appl. Phys. Lett., 2001, 78:3947-3950.
    [135] J. Thompson, R. I. R. Blyth, M. Mazzeo, et al. White light emission from blends of blue-emitting organic molecules: A general route to the white organic light-emitting diode? [J]. Appl. Phys. Lett., 2001, 79:560-562.
    [136] B. W. D’Andrade, Jason Brooks, Vadim Adamovich, et al. White light emission using triplet excimers in electrophosphorescent organic light-emitting devices [J]. Adv. Mater., 2002, 14:1032-1036
    [137] B. W. D’Andrade, S. R. Forrest, White organic light-emitting devices for solid-state lighting [J]. Adv. Mater., 2004, 16:1585-1595.
    [1] C. W. Tang, S. A. VanSlyke, C. H. Chen, Electroluminescence of doped organic thin films [J]. J. Appl. Phys., 1989, 65(9):3610-3616.
    [2] Jianmin Shi and C. W. Tang, Doped organic electroluminescent devices with improved stability [J]. Appl. Phys. Lett., 1997, 70(13):1665-1667.
    [3] A. A. Shoustikov, Y. You, M. E. Thompson, Electroluminescence color tuning by dye doping in organic light-emitting diodes [J]. IEEE J. Sel. Top. in Quantum Electronics, 1998, 4(1):3-13.
    [4] Y. Hamada, H. Kanno, H. Fujii, et al. ACS Poly Millennial 2000, Abs., 200,P. 167.
    [5] C. H. Chen, C. W. Tang, J. Shi, K. P. Klubek, US Patent 6,020,078 (2002)
    [6] J. Shi, C. W. Tang, Anthracene derivatives for stable blue-emitting organic electroluminescence devices [J]. Appl. Phys. Lett., 2002, 80(17):3201-3203.
    [7] H. Aziz, Z. D. Popovic, N. Hu, et al. Degradation mechanism of small molecule-based organic light-emitting divices, Science 1999,283:1900-1902
    [8] D. M. Roundhill, J. P. Fackler (Eds.), Optoelectronic Properties of Inorganic Compounds, Plenum Press, 1999
    [9] Y. T. Tao, C. W. Ko, E. Balasubramaniam, Energy transfer vs. carrier trapping: emission mechanism in dye-doped organic light emitting diodes, Thin Solid Films, 2002, 417:61-66
    [10] Y. Li, M. K. Fung, Z. Xie, et al. An efficient pure blue organic light-emitting device with low driving voltages [J]. Adv. Mater., 2002, 14(18):1317-1321.
    [11] S. A. Van Slyke, C. H. Chen, C. W. Tang, Organic electroluminescent devices with improved stability [J]. Appl. Phys. Lett.,1996, 69(15):2160-2162.
    [12] B. X. Mi, Z. Q. Gao, C. S. Lee, et al. Reduction of molecular aggregation and its application to the highperformance blue perylene-doped organic electroluminescent device [J]. Appl. Phys. Lett., 1999, 75(26):4055-4057.
    [13] W. J. Shen, R. Dodda, C. C. Wu, et al. Spirobifluorene-Linked Bisanthracene: An Efficient Blue Emitter with Pronounced Thermal Stability [J]. Chem. Mater., 2004, 16(5):930-934.
    [14] Yasuhiko Shirota, Organic materials for electronic and optoelectronic devices [J]. J. Mater. Chem., 2000, 10:1-25.
    [15] K.Yamashita, J. Futenma, T. Mori, et al. Effect of location and width of doping region on efficiency in doped organic light-emitting diodes [J]. Synth. Met.,2000,111:87-90.
    [16] Y. Kijima, N. Asai and S. Tamura, A blue organic light emitting diode [J]. Jpn. J. Appl. Phys., 1999, Part 1 38(9):5274-5277.
    [17] J. N. Demas and G. A. Crosby, The Measurement of Photoluminescence Quantum Yields [J]. J. Phys. Chem., 1971, 75(8):991-1024.
    [18] 吴忠帜,洪文谊,利用飞行时间式电荷传导测量系统来探讨 TBPe 的载子传输特性 [J]. 国立台湾大学《台大工程》学刊,2003,88:61-66.
