基于视觉的空间目标位置姿态测量方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文以空间舱对接和空间机器人基于视觉对空间目标进行观测为背景,研究了测量目标位置和姿态的有关方法,并进行了地面模拟实验。
     由于空间的温差巨大等恶劣环境,而且存在着许多不可预知因素,使得测量系统的参数易受扰动并严重影响测量结果。为消除扰动影响,本文重点研究了抗扰动地测量目标位置姿态的方法和算法。
     本文开展了以下的研究工作。
     1).分析了像机模型参数冗余的现象,归纳出7种保持精度的简化像机模型,使摄像测量的许多方法和算法能够在保持精度的条件下得到简化,并降低了对求解条件的要求。
     2).对像机标定方法和算法进行了研究并提出多种标定方法。
     基于保持精度的简化像机模型,提出了一种基于共面控制点两步迭代标定像机的方法和一种基于共面控制直线标定像机线性参数的方法。共面特征较之异面特征更易于构造,因而这两种标定方法便于工程实施。
     对于像机相对于基准系外参数的标定,提出了一种借助辅助像机的全视场法和一种适用于合作目标对接问题的模拟对接测定法。还提出了一种直接求解线性方程的两步法手眼定标算法,作为对两步法手眼定标的改进,求解更加直观和简易。
     3).对扫描图像畸变进行了分析,提出了一种用分布于扫描图像四周的标准正交网格对全场进行标定和修正的方法,使普通扫描仪可用于精密测量。
     4).研究了测量目标位置姿态的方法和算法,尤其是抗扰动的测量方法。
     提出了一种在目标偏航角和俯仰角较小的条件下,从3个特征点单目线性粗估合作目标位置姿态的补点法,可为平差优化提供初值。
     提出了下述两种抗扰动地测量目标位置姿态的方法。
     固连修正像机的方法,通过与测量像机固连的修正像机实时监测测量像机外参数所受扰动情况,进而对其进行修正。
     基于光束法平差的方法,将易受扰动的测量系统参数作为平差参数与目标位置姿态参数共同进行优化求解。在单目或双目测量合作或非合作目标位置姿态时,不需对硬件进行改造,而完全从算法上实现了对像机内参数、像差系数、双像机间相对位置姿态参数以及目标结构参数所受扰动的修正。
     通过上述的抗扰动测量方法,能够有效解决测量系统参数扰动影响测量精度的难题,在测量系统参数受扰动的情况下,仍能得到与未受扰动时精度相当的测量结果。
     5).开发了空间舱对接和空间机器人视觉观测的地面模拟实验系统,设计了观测方案,并进行了数字仿真和实物仿真实验。
     本文所研究的方法和算法也可以在其它对摄像测量有需求的场合进行应用。
In this dissertation, the methods and algorithms of vision based targets' pose measurements are studied and ground simulation experiments are conducted. The background of the works is to measure space targets' relative distance and attitudes for the two projects of space cabin docking and space robot application.
     Because of the harsh environment and lots of unknown factors in the space, videogrammetric system parameters tend to be disturbed. The disturbance will badly impact the results. To remove the infections of the disturbance, disturbance-rejecting methods of pose measurements are studied especially.
     The main contents of the works in this dissertation are as follows.
     1). Camera parameters' redundancy is analyzed. 7 kinds of precision-reserved simplified imaging models are concluded. By using these simplified models, lots of methods and algorithms in videogrammetry can be simplified without loss of precision. With these models, the requirement on control conditions can be reduced.
     2). Methods and algorithms of camera calibration are studied. Several new methods of calibration are proposed.
     Based on the precision-reserved simplified imaging models, a method of camera calibration by two iterated steps from coplanar control points and a method to calibrate a camera's linear parameters from coplanar control lines are proposed. Coplanar signatures are easier to be prepared than non-coplanar signatures. Thus the proposed two calibration methods are more convenient to be applied.
     For the calibration of cameras' exterior parameters relative to the basic coordinate system, a panorama method by using an assistant camera and a simulated docking method which is adapted to the docking application are preposed. For the two-step method of eye-hand calibration, an algorithm by resolving linear equations is proposed. This algorithm is intuitionistic and simple.
     3). The aberration of scan images by a common scanner is analyzed. Then a method to calibrate a scan image by distributing standard orthogonal griddings around the scan image is presented. This method makes normal scanners be used for accuracy measurement.
     4). Methods and algorithms, especially the disturbance-rejecting methods of targets' pose measurements are studied.
     A point filling method to estimate a cooperative target's pose linearly and roughly from 3 points is prposed. When the target's yaw angle and pitching angle are small, this method can provide initial values for adjustment.
     The following two kinds of disturbance-rejecting methods of pose measurements are proposed.
