平流层飞艇动力学建模与控制方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
临近空间是指距地面20-100km高度之间的空间范围,包括大气平流层、中间层和部分电离层区域,介于常规航空器的最高飞行高度和航天器的最低轨道高度之间,是跨接航空与航天的新兴领域,其重要价值和战略意义日益凸显。平流层飞艇是指依靠浮升气体提供静升力,依靠推进系统和控制系统实现操纵飞行,长期工作在平流层平均风速较小的高度范围,并执行特定任务的浮空类飞行器。平流层飞艇具有留空时间长、载荷量大、效费比高、隐身性能好、生存能力强等优点,可广泛应用于侦察监视、通信中继、区域导航、环境监测、应急救灾、科学探测等领域,已成为当前航天航空领域的研究热点。平流层飞艇控制系统设计是其研制和工程应用的关键技术之一,同时也是飞行动力学与控制研究领域的重难点问题。论文以解决平流层飞艇飞行控制问题为目的,着重拓展新理论和新方法,系统研究了平流层飞艇动力学建模与控制方法,主要研究成果如下:
     1、研究了平流层飞艇动力学建模方法,提出了基于运动状态方程特征值和特征向量的模态分析方法,研究了平流层飞艇的动力学特性。1)介绍了平流层飞艇总体方案,定义了描述其空间运动的坐标系和运动参数,分析了作用在其上的力和力矩,综合考虑浮力、重力、空气动力、推力和附加惯性作用,采用Newton-Euler方法建立了平流层飞艇的动力学模型。2)采用小扰动线性化方法推导了平流层飞艇的线性运动方程,应用Lyapunov稳定性判据研究了其运动稳定性:对于给定的未扰运动,小扰动纵向运动和横侧向运动均为渐近稳定的。3)通过计算运动状态方程的特征值和特征向量,研究了平流层飞艇的运动模态:纵向运动由浮沉、浪涌和摆动三种模态叠加而成,横侧向运动由偏航衰减、侧滑衰减和滚转振荡三种模态叠加而成。
     2、针对平流层飞艇姿态运动非线性、通道耦合、易受外界扰动等特点,提出了一种反馈线性化终端滑模控制方法,为解决姿态调节控制问题提供了技术方案。1)推导了平流层飞艇的姿态运动方程,通过选取合适的状态向量和控制向量,将其描述为仿射非线性系统。2)采用反馈线性化方法将非线性姿态控制系统线性化解耦为三个通道的线性子系统。3)利用滑模控制对模型参数摄动和外界扰动的鲁棒性设计了姿态控制系统,通过选取终端滑模函数使得控制误差在有限时间内收敛至零,应用Lyapunov稳定性理论证明了闭环系统的稳定性。结果表明:姿态控制系统能够在模型参数摄动和外界扰动条件下以零稳态误差调节至指令姿态角;同指数趋近律滑模控制相比,终端滑模控制能够使控制误差在有限时间内收敛至零,提高了系统的响应速度和控制精度。
     3、针对平流层飞艇空间运动方程多变量、非线性、模型参数摄动等特点,提出了一种模糊在线调参滑模控制方法,为航迹跟踪控制提供了解决方案。1)描述了平流层飞艇航迹跟踪控制问题,建立了航迹控制系统模型。2)定义航迹跟踪误差和滑动模态,采用滑模控制方法设计了航迹控制系统,应用Lyapunov稳定性理论证明了闭环系统的稳定性。3)为解决滑模控制导致的抖振问题,设计了模糊在线调参滑模控制系统,以滑模面为模糊输入变量,以控制参数为模糊输出变量设计模糊控制器,通过模糊规则在线调整控制参数。结果表明:航迹控制系统能够在模型参数摄动和外界扰动条件下准确跟踪参数化指令航迹;同滑模控制相比,模糊在线调参滑模控制能够根据系统状态变化,通过模糊规则在线调节控制参数,有效地削弱了滑模控制导致的抖振。
     4、针对平流层飞艇长期驻空的任务需求,提出了一种模糊自适应滑模控制方法,为解决区域驻留控制问题提供了参考方案。1)描述了平流层飞艇区域驻留问题,建立了区域驻留控制系统模型。2)定义驻留控制误差和滑动模态,采用滑模控制方法设计了驻留控制系统。3)为解决平流层飞艇模型不确定问题,设计了模糊自适应滑模控制系统,采用模糊系统精确逼近不确定模型,通过自适应律实时调整模糊系统的最优逼近参数,应用Lyapunov稳定性理论证明了闭环系统的稳定性。结果表明:模糊自适应滑模控制能够在模型不确定和外界扰动条件下实现区域驻留控制;同滑模控制相比,模糊自适应滑模控制通过对不确定模型的精确逼近,提高了区域驻留控制精度。
     论文研究拓展了现有飞行力学理论的研究范畴,发展了平流层飞艇的动力学与控制理论、模型和方法,具有一定的理论意义;论文研究的姿态调节、航迹跟踪和区域驻留控制方法,为解决平流层飞艇控制重难点问题提供了理论基础和技术支持,对飞行控制系统设计具有重要的工程应用价值;论文研究中所发展的各种理论和方法不仅适用于平流层飞艇,还可拓展至高空气球、浮升组合式飞行器等领域,对构建平流层浮空器飞行动力学与控制理论体系,推动临近空间低速飞行器的发展与应用具有重要意义。
Near space is quantitatively defined as the range of earth altitudes from20km to100km, below which aerial aircraft can produce sufficient lift for steady flight, andabove which the atmosphere is rarefied enough for satellites to orbit with meaningfullifetimes. There is a growing worldwide interest in a new concept consisting of usingautonomous fight vehicles as platforms operating for extended periods of time at analtitude around20km to accomplish various missions. As a typical lighter-than-airvehicle, the stratospheric airship has an enormous, yet untapped potential as low-speed,or even steady platforms for many different applications, such as reconnaissance,surveillance, telecommunication, broadcasting relays, region navigation, environmentalmonitoring, disaster aid, scientific exploration, and so on.