    [19] Z. Y. Xie, L. S. Hung and S. T. Lee, High-efficiency red electroluminescence from a narrow recombination zone confined by an organic double heterostructure [J]. Appl. Phys. Lett., 2001, 79(7):1048-1050.
    [20] S. T. Zhang, Z. J. Wang, J. M. Zhao, et al. Electron blocking andhole injection: The role of N,N′-Bis(naphthalen-1-y)-N,N′-bis(phenyl) benzidine in organic light-emitting devices [J]. Appl. Phys. Lett., 2004, 84(15):2916-2918.
    [21] C.H. Chen, C.W. Tang, J. Shi, et al. Recent developments in the synthesis of red dopants for Alq3 hosted electroluminescence, Thin Solid Films, 2000, 363:327-331.
    [22] V. Bulovic′, A. Shoustikov, M.A. Baldo, et al. Bright, saturated, red-to-yellow organic light-emitting devices based on polarization-induced spectral shifts [J]. Chem. Phys. Lett., 1998, 287:455-460.
    [23] L. S. Hung, C. H. Chen, Recent progress of molecular organic electroluminescent materials and devices [J]. Mat. Sci. and Eng. R, 2002, 39:143-222
    [24] Jianmin Shi and C. W. Tang, Doped organic electroluminescent devices with improved stability [J]. Appl. Phys. Lett., 1997, 70(13):1665-1667.
    [1] Hedi Mattoussi, Hideyuki Murata, Charles D. Merritt , et al. Photoluminescence quantum yield of pure and molecularly doped organic solid films [J]. J. Appl. Phys., 1999, 86(5):2642-2650.
    [2] D. J. Fatemi, H. Murata, C. D. Merritt, et al. Highly fluorescent molecular organic composites for light-emitting diodes [J]. Synth. Met., 1997, 65:1225-1228.
    [3] Y. Sato, T. Ogata, S. Ichinosawa, et al. Characteristics of organic electroluminescent devices with new dopants [J]. Synth. Met., 1997, 91:103-107
    [4] Yuji Hamada, Hiroshi Kanno, Tsuyoshi Tsujioka, et al. Red organic light-emitting diodes using an emitting assist dopant [J]. Appl. Phys. Lett.,2003, 75(12):1682-1684.
    [5] Tswen-Hsin Liu, Chung-Yeh Iou and Chin H. Chen, Doped red organic electroluminescent devices based on a cohost emitter system [J]. Appl. Phys. Lett.,2003, 83(25):5241-5243.
    [6] G. Sakamoto, C. Adachi, T. Koyama, et al. Significant improvement of device durability in organic light-emitting diodes by doping both hole transport and emitter layers with rubrene molecules [J]. Appl. Phys. Lett.,1999,75(6):766-768.
    [7] Z.D. Popovic, S. Xie, N. Hu, et al. Life extension of organic LED's by doping of a hole transport layer [J]. Thin Solid Films, 2000, 363:6-8
    [8] Y. Hamada, T. Sano, K. Shibata, et al. Influence of the emission site on the running durability of organic electroluminescent devices [J]. Jpn. J. Appl. Phys., 1995, Part 2 34(7):L824-826.
    [9] Hany Aziz, Z. D. Popovic, Study of organic light emitting devices witha 5,6,11,12-tetraphenylnaphthacene (rubrene)-doped hole transport layer [J]. Appl. Phys. Lett.,2003, 80(26):2180-2182.
    [10] K. Yang, W. Gao, J. Zhao, et al. An efficient and bright organic white-light-emitting device [J]. Synth. Met., 2002, 132:43-47.
    [11] G. Li and J. Shinar,Combinatorial fabrication and studies of bright white organic light-emitting devices based on emission from rubrene-doped 4,4′-bis.2,2′-diphenylvinyl.-1,1′-biphenyl [J]. Appl. Phys. Lett.,2003, 83(26):5359-5361.
    [12] Yan Shao and Yang Yang, White organic light-emitting diodes prepared by a fused organic solid solution method [J]. Appl. Phys. Lett.,2005, 86:073510.1-3.
    [13] L. B. Lin, S. A. Jenekhe, R. H. Young, et al. Hole injection and transport in tris-(8-hydroxyquinolinato) aluminum [J]. Appl. Phys. Lett.,1997, 70(15):2052-2054.