     One method is to fix the measuring camera with an assistant camera that observes the disturbace of the measuring camera's exterior parameters and corrects them in real time.
     The other method is to take the disturbed parameters as adjusted values and modify them by bundle adjustment. By using this method to measure cooperative or uncooperative targets' pose by monocular or binocular videogrammetric system, the disturbance on the cameras' interior parameters, aberration coefficients and relative pose parameters between the two cameras can be removed. These disturbance-rejecting functions are realized by arithmetic-software and do not require any change on the hardware system.
     By the above disturbance-rejecting methods, the problems fetched from the disturbance on the videogrammetric system parameters are solved. Thus accurate measurements can be reached even if the system parameters are disturbed.
     5). Ground experimental systems of vision-based pose measurements for space cabin docking and space robot systems are developed. Observe systems' schemes are designed and the data and physical simulation experiments are conducted.
     The methods and algorithms studied in this dissertation can also be applied on other videogrammetry tasks.
引文
[1]国务院新闻办公室.中国的航天白皮书[R],2000.11
    [2]解放日报电子版.载人航天二期工程将解决两大关键技术[W]. http://old.jfdaily.com/gb/ode2/nodel72/node20519/node20522/userobjectlai302101.html
    [3]林来兴.空间交会对接技术[M].北京:国防工业出版社,1995
    [4]吴宏鑫,胡海霞,解永春,王颖.自主交会对接若干问题[J].宇航学报,2003,24(2):132~137
    [5]J. C. Tietz, L. M. Germann. Autonomous Rendezvous and Docking [C]. Proceedings of the 1992 American Control Conference, 1982, v2: 460~465
    [6]J. C. Tista, J. H. Kelly. Development of an Autonomous Video Rendezvous and Docking System [R]. Martin Marietta Aerospace Report No. MCR-82-569. Martin Maristta Aerospace: Denver Aerospace, Denver, CO, 1982
    [7]C. C. J. Ho, N. H. M. Clamroch. Automatic Spacecraft Docking Using Computer Vision-Based Guidance and Control Techniques [J]. Journal of Guidance, Control, and Dynamics. 1993,16(2):281~288
    [8]人民网.我国将派遣太空机器人登上月球[W]. http://www.people.com.cn/GB/paper447/1708/276181.html
    [9]G. H. Stokes, C. Braun, R. Sridharan, et al. The Space-Based Visible Program [J]. Lincoln Laboratory Journal, 1998,11(2):205~238
    [10]N. Inaba, M. Oda. Autonomous Satellite Capture by a Space Robot: World First on-Orbit Experiment on a Japanese Robot Satellite ETS-Ⅶ [C]. Proceedings of 2000 IEEE Intenational Conference on Robotics and Automation, v2: 1169~1174
    [11]刘景泰,吴水华,孙雷.基于视觉的遥操作机器人精密装配系统[J].机器人,2005,27(2):178~182
    [12]H. F. L. Pinkney, C. I. Perratt, S. G. MacLean. Canex-2 Space Vision System Experiments for Shuttle Flight Sts-54 [C]. SPIE Close-Range Photogrammetry Meets Machine Vision, 1990,1395:374~381
    [13]T. Davis, T. Baker. T. Belchak, W. Larsen. XSS-10 Micro-Satellite Demonstration Program [C]. SSC03-IV-1,17th AIAA/USU Conference on Small Satellites, Logan, UT, 2003
    [14]S. Takezawa, S. Satori, R. Mitsuhashi, et al. Experiment Study of Releasing and Rendezvous Docking Mechanism for Microsatellite in the Microgravity Field [C]. Proceedings of IEE Control, Cambridge, UK, 2000
    [15]M. Vergauwen, M. Pollefeys, T. Tuytelaars. On Satellite Vision-aided Robotics Experiment [C]. Proceedings of the 2000 IEEE International Conference on Robotics and Automation, v4:4039~4044