     With the rapid progress of airship technologies, advanced flight control system playsa key role in the development of the stratospheric airship. Dynamic nonlinearity, modeluncertainties, and external disturbances contribute to the difficulty in maneuvering anairship to accomplish various missions. Therefore, flight control remains a keytheoretical and technical challenge for the stratospheric airship. For the purpose ofsolving the flight control application problems and further developing the new theoryand methods, this dissertation studies the dynamic model, the dynamic characteristics,the attitude regulation problem, the trajectory-tracking problem, and the station-keepingproblem of the stratospheric airship. The main results achieved in this dissertation aresummarized as follows.
     1. The dynamic model of the stratospheric airship is derived, the mode analysismethod based on eigenvalue and eigenvector of the state equations is proposed, and thedynamic characteristics of the airship are investigated.1) A conceptual design for thestratospheric airship is presented; reference frames and motion variables of the airshipare defined, and the nonlinear dynamic model of the airship is derived by using theNewton-Euler formulation.2) The approximate linear model is derived from thenonlinear dynamic model under the “small perturbation” assumption, and stability of theairship is analyzed by means of Lyapunov stability theorem.3) The mode analysismethod is proposed, and the motion modes of the airship are investigated. Thelongitudinal motion includes the heave mode, surge mode and pendulum mode, whereasthe lateral motion includes the yaw mode, slideslip mode and roll oscillation mode.
     2. A novel attitude control approach for the stratospheric airship using feedbacklinearization and terminal sliding mode control (TSMC) is proposed.1) The attitudemotion equations of the airship is derived, and expressed as an affine nonlinear system.2) The nonlinear attitude control system is decoupled into three single-inputsingle-output linear subsystems via feedback linearization.3) The attitude controller is designed based on the new linear systems using TSMC, and the global stability of theclosed-loop system is proven by using the Lyapunov stability theorem. Simulationresults demonstrate that the attitude control system tracks the commanded angleprecisely in the presence of model uncertainty and external disturbance. Contrastingsimulation results indicate that the proposed control approach enables the control errorconverges to zero in a finite time, and has better performance against the SMC.