    [14] Y. Li, M. K. Fung, Z. Xie, et al. An efficient pure blue organic light-emitting device with low driving voltages, Adv. Mater., 2002, 14(18):1317-1321.
    [15] S. A. Van Slyke, C. H. Chen, C. W. Tang, Organic electroluminescent devices with improved stability [J]. Appl. Phys. Lett.,1996, 69(15):2160-2162.
    [16] Murata H, Merritt C D and Kafafi Z H. Emission mechanism in rubrene-doped molecular organic light-emitting diodes: Direct carrier recombination at luminescent conters [J]. IEEE J. Select. Top. Quantum Electronics, 1998, 4(1):119-124
    [17] Uchida M, Adachi C, Koyama T, et al. Charge carrier trapping effect by luminescent dopant molecules in single-layer organic light emitting diodes [J]. J. Appl. Phys., 1999, 86(3):1680-1687
    [18] E. Tuti?,D. Berner,L. Zuppiroli,Internal electric field and charge distribution in multilayer organic light-emitting diodes [J].J. Appl.Phys.,2003, 93(8):4594-4602.
    [19] S. T. Zhang, Z. J. Wang, J. M. Zhao, et al. Electron blocking and hole injection: The role of N,N′-Bis(naphthalen-1-y)-N,N′-bis(phenyl) benzidine in organic light-emitting devices, Appl. Phys. Lett., 2004, 84(15):2916-2918.
    [20] Futenma, T. Mori, T. Mizutani, Effect of location and width of doping region on efficiency in doped organic light-emitting diodes [J]. Synth. Met.,2000,111:87-90.
    [21] S.Muthu, F. Schuurmans, and M. Pashley, Red, Green and Blue LEDs for white light illumination [J]. IEEE J. Select. Top. Quantum Electronics, 2002, 8(2):333
    [22] Kido J, Shionoya H and Nagai K, Single-layer white light-emitting organic electroluminescent devices based on dye-dispersed poly(N-vinylcarbazole) [J]. Appl. Phys. Lett., 1995, 67: 2281-2283
    [23] Huang Y, Jou J, Weng W and Liu J. High-efficiency white organic light-emitting devices with dual doped structure [J]. Appl. Phys. Lett., 2002, 80: 2782-2784
    [24] Mazzeo M, Pisignano D, Sala F D, et al. [J]. Appl. Phys. Lett., 2003, 82: 334-336
    [25] 庞蕴凡. 视觉与照明[M]. 北京:中国铁道出版社, 1993.
    [26] Hung L S, Chen C H. [J]. Mater Sci and Eng R, 2002, 39: 143-222
    [27] Adachi C, Baldo M A, Forrest S R, et al. [J]. Appl. Phys. Lett., 2001, 78: 1622-1624
    [1] M. A. Baldo, D. F. O'Brien, M. E. Thompson, et al. Excitonic singlet-triplet ratio in a semiconducting organic thin film [J]. Phys. Rev. B, 1999, 60(20):14422-14428.
    [2] Y. Cao, I. D. Parker, G. Yu, et al. Improved quantum efficiency for electroluminescence in semiconducting polymers [J]. Nature, 1999, 397:414-416
    [3] M. A. Baldo, D. F. O'Brien, Y. You, et al. Highly efficient phosphorescent emission from organic electroluminescent devices [J]. Nature, 1998, 395:151-153.
    [4] D. F. O'Brien, M. A. Baldo, M. E. Thompson, et al. Improved energy transfer in electrophosphorescent devices [J]. Appl. Phys. Lett., 2004, 74(3):442-444.
    [5] Chihaya Adachi, Marc A. Baldo, Stephen R. Forrest, et al. High efficiency red electro- phosphorescence devices [J]. Appl. Phys. Lett., 2001, 78(11):1622-1624.
    [6] M. A. Baldo, S. Lamansky, P. E. Burrows, et al. Very high-efficiency green organic light-emitting devices based on electrophosphorescence, Appl. Phys. Lett., 1999, 75(1):4-6.
    [7] R. J. Holmes, S. R. Forrest, Y. J. Tung, et al. Blue organic electrophosphorescence using exothermic host-guest energy transfer [J]. Appl. Phys. Lett., 2003, 82(15):2422-2424.