    [16]S. Todorovic, M. C. Nechyba. A Vision System for Intelligent Mission Profiles of Micro Air Vehicles [J]. IEEE Transaction on Vehicular Technology, 2004,53(6):1713~1725
    [17]王志凌.空间智能机器人的三维视觉系统[J].控制工程,1989,6:16~24
    [18]M. Swartwout, J. Macke, K. Bennett, et al. The Bandit: An Automated Vision-Navigated Inspector Spacecraft [C]. Prpoceedings of the 17th AIAA/USU Conference on Small Satellitess, Logan, Utah, 2003
    [19]林来兴.空间交会对接技术的发展[J].中国航天,1993(6):15~19
    [20]I. Kawano, Y. wakabayashi, et al. In-Orbit Demonstration Concept for the Space Platform in NASDA-Rendezvous Docking System [C]. IAF-89-017, Malaga, 1989
    [21]J. S. Goddard, W. B. Jatko, R. K. Ferrell, et al. Robust Determination for Autonomous Docking [C]. ANS 6th Topical Meeting on Robotics and Remote System, Monterey CA, 1995
    [22]J. G. Macke, P. M. David, A. S. Michael, et al. Deployable Inspector Spacecraft for Distributed Field Measurements [C]. AIAA ISSSC Conference, 2004
    [23]M. Swartwout. Deployable Inspacecraft: Technology Development and Future Applications with Solar Sails [C]. Technology Applications Conference, Greenbelt, MD, 2004
    [24]M. E. Polites. An Assessment of the Technology of Automated Rendezvous and Capture in Space [R]. NASA/TP-1998-208528,1998
    [25]B. N. Cohen. Pioneering the Space Frontier-An Exciting Vision of Our Next Fifty Years in Space [R]. Bantam Books, Inc. 1986
    [26]司马杭仁.美国发射首个“自主交会技术验证”飞行器[W]. http://www.sat-china.com/ShowNews/?id=6887
    [27]林来兴.美国“轨道快车”计划中的自主空间交会对接技术[J].国际太空,2005(2):23~26
    [28]L. Kerstein, D. Wilde, Y. Frumkin, O. Sytin. Inspector [C]. 49th IAF Congress, Melbourne, Australia, 1998
    [29]W. Fesh. Rendezvous and Docking Technology Development for Future European Missions [J]. ESAJ, 1985,9(1):345~352
    [30]B. Clandinon. Detailed System strudies on RVD [R]. Final Report Prepared for ESTEC under ESA Contract 5589/83, N84-33428,1984
    [31]W. Hill, M. Steckling. MICROSim [C]. IAC-02-A. 3.02,34th COSPAR Scientific Assembly, The Second World Space Congress, Houston, TX, USA, 2002
    [32]I. U. Craig, R. Guy, S. Jerome. In-orbit Results from the SNAP-l Nanosatellite and its Future Potential [J]. Philosophical Transactions: Mathematical, Physical and Engineering Sciences. 2003,361(1802):199~203
    [33]W. H. Steyn, Y. Hashida. In-Orbit Attitude Performance of the 3-Axis Stabilised SNAP-l Nanosatellite [C]. SSC01-V-1,15th Annual AIAA/USU Conference on Small Satellites, Itah State University, Logan Utah USA, 2001
    [34]Y. Taniguchi. The Development of RVD Technology for Japanses Future Space Systems [R]. IAF-91-009,1991
    [35]S. Kimura, S. Tsuchinya. Micro-OLIVE: Preliminary Experiment on Remote Inspection Using Small Satellite [C]. IAA-99-IAA. 11.1.05, IAA. ll. Small Satellite Missions Symposium, Amsterdam, the Netherlands, 1999
    [36]T. Ishikawa, S. Satori, et al. Breadboard Model for Nanosatellite Mothership Daughtership Experiment [C]. SSC00-II-7,14th Annual AIAA/Utah State University Conference on Small Satellites, Logan, Utah, 2000
    [37]S. Satori, M. Suzuki, et al. Nanosatellite Mothership-Daughtership Experiment by Japanese Universities [C]. Proceedings of IEEE Aerospace Conference, Big Sky, MT, USA, 2000:109~115
    [38]M. Oda. Experiences and Lessons Learned from the ETS-Ⅶ Robot Satellite [C]. Proceedings of 2000 IEEE International Conference on Robotics and Automation, vl: 914~919
    [39]M. Oda. Space robot experiments on NASDA's ETS-Ⅶ satellite-preliminary overview of the experiment results [C]. Proceedings of the 1999 IEEE International Conference on Robotics and Automation, 1999:1390~1395