     3. A fuzzy parameter-tuning sliding mode control (FPTSMC) approach fortrajectory-tracking control of the stratospheric airship is proposed.1) The problem oftrajectory-tracking control of the airship is formulated, and the model of trajectorycontrol system is derived.2) The SMC is designed to track a time-varying referencetrajectory for its robustness against parametric uncertainty.3) To attenuate thechattering results from SMC, a FPTSMC is proposed in which the control parametersare tuned according to the fuzzy rules, with switching sliding surface function as fuzzycontrol inputs and control parameters as fuzzy control outputs. The stability of theclosed-loop control system is proven using the Lyapunov stability theorem. Simulationresults demonstrate that the FPTSMC performs well in terms of the stability androbustness of trajectory-tracking control despite of model uncertainty and externaldisturbance. Contrasting simulation results indicate that the FPTSMC attenuates thechattering effectively and has better performance against the SMC.
     4. A fuzzy adaptive sliding mode control (FASMC) approach for station keepingcontrol of the stratospheric airship is proposed.1) The station-keeping control problemof the airship is formulated, and the model of station-keeping control system is derived.2) The SMC is designed under the assumption that the airship model is accuratelyknown.3) In order to solve the problem of model uncertainty, a fuzzy system is used toapproximate the uncertain model of the airship, and an adaptive law is adopted to tunethe optimal parameter vector. The stability of the closed-loop control system is provenvia the Lyapunov stability theorem. The effectiveness and robustness of the proposedcontrol approach is demonstrated via simulation studies. Contrasting simulation resultsindicate that the FASMC has better performance against the SMC.
     This dissertation expands the research domain of the current flight control theory bydeveloping the dynamic model, control theory, methods and approaches, which haveboth theoretical innovation and technique significance, and provides a promisingapproach for flight control system design of the stratospheric airship. The research workhas high application value in near space aerostatic vehicle and other near spaceapplication projects.
引文
[1] Stevens. Near Space [J]. Airforce magazine,2005,88(7):36-42.
    [2] Wang W Q. Near-space vehicles: supply a gap between satellites and airplanesfor remote sensing [J]. IEEE Aerospace and Electronic Systems Magazine,2011,26(4):4-9.
    [3] Young M, Keith L S, Pancotti A. An overview of advanced concepts for nearspace systems[C]. Proceedings of AIAA Joint Propulsion Conference and exhibit,Colorado, USA,2009.
    [4] Kurkcu C, Erhan H, Umut S. Unmanned aerial systems’ near space operationconcept[C]. Proceedings of5th International Conference on Recent Advances inSpace Technologies, Istanbul, Turkey,2011.
    [5] Jamison L, Sommer G S, Porche I R. High altitude airship for the future forcearmy[R]. Technical Report of RAND Corporation,2005.
    [6] Morikawa M Y. High-altitude lighter-than-air powered platform [J]. Society ofAutomotive Engineers Transactions,1991,16(1):2216-2223.
    [7] Onda M, Misawa M, Kojima T. A stratospheric LTA stationary platform fortelecommunication and environment protection [C]. The38th Annual Conferenceproceedings of the SICE, Florida, USA,1999.
    [8] Douglas G, Bruce S, Sunil S. Feasibility study of a stratospheric airshipobservatory [C]. Proceedings of SPIN-The International Society for OpticalEngineering, Waikoloa, USA,2002.
    [9] Knoedler A J. Using near space vehicles in the pursuit of persistent C3ISR [C].The10th International Command and Control Research and TechnologySymposium, Washington, USA,2007.
    [10] Wang W Q. Near-space wide-swath radar imaging with multi-aperture antenna[J]. IEEE Antennas and Wireless Propagation Letters,2009,8:461-464.
    [11] Zhu J H, Zhang W M, Wang D. Research on earth observation mission planningfor near space aircraft [C]. International Conference on Earth Observation DataProcessing and Analysis, Wuhan, China,2008.