    [8] A. Tsuboyama, H. Iwawaki, M. Furugori, et al. Homoleptic cyclometalated iridium complexes with highly efficient red phosphorescence and application to organic light-emitting diode [J]. J.Am. Chem.Soc., 2003, 125:12971-12979
    [9] F. Hwang, H. Chen, P. Chen, et al. Iridium(III) Complexes with Orthometalated Quinoxaline Ligands: Subtle Tuning of Emission to the Saturated Red Color [J]. Inorg. Chem., 2005, 44(5):1344-1353
    [10] Y. J. Su, H. L. Huang, C. L. Li, et al. Red Electrophosphorescent Devices Based on Iridium Isoquinoline Complex: Remarkable ExternalQuantum Efficiency Over a Wide Range of Current [J]. Adv. Mater., 2003, 15:884-888.
    [11] M. A. Baldo, M. E. Thompson, S. R. Forrest, High-efficiency fluorescent organic light-emitting devices using a phosphorescent sensitizer [J]. Nature, 1998, 403:750-753.
    [12] C. C. Wu, J. C. Sturm, and R. A. Register, et al. Integrated three-color organic light-emitting devices [J]. Appl. Phys. Lett., 1996, 69(21):3117-3119.
    [13] Z. Shen, P. E. Burrows, V. Bulovic′, et al. Three-Color, Tunable, Organic Light-Emitting Devices [J]. Science, 1997, 276:2009-2011
    [14] S. A. VanSlyke, M. Hettel, M. Boroson, et al. IDRC, 2000, C4
    [15] Y. Li, M. K. Fung, Z. Xie, et al. An efficient pure blue organic light-emitting device with low driving voltages [J]. Adv. Mater., 2002, 14(18):1317-1321.
    [16] Itano K, Ogawa H, Shirota Y. Exciplex formation at the organic solid-state interface: Yellow emission in organic light-emitting diodes using green-fluorescent tris(8-quinolinolato)aluminum and hole-transporting molecular materials with low ionization potentials [J]. Appl. Phys. Lett., 1998, 72(6):636-638.
    [17] Wang J F, Kawabe Y, Shaheen S E, et al. Exciplex electroluminescence from organic bilayer devices composed of Triphenyldiamine and quinoxaline derivatives [J]. Adv. Mater.,1998, 10(3):230-233
    [18] Liang C J, Zhao D, Hong Z R, et al. Exciplex emissions in bilayer and doped thin films containing a non-fluorescense gadolinium complex [J]. Thin Solid Film, 2000, 371:207-210.
    [19] Cocchi M, Virgili D, Giro G, et al. Efficient exciplex emitting organic electroluminescent devices [J]. Appl. Phys. Lett., 2002, 80(13):2401-2403.
    [20] Liang C J, Hong Z R, Li W L, et al. Improved performance ofelectroluminescent devices based on a europium complex [J]. Appl. Phys. Lett., 2000, 76(1):67-69.
    [21] J. Thompson, R. I. R. Blyth, M. Mazzeo, et al. White light emission from blends of blue-emitting organic molecules: A general route to the white organic light-emitting diode? [J]. Appl. Phys. Lett., 2001, 79(5):560-562.
    [22] Tao Y T, Balasubramaniam E, Danel A, et al. Sharp green electroluminescence from 1H-pyrazolo[3,4-b] quinoline -based light-emitting diodes [J]. Appl. Phys. Lett. , 2000, 77(11): 1575-1577.
    [23] 稀土配合物电致发光器件的瞬态特性和红外发光研究, 臧法欣博士论文第三章,2004,中国科学院长春光学精密机械与物理研究所
    [24] Y. T. Tao, C. W. Ko, E. Balasubramaniam, Energy transfer vs. carrier trapping: emission mechanism in dye-doped organic light emitting diodes [J]. Thin solid films, 2002, 417:61-66.
    [25] Z. R. Hong, C. S. Lee, S. T. Lee, et al. Bifunctional photovoltaic and electroluminescent devices using a starburst amine as an electron donor and hole-transporting material [J]. Appl. Phys. Lett., 2002, 81(15):2878-2880
    [26] B. Chu, D. Fan, W. L. Li, et al. Organic-film photovoltaic cell with electroluminescence [J]. Appl. Phys. Lett., 2002, 81(1):10-12.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700