    [40]K. Isao, M. Mokuno, K. Toru, T. Suziki. Result of Autonomous Rendezvous Docking Experiment of Engineering Test Satellite-Ⅶ [J]. AIAA Journal of Spacecraft and Rockets, 2001,38(1):105~111
    [41]孙汉旭,王风翔.加拿大、美国空间机器人研究情况[J].航天技术与民品,1999.4:33~35
    [42]尤政,戴汨."航天清华一号"微小卫星及其图象处理[J],2001,5(3):177~182
    [43]王之卓.摄影测量学[M].北京:测绘出版社,1982
    [44]李德仁等.基础摄影测量学[M].北京:测绘出版社,1995
    [45]张剑清,潘励,王树根.摄影测量学[M].武汉:武汉大学出版社,2003
    [46]冯文灏.近景摄影测量的基本技术提要[J].测绘科学,2000,25(4):26~30
    [47]张祖勋,张剑清.数字摄影测量学[M].武汉:武汉测绘科技大学出版社,1996
    [48]李德仁,刘良明,胡晓沁.1996-2000年中国摄影测量与遥感进展(国家报告)[R].国际摄影测量与遥感学会第19届大会,2000
    [49]李德仁.摄影测量与遥感的现状及发展趋势[J].武汉测绘科技大学学报,2000,25(1):1~6
    [50]马颂德,张正友.计算机视觉——计算理论与算法基础[M].北京:科学出版社,1998
    [51]桑肯等.图像处理、分析与机器视觉[M].北京:人民邮电出版社,2002
    [52]R. Azriel. From Image Analysis to Computer Vision: An Annotated Bibliography, 1955-1979 [J]. Computer Vision and Image Understanding, 2001,84:298~324
    [53]游素亚,徐光佑.立体视觉研究的现状与进展[J].中国图像图形学报,1997,2(1):17~24
    [54]D. H.巴拉德,C. M.布朗.计算机视觉[M].北京:科学出版社,1985
    [55]J. L. Mundy. The Relationship between Photogrammetry and Computer Vision [W], http://rsise.anu.edu.au/~hartley/papers/SPIE-93/joint-paper/joint2.pdf
    [56]Horn. Photogrammetry and Computer Vision [M]. Optical Society of America, 1987
    [57]A. Legac. Videogrammetry or Digital Photogrammetry: General Remarks, Methodology, Applications [C]. Preceedings of SPIE, 1994,2350:16~21
    [58]S. C. Jensen, L. Rudin. Measure: An Interactive Tool for Accurate Forensic Photo/Videogrammetry [C]. Preceedings of SPIE, 1995,2567:73~83
    [59]于起峰,陆宏伟,刘肖琳.基于图像的精密测量与运动测量[M].北京:科学出版社,2002
    [60]R. Y. Tsai. A Versatile Camera Calibration Technique for High Accuracy 3D Machine Vision Metrology Using Off-the-Shelf TV Cameras and Lenses [J]. IEEE Journal of Robotics and Automation, 1987, RA-3(4):323~344
    [61]J. Weng, P. Cohen, M. Herniou. Camera Calibration with Distortion Models and Accuracy Evaluation [J]. IEEE Transactions on Pattern Analysis And Machine Intelligence, 1992, 14(10):965~980
    [62]章志鸣,沈元华,陈惠芬.光学[M].北京:高等教育出版社,2000
    [63]H. A. Martins, J. R. Birk, R. B. Kelley. Camera Models Based no Data from Two Calibration Planes [J]. Computer Graphics and Imaging Processing. 1981(17):173~180
    [64]G. Wei, S. Ma. Two-plane Calibration: A Unified Model [C]. Proc. CVPR'91,1991: 133~138
    [65]G. Wei, S. Ma. Complete Two-plane Camera Calibration and Experimental Comparisons [C]. Proc. ICCV'93,1993:439~446
    [66]G. Wei, S. Ma. Implicit and Explicit Camera Calibration: Theory and Experiments [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994,16(5):469~480
    [67]F. Margaret. Perspective Projection: The Wrong Imaging Model [P]. TR 95201, CS, U. Iowa, 1995
    [68]边少锋,柴洪洲,金际航.大地坐标系与大地基准[M].北京:国防工业出版社,2005
    [69]武汉大学测绘学院测量平差学科组.误差理论与测量平差基础[M].武汉:武汉大学出版社.2003
    [70]崔希璋,於宗俦,陶本藻,刘大杰.广义测量平差[M].北京:测绘出版社,1982
    [71]樊功瑜.误差理论与测量平差[M].上海:同济大学出版社,1998
    [72]李德仁,袁修孝.误差处理与可靠性理论[M].武汉:武汉大学出版社,2002
    [73]S. Granshaw. Bundle Adjustment Methods in Engineering Photogrammetry [J]. Photogrammetric Record, 1980,10(56):181~207
    [74]J. Bill, M. Philip, H. Richard, F. Andrew. Bundle Adjustment-A Modern Synthesis [J]. In W. Triggs, A. Zisserman, and R. Szeliski, editors, Vision Algorithms: Theory and Practice, LNCS, Springer Verlag, 2000:298~375
    [75]Richard Hartley, Andrew Zisserman著,韦穗,杨尚骏,章权兵,胡茂林译.计算机视觉中的多视图几何[M].安徽大学出版社,2002