    [12] Chaugule V, Rajkumar S, Jahagirdar P Y. Remotely controlled airship for aerialsurveillance: from concept to reality in under a month[C]. The11th AIAAAviation Technology, Integration, and Operations Conference, Virginia Beach,USA,2011.
    [13] Guan M X, Guo Q, Lu L. A novel access protocol for communication system innear space [C]. International Conference on Wireless Communications,Networking and Mobile Computing, Beijing, China,2007.
    [14] Zhang D Y, Wu Z H. Modeling and simulation of near space platform-landchannel [C]. IEEE12th International Conference on Communication Technology,Nanjing, China,2010.
    [15] Li S, Xu T, Wang G, Wang J Y, Li W M. Information war countermeasuresbased on near space vehicles[C]. The Second International Conference on SpaceInformation Technology, Wuhan, China,2007.
    [16] Wang W Q, Peng Q C, Cai J G. Digital beam forming for near-space wide-swathSAR imaging[C].The8th International Symposium on Antennas, Propagationand EM Theory, Kunming, China,2008.
    [17] Arnold W L. Airship development worldwide-a2001review[R]. AIAA-2001-5263,2001.
    [18] Arnold W L. Airship activity and development world-wide [C]. AIAA3rdAnnual Aviation Technology, Integration, and Operations, Colorado, USA,November,2003.
    [19] Schafer I, Reimund K. Airships as unmanned platforms challenge and chance [C].AIAA1st Technical Conference and Workshop on Unmanned AerospaceVehicles, Virginia, USA, May,2002.
    [20] Colozza A, James L D. High-altitude, long-endurance airships for coastalsurveillance [R]. NASA/TM-2005-213427,2005.
    [21] Makrinos S T. High altitude airships for homeland security, commercial andmilitary operations [R]. White Paper of CACI Technologies Incorporated,2005.
    [22] Chu A, Blackmore M. A novel concept for stratospheric communications andsurveillance [C]. AIAA Balloon System Conference, Williamsburge, USA,2007.
    [23] Michael S S, Edward L R. Applications of scientific ballooning technology tohigh altitude airships[R]. AIAA-2003-6711,2003.
    [24]姚伟,李勇,王文隽.美国平流层飞艇发展计划和研制进展[J].航天器工程,2008,17(2):69-75.
    [25] Smith S, Fortenberry M, Lee M. HiSentinel80: Flight of a High AltitudeAirship[C]. The11th AIAA Aviation Technology, Integration, and OperationsConference, VA, USA,2011.
    [26] Colozza A. Initial feasibility assessment of a high altitude long enduranceairship[R]. NASA/CR-2003-12724,2004.
    [27]曹锐,吴曼青,阎跃鹏.传感器即结构件关键技术及研究进展[J].雷达科学与技术,2011,9(6):385-491.
    [28]李利良,郭伟民,何家芳.国外近空间飞艇的现状和发展[J].武器装备自动化,2008,27(2):32-34.
    [29] Kimito T, Yasumasa H, Maekawa S. The studies and applications for LTA[R].AIAA-2007-7732,2007.
    [30] Patrick H. Comparison of propulsion technologies for a HALE airship[R].AIAA-2007-7747,2007.
    [31] Veldman S L, Vermeeren C A. Concept design of an inflatable engine mount forthe D15HALE airship [R]. Delft University of Technology,2001.
    [32] Kungl P, Schlenker M, Kroplin B. Research and testing activities with the solarpowered airship LOTTE within the scope of the airship research group at theUniversity of Stuttgart [C]. The14th AIAA LTA Convention and Exhibition,Ohio, USA,2001.
    [33] Kungl P, Schlenker M, Wimmer D A. Instrumentation of remote controlledairship “Lotte” for in-flight measurements [J]. Aerospace Science andTechnology,2004,8(7):599-610.
    [34] Brucker S, Hacker J, Kornmann R. The ISD parawing recovery system for highaltitude platform payloads [R]. AIAA-2005-1655,2005.