    [76]Fusiello A. Uncalibrated Euclidean Reconstruction: A Review [J]. Image and Vision Computing, 2000(18):555~563
    [77]周世健,臧德彦,鲁铁定.测量平差中各种模型的等价转换关系[J].测绘学院学报,2001,18(1):1~7
    [78]李少元,姚军.不同平差方法一致性的理论分析[J].石家庄铁道学院学报,2003,16(1):47~50
    [79]张广军.机器视觉[M].北京:科学出版社,2005
    [80]邱茂林,马颂德,李毅.计算机视觉中摄像机定标综述[J].自动化学报,2000,26(11):43~55
    [81]孟晓桥,胡占义.摄像机自标定方法的研究与进展[J].自动化学报,2003,16(3):110~124
    [82]G. Xu and N. Sugimoto. A Linear Algorithm for Motion from Three Weak Perspective Images Using Euler Angles [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(12):54~57
    [83]W. Faig. Calibration of Close-range Photogrammerty Systems: Mathematical Formation [J]. Photogramm. Eng. Remote Seris., 1975,41(12):1479~1486
    [84]Y. I. Abdel-Aziz, H. M. Karara. Direct Linear Transformation into Object Space Coordinates in Close-Range Photogrammetry [C]. Urbana: Proceeding Symp Close-Range Photogrammetry, 1971:1~18
    [85]K. W. Wong. Mathematical Foundation and Digital Analysis in Close-range Photogrammetry [C]. Photogrammetric Engineering and Remote Sensing, 1975(44):1355~1373
    [86]H. M. Karara. Handbook of Close-Range Photogrammetry [M]. America Society of Photogrammetry, 1979
    [87]M. A. Sid-Ahmed, T. B. Mohamed. Dual Camera Calibration for 3-D Machine Vision Metrology [J]. IEEE Trons. Instrm. Meas., 1990(39):512~516
    [88]Z. Zhang. A Flexible New Technique for Camera Calibration [R]. Microsoft Corporation: Technical Report, MSR-TR-98-71,1998
    [89]R. I. Hartley. Estimation of Relative Camera Positions for Uncalibrated Cameras [C]. Proceedings of the ECCV92, 1992:379~387
    [90]R. I. Hartley. In Defence of the 8-point Algorithm [C]. Cambridge (MA): Proceeding 5th International Conference on Computer Vision, 1995:1064~1070
    [91]S. Maybank, O. Faugeras. A Theory of Self-calibration of a Moving Camera [J]. International Journal of Computer Vision, 1992,8(2):123~151
    [92]R. Hartley. Euclidean Reconstruction and Invariants from Multiple Images [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1994,16(10):1036~1041
    [93]Triggs. Autocalibration and the Absolute Quadric [C]. In Proceeding International Conference on Pattern Recognition, 1997
    [94]M. Pollefeys, L. Van Gool, and M. Oosterlinck. The Modulus Constraint: A New Constraint for Self-Calibration [C]. In Proceeding International Conference on Pattern Recognition, Vienna, Austria, 1996:349~353
    [95]Heyden, K. Astrom. Euclidean Reconstruction from Image Sequences with Varying and Unknown Focal Length and Principal Point [C]. In Proceeding Conference Computer Vision and Pattern Recognition, 1997
    [96]M. Pollefeys, R. Koch, G. L Van. Self-calibration and Metric Reconstruction in Spite of Varying and Unknown Internal Camera Parameters [C]. Proceedings of the 6th International Conference on Computer Vision, 1998:90~95
    [97]R. I. Hartley. Self-Calibration of Stationary Cameras [J]. International Journal of Computer Vision, 1997,22(1):5~23
    [98]胡占义,吴福朝.基于主动视觉摄像机标定方法[J].计算机学报,2002,25(11):1149~1156
    [99]S. D. Ma. A Self-calibration Technique for Active Vision System [J]. IEEE Transactions on Robot Automation, 1996,12(1):114~120
    [100]熊春山,黄心汉,王敏.手眼立体视觉的算法与实现[J].机器人,2001,23(2):113~117
    [101]G. Chesi, K. Hashimoto. Camera Pose Estimation from Less than Eight Points in Visual Servoing [C]. Proceedings of the 2004 IEEE International Conference on Robotics and Automation, V1: 733~738
    [102]钟志光,易建强,赵冬斌.一种基于点对的相机几何标定方法[J].机器人,2005,27(1):31~34