    [35]谭惠丰,王超,王长国.实现结构轻量化的新型平流层飞艇研究进展[J].航空学报,2010,31(2):257-264.
    [36] http://wapbaike.baidu.com.
    [37]方存光.平流层信息平台-自主飞艇动力学建模与控制的研究[D].吉林:东北大学,2003.
    [38] Li Y W, Nahon M, Sharf I. Airship dynamics modeling: a literature review [J].Progress in Aerospace Sciences,2011,47:218-231.
    [39] Gomes S B. An investigation of the flight dynamics of airships with applicationto the YEZ-2A [D]. Cranfield: College of Aeronautics, Cranfield University,1990.
    [40] Gomes S B, Ramos J J. Airship dynamic modeling for autonomous operation [C].Proceedings of IEEE International Conference on Robotics and Automation,Leuven, Belgium,1998.
    [41] Mueller J B, Paluszek M A. Development of an aerodynamic model and controllaw design for a high altitude airship[C]. The3rd AIAA Unmanned UnlimitedTechnical Conference, Workshop and Exhibit, Chicago, USA,2004.
    [42]欧阳晋,屈卫东,席裕庚.平流层验证飞艇的建模与分析[J].上海交通大学学报,2003,37(6):956-960.
    [43] Li Y W, Nahon M. Modeling and simulation of airship dynamics [J]. Journal ofGuidance, Control and Dynamics,2007,30(6):1691-1701.
    [44]杨跃能,郑伟,吴杰.临近空间对地观测平台的矢量化建模及稳定性分析[J].国防科技大学学报,2011,33(3):28-32.
    [45] Cai Z L, Qu W D, Xi Y G. Dynamic modeling for airship equipped withballonets and ballast [J]. Applied Mathematics and Mechanics,2008,26(8):979-987.
    [46] Chen L, Zhou G, Yan X J, Duan D P. Composite control strategy of stratosphericairships with moving masses [J]. Journal of Aircraft,2012,49(3):794-801.
    [47] Liu Y, Wu Y L. Dynamics research of an autonomous airship [J]. ProcediaEngineering,2011,15:817-822.
    [48]刘屿,邬依林,胡跃明.自治飞艇动力学建模及反馈控制[J].控制理论与应用,2010,27(8):991-1000.
    [49] Li Y W, Nahon M, Sharf I. Dynamics modeling and simulation of flexibleairships [J]. AIAA Journal,2009,47(3):592-605.
    [50] Yang Y N, Zheng W, Wu J. Nonlinear control for an unmanned airship[C]. TheWorld Congress on Engineering and Technology, Shanghai, China,2011.
    [51] Paiva E C, Bueno S S, Gomes S B. A control system development environmentfor AURORA’s semi-autonomous robotic airship [C]. IEEE InternationalConference on Robotics and Automation, Michigan, USA,1999.
    [52] Pais A R. Project AURORA: infrastructure and flight control experiments for arobotic airship [J]. Journal of Field Robotics,2006,23:201-222.
    [53] Schmidt D K. Modeling and near-space station keeping control of a large highaltitude airship [J]. Journal of Guidance, Control and Dynamics,2007,30(2):540-547.
    [54]丁秋峰,陈丽,段登平.低空无人飞艇运动配平和控制器设计研究[J].系统仿真学报,2009,21(10):3035-3039.
    [55]周超,屈卫东.飞艇迎风控制器的设计[J].控制工程,2009,16:16-21.
    [56] Isidori A. Nonlinear Control Systems [M]. London: Bertelsmann SpringerPublishing Group,2005.
    [57] Wang X L, Shan X X. Airship attitude tracking system [J]. Applied Mathe maticsand Mechanics,2006,27(7):919-926.
    [58] Lee S J, Kim D M. Feedback linearization controller for semi station keeping ofthe unmanned airship[C]. The5th AIAA Aviation, Technology, Integration, andOperations Conference, Virginia, USA,2005.