    [103]P. D. Fiore. Efficient Linear Solution of Exterior Orientation [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001,23(2):140~148
    [104]F. Devernay, O. Faugeras. Straight Lines Have to Be Straight-Automatic Calibration and Removal of Distortion from Scene of Structured Environments [J]. Machine Vision and Applications manuscript, 2001,13(1):14~24
    [105]李华,吴福朝,胡占义.一种新的线性摄像机自标定方法[J].计算机学报,2000,23(11):1121~1120
    [106]李华,胡占义.基于射影重建的线性摄像机自标定方法[J].软件学报,2002,13(2):2286~2296
    [107]吴福朝,胡占义.摄像机自标定的线性理论与算法[J].计算机学报,2001,24(10): 1221~1235
    [108]吴福朝,胡占义.由二次曲线确定摄像机方位的线性算法[J].计算机学报.2002,25(11):1157~1164
    [109]吴福朝,阮宗才,胡占义.非线性模型下的摄像机自标定[J].计算机学报,2002.25(3):276~283
    [110]K. Daniilidis. Hand-Eye Calibration Using Dual Quaternions [J]. International Journal of Robotics Research, 1999,18(3):286~298
    [111]R. Enciso, T. Vieville. Self-calibration from Four Views with Possibly Varying Intrinsic Parameters [J]. Image and Vision Computing, 1997(15):293~305
    [112]邱志强,唐力铁,于起峰.基于神经网络模型的CCD像差修正[J].光学技术,2003,29(1):86~88
    [113]高文,陈熙霖.计算机视觉——算法与系统原理[M].北京:清华大学出版社,1999
    [114]J. K. Aggarwal, Y. F. Wang. Analysis of a Squence of Images Using Point and Line Correspondences [C]. Proceedings of IEEE Interenational Conference of Robotics and Automation. 1987:1275~1280
    [115]S. Ma, G. Wei, J. Huang. Segment Based Camera Calibration [J]. Journal of Computer Science and Technology, 1993,8(1):11~12
    [116]高满屯.基于长度和角度约束的线图解释[J].模式识别与人工智能,1993,6(3):267~272
    [117]J. R. Holt, A. N. Netravali. Uniqueness of Solutions to Structure and Motion from Combinations of Point and Line Correspondences [J]. Journal of Visual Communication and Image Representation, 1996,7(2):126~136
    [118]D. Dementhon, L. S. Davie. Model-based Object Pose in 25 Lines of Code [J]. International Journal of Computer Vision, 1995,15(1):123~141
    [119]C. C. Wang. Extrinsic Calibration of a Vision Sensor Mounted on a Robot [J]. IEEE Transactions on Robotics and Automation, 1992,8(2):161~175
    [120]Y. C. Shui, S. Ahmad. Calibration of Wrist-Mounted Robotic Sensors by Solving Homogenous Transform Equations of the Form AX=XB [J]. IEEE Transaction on Robotics and Automation, 1989,5(1):16~29
    [121]R. Y. Tsai. An Efficient and Accuration Camera Calibration. Technique for 3D Machine Vision [C]. Proceedings of IEEE Conference of Computer Vision and Pattern Recognition, 1986:364~374
    [122]J. C. K. Chou, M. Kamel. Finding the Position and Orientation of a Sensor on a Robot Manipulator Using Quaternions [J]. The International Journal of Robotics Research, 1989,10(3):240~254
    [123]H. Zhuang, Z. S. Roth. Comments on "Calibration of Wrist-mounted Robotics Sensor by Solving Homobeneous Transform Equation of the Form AX=XB" [J]. IEEE Transactions on Robitics and Automation, 1994,7(6):877~878
    [124]E. P. Baltsavias. DeskTop Publishing Scanners [C]. Proceedings of the OEEPE Workshop "Application of Digital Photogrammetric Workstations", 2001,33:75~97
    [125]陈玲华,张逸新.多光束扫描成像系统的像差分析[J].光学学报,2000,20(1):127~132
    [126]田向春,唐慧君.扫描仪测量镜头畸变误差的软件校正[J].光学精密工程,2001,9(3):234~237
    [127]W. B. Jatko, J. S. Goddard, R. K. Ferrell, et al. Crusader Automated Docking System Phase Ⅲ Repot [R]. Tech. Rep. ORNL/TM-13177, Oak Ridge National Laboratory, 1996
    [128]H. F. L. Pinkney, C. I. Perratt. A Flexible Machine Vision Guidance System fo 3-Dimensional Control Tasks [C]. Proceedings of the International Society for Photogrammetry and Remote Sensing, 1986:401~411
    [129]R. Mukundan, K. R. Ramakrishnan. A Quaternion Solution to the Pose Determation Problem for Rendezvous and Docking Simulations [J]. Mathematics and Computers in Simulation, 1995,39:143~153
    [130]R. Mukundan, R. Narayanan, N. Philip. A Vision Based Attitude and Position Estimation Algorithm for Rendezvous and Docking [J]. Journal of Spacecraft Technology, 1994,4(2):60~67
    [131]J. L. Junkins, D. Hughes, K. Wazni, et al. Vision-Based Navigation for Rendezvous, Docking, and Proximity Operations [C]. 22nd Annual AAS Guidance and Control Conference, Advances in Astronautical Sciences, 1999
    [132]R. Alonso, J. Du, D. Hughes, J. L. Junkins, J. Crassidis. Relative Navigation for Formation Flight of Spacecraft [C]. Proceedings of the Flight Mechanics Symposium, NASA-Goddard Space Flight Center, 2001
    [133]L. Quan, Z. D. Lan. Linear N-Point Pose Determination [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence [C]. 1999,21(7):1~7
    [134]C. I. Lee, T. S. Huang. Finding Point Correspondences and Determining Motion of Two Weak Perspective Views [J]. Compution Vision, Graphic and Image Processing, 1990,52(3):309~327
    [135]L. S. Shapiro, A. Zisserman, and M. Brady. 3D Motion Recovery via Affne Epipolar Geometry [J]. International Journal of Computer Vision, 1995,16(2):147~182
    [136]G. Shakhnarovich, P. Viola, T. Darrell. Fast Pose Estimation with Parameter Sensitive Hashing [C]. IEEE International Conference on Computer Vision. 2003,2:750~757
    [137]W. Stefan, W. Patrick, H. Gerd. A Feature Map Approach to Pose Estimation Based on Quaternions [C]. Proceedings of 7th Internional Conference on Artificial Neural Networks, Lausanne, Switzerland, 1997:949~954
    [138]B. K. P. Horn. Closed-form Solution of Absolute Orientation Using Unit Quaternion [J]. Journal of the Optical Society of America A, 1987,4(4):629~642
    [139]M. W. Walker,L. Shao. Estimating 3D Location Parameters Using Dual Number Quaternions [J]. Image Understanding, 1991,54(4):358~367
    [140]J. S. Goddard. Pose and Motion Estimation from Vision Using Dual Quaternion-Based Extended Kalman Filtering [D]. University of Tennessee, Knoxville, Ph. D. Thesis, 1997
    [141]G. Wells, C. Vcnaille, C. Torras. Promising Research Vision-based Robot Positioning Using Neural Networks [J]. Image and Vision Computing, 1996,14(10):715~732
    [142]B. H. Kim, D. K. Roh, J. M. Lee, et al. Localization of a Mobile Robot Using Images of a Moving Target [C]. Proceeding of the 2001 IEEE International Conference on Robotics & Automation, 2001:253~258
    [143]S. Ullman. The Interpretation of Visual Motion [M]. M. I. T. Press, Cambridge, MA, 1979
    [144]费蔚春.空间飞行器交会对接相对位置和姿态的估值方法[D].北京航空航天大学硕士学位论文,2003
    [145]费蔚春.飞行器交会对接相对位置和姿态的估计方法[J].中国空间科学技术,2004,24(3):1~6
    [146]蔡喜平,戴永江,赵远,王岩.运用计算机视觉对空间飞行器交会对接中的位置和姿态的测量[J].宇航学报,1995,16(4):80~84
    [147]王一凡,卢欣.空间交会对接光学敏感器测量的实验研究[J].航天控制,1996,14(2):57~62
    [148]杜小平,崔占忠,曾德贤.基于IEKF序列图像分析航天器相对状态测量方法[J].装备指挥技术学院学报,2004,15(4):49~55
    [149]杜小平,赵继广,崔占忠,曾德贤.基于超分辨率重构的航天器位置姿态测量方法[J].北京理工大学学报,2005,23(3):220~224
    [150]杜小平,赵继广,崔占忠,张彗星.基于计算机视觉的航天器间相对状态测量系统[J].光学技术,2003,29(6):664~666
    [151]徐刚峰,李飚,沈振康.自主交会对接中运动参数的测量[J].系统工程与电子技术,2004,26(10):1500~1502
    [152]徐刚锋.空间交会对接中光学测量技术研究[D].国防科学技术大学硕士学位论文,2001
    [153]黄玉明,周世安,王立新,范汝英,吴宏鑫.目标飞行器位置姿态的光学测量[J].宇航学报,1993,14(1):97~103
    [154]林来兴,李灿.交会对接逼近阶段CCD相机的测量方法[J].宇航学报,1994,15(2):24~34
    [155]郝颖明,朱枫,欧锦军.目标位姿测量中的三维视觉方法[J].中国图象图形学报,2002,7A(12):1247~1251