    [59] Wu X T, Claude H M, Hu Y M. Singular perturbation approach to moving masscontrol of buoyancy-driven airship in3-D space [J]. Transactions of NanjingUniversity of Aeronautics and Astronautics,2011,28(4):343-352.
    [60] Yang Y N, Zheng W, Wu J. Station-keeping attitude control for an autonomousairship using feedback linearization and sliding mode control [J]. InternationalJournal of Innovative Computing, Information and Control,2011,8(9):152-165.
    [61] Moutinho A, Azinheira J R. Stability and robustness analysis of the AURORAairship control system using dynamic inversion. IEEE International Conferenceon Robotics and Automation [C], Barcelona, Spain,2005.
    [62] Acosta D M, Joshi S S. Adaptive nonlinear dynamic inversion control of anautonomous airship for the exploration of Titan[C]. AIAA Guidance, Navigationand Control Conference and Exhibit, South Carolina, USA,2007.
    [63]王延,周凤岐,周军,郭建国.基于变结构动态逆控制的平流层飞艇时间最优航迹设计[J].测控技术,2010,29(12):62-66.
    [64]胡跃明.变结构控制理论与应用[M].北京:科学出版社,2003.
    [65]方存光,王伟.自主飞艇俯仰角姿态动力学建模及控制[J].控制理论与应用,2004,21(2):231-238.
    [66]王晓亮,刘丹,单雪雄.飞艇三维航迹控制研究[J].上海交通大学学报,2006,40(12):2164-2167.
    [67]方存光,王伟.自主飞艇水平位移动力学建模及其控制[J].控制理论与应用,2007,24(2):163-169.
    [68] Yang Y N, Wu J, Zheng W. Sliding mode control for a near-space autonomousairship[C]. The Second International Conference on Electric Information andControl Engineering, Wuhan, China,2011.
    [69]杨跃能,吴杰,郑伟.自主飞艇姿态跟踪的终端滑模控制[J].中国空间科学技术,32(4):29-36,2012.
    [70] Zhang Y, Qu W D, Xi Y G, Cai Z L. Stabilization and trajectory tracking ofautonomous airship’s planar motion [J]. Journal of Systems Engineering andElectronics,2008,19(5):974-981.
    [71] Zhang Y, Qu W D, Xi Y G, Cai Z L. Adaptive stabilization and trajectorytracking of airship with neutral buoyancy [J]. Acta Automatica Sinica,2008,34(11):1437-1440.
    [72] Azinheira J R, Paiva E C, Ramos J G. Mission path following for an autonomousunmanned airship [C]. IEEE International Conference on Robotics andAutomation, San Francisco, USA,2000.
    [73]欧阳晋.空中无人飞艇的建模与控制方法研究[D].上海:上海交通大学,2003.
    [74] Trevino R, Frye M, Franz J A, Qian C J. Robust receding horizon control of atri-turbofan airship[C]. IEEE International Conference on Control andAutomation, Guangzhou, China,2007.
    [75] Yamada M, Taki Y, Katayama A. Robust global stabilization and disturbancerejection of an under-actuated non-holonomic airship[C]. The16th IEEEInternational Conference on Control Applications, Singapore,2007.
    [76]孙烨,陈澜,王志峰.基于H∞鲁棒控制和EA的平流层验证飞艇姿态控制器设计[J].计算机测量与控制,2011,19(9):2183-2186.
    [77]师黎,陈铁军,李晓媛.智能控制理论及应用[M].北京:清华大学出版社,2009.
    [78] Rao J J, Gong Z B, Luo J. Robotic airship mission path-following control basedon ANN and human operator’s skill [J]. Transactions of the Institute ofMeasurement and Control,2007,29(1):5-15.
    [79] Park C S, Lee H. Airship control using neural network augmented modelinversion[C]. IEEE Conference on Control Applications, USA,2003.
    [80]刘其睿,李勇.平流层飞艇巡航姿态自适应神经网络补偿控制[J].空间控制技术与应用,2009,35(4):34-38.