    [156]张世杰,基于单目视觉的航天器相对导航理论与算法研究[D].哈尔滨工业大学博士学位论文,2005
    [157]张世杰,曹喜滨,李辉.交会对接航天器间相对位姿参数单目视觉测量解析算法[J].光学技术,2005,31(1):6~10
    [158]张世杰,曹喜滨,陈雪芹.航天器相对位姿参数光学测量解析算法[J].航空学报,2005,26(2):214~218
    [159]崔巍.双足步行机器人立体视觉系统[D].哈尔滨工业大学博士学位论文,2003
    [160]杜歆.用于导航的立体视觉系统[D].浙江大学博士学位论文,2003
    [161]周富强.双目立体视觉检测的关键技术研究[R].北京航空航天大学博士后工作报告,2002
    [162]邾继贵,李艳军,叶声华,唐大林,张国全.单摄像机虚拟立体视觉测量技术研究[J].光学学报,2005,25(7):943~948
    [163]王建刚,王寻羽,白雪生,徐心平.基于神经网络的三维物体位姿测定[J].机器人,1996,18(2):84~90
    [164]M. A. Fischler, R. C. Bolles. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography [C]. Communications of the ACM, 1981,24(6):381~395
    [165]汤建良.透视n点定位(PnP)问题研究[D].中国科学院数学与系统科学研究院博士学位论文,2003
    [166]梁栋.基于多视图的参数估计与形状重构[D].安徽大学博士学位论文,2002
    [167]R. Horaud, B. Conio, O. Leboulleux. An Analytic Solution for the Perspective 4-Point Problem [C]. CVGIP, 1989,47:33~44
    [168]胡占义,雷成,吴福朝.关于P4P问题的一点讨论[J].自动化学报,2001,27(6):770~776
    [169]吴福朝,胡占义.PnP问题的线性求解算法[J].软件学报,2003,14(3):682~688
    [170]吴福朝,胡占义.关于P5P问题的研究[J].软件学报,2001,12(5):768~775
    [171]W. J. Wolfe, D. Mathis. The Perspective View of Three Points [J]. IEEE Transaction on Paaern Analysis and Machine Intelligence, 1991,13(1):66~73
    [172]苏成,徐迎庆,李华,刘慎权.判定P3P问题正解数目的充要条件[J].计算机学报,1998,21(12):1084~1095
    [173]R. M. Haralick. Determining Camera Parameters from the Perspective Projection of a Rectangle [J]. Pattern Recognition, 1989,22(3):225~230
    [174]M. A. Penna. Determining Camera Parameters from the Perspective Projection of a Quadrilateral [J]. Pattern Recognition, 1991,24(6):533~541
    [175]M. L. Liu, Wong K H. Pose Estimation Using Four Corresponding Points [J]. Pattern Recognition Letters, 1999,20:69~74
    [176]M. A. Abidi and T. Chandra. A New Efficeint and Direct Solution for Pose Estimation Using Quadrangular Targets: Algorithm and Evaluation [J]. IEEE Transaction on Pattern Analysis and Machine Intelligence, 1995,17(5):534-538
    [177]P. David, D. Dementhon, R. Duraiswami, H. Samet. Simultaneous Pose and Correspondence Determination Using Line Feature [C]. Proceedings of IEEE Computer Vision and Pattern Recognition, 2003,2:424~431
    [178]F. Domaika, C. Garcia. Pose Estimation Using Point and Line Correspondences [J]. Journal of Real-Time Imaging, 1999,5(3):217~232
    [179]A. Cropp, P. L. Palmer, P. Mclauchlan, C. Underwood. Estimation the Pose of a Known Target Satellite [J]. IEE Electronic letters, 2000,36(15):1331~1332
    [180]A. Cropp, P. L. Palmer, C. I. Underwood. Pose Estimation of the Target Satellite for Proximity Operations [C]. SSC00-Ⅲ-7,14th Annual/USA Conference on Small Statellite,2000
    [181]M. Kolesnik, G. Baratoff. 3D Interpretation of Sewer Circular Structures [C]. Proceedings of 2000 IEEE International Conference on Robotics and Automation. v2:1453~1458
    [182]高满屯.利用直线对应计算纯旋转运动参数的一种线性方法[J].西北工业大学学报,1992,14(3):24~27
    [183]C. Chang, W. Tsai. Reliable Determination of Obiect Pose from Line Features by Hypothesis Testing [J]. IEEE Transactions on Pattern Analysis and Machine Intelligence,1999,21(12):1235~1241
    [184]O. Faugeras. What Can Be Seen in Three Dimensions with an Uncalibrated Stereo Rig [C]. Proceedings of ECCV'92,1992:563~578
    [185]R. Hartley. Stereo from Uncalibrated Cameras [C]. Proceedings of CVPR'92,1992:761~764
    [186]G. Frangois. Hierarchical Visual Perception with Calibration [R]. Report of Research, INRJA, France, 1996, No: 3002

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700