    [81] Rao J J, Gong Z B, Luo J, et al. A flight control and navigation system of a smallsize unmanned airship[C]. IEEE International Conference on Mechatronics andAutomation, Niagara Falls, Canada,2005.
    [82] Xie S R, Luo J, Rao J. Computer vision-based navigation and predefined trackfollowing control of a small robotic airship[J]. Acta Automatica Sinica,2007.33(3):286-291.
    [83] Falahpour M, Moradi H, Refai H. Performance comparison of classic and fuzzylogic controller for communication airships[C]. The28th Digital AvionicsSystems Conference, Naagara Falls, Canada,2009.
    [84]肖军,章玮玮,郭晓鹏.基于模糊PID控制的飞艇压力调节系统设计[J].辽宁工程技术大学学报,2010,29(5):807-809.
    [85] Yang Y N, Wu J, Zheng W. Trajectory tracking for an autonomous airship usingfuzzy adaptive sliding mode control [J]. Journal of ZhejiangUniversity-SCIENCE C,2012,13(7):534-543.
    [86] Ruting J, Michael T F. Control of an airship using particle swarm optimizationand neural network[C]. IEEE International Conference on Systems, Man, andCybernetics, Texas, USA,2009.
    [87]王延,周凤岐,周军.基于改进遗传算法的平流层飞艇定点悬停控制[J].火力与指挥控制,2010,35(2):22-27.
    [88]吴雷,李勇,李智斌.基于遗传算法的平流层飞艇航迹规划方法研究[J].航天返回与遥感,2011,31(2):1-6.
    [89] Liang H Q, Zhu M, Guo X. Conceptual design optimization of high altitudeairship in concurrent subspace optimization [J]. The50th AIAA AerospaceSciences Meeting including the New Horizons Forum and Aerospace Exposition,Tennessee, USA,2012.
    [90] Khoury G A, Gillett J D. Airship Technology [M]. Cambridge: CambridgeUniversity Press,1999.
    [91] Knaupp W, Mundschau E. Solar electric energy supply at high altitude [J].Aerospace Science and Technology,2004,8:245-254.
    [92]施红,宋保银,姚秋萍.平流层飞艇太阳能源系统研究[J].中国空间科学技术,2008,1:26-40.
    [93] Cook M V. Fligt Dynamics Principles [M]. London: Amold,1997.
    [94]方振平,陈万春,张曙光.航空飞行器飞行动力学[M].北京:北京航空航天大学出版社,2005.
    [95]吴森堂,费玉华.飞行控制系统[M].北京:北京航空航天大学出版社,2005.
    [96] Yang Y N, Wu J, Zheng W. Dynamics modeling and maneuverability analysis ofa near-space earth observation platform[C]. The5th International Conference onRecent Advances in Space Technologies, Istanbul, Turkey,2011.
    [97] Tuckerman L B. Inertia factors of ellipsoids for use in airship design[R]. NacaReport, No.210,1926.
    [98] Tuckerman L B. Notes on Aerodynamic forces on airship hulls [R]. Naca Report,No.129,1923.
    [99] Wang X L. Investigation of the drag characteristics of stratosphere airships fordifferent cusp shapes [J]. Journal of Aircraft,2012,49(1):151-160.
    [100] Li Y W. Dynamics modeling and simulation of flexible airship [D]. Montreal:McGill University,2008.
    [101] Yang Y N, Zheng W, Wu J. Design, modeling and control for a stratospheretelecommunication platform [J]. Acta Astronautica,2012.
    [102] Fossen T I. Guidance and control of ocean vehicles [M]. New York: Wiley,1998,p.5-42.
    [103] Leonard M. Hybrid state equations of motion for flexible bodies in terms ofquasi-coordinates [J]. Journal of Guidance, Control and Dynamics,1990,14(5):1008-1013.
    [104] Meirovitch L, Stemple T. Hybrid equations of motion for flexible multi-bodysystem using quasi-coordinate [C]. AIAA Guidance, Navigation and ControlConference, Monterey, CA, USA,1993.
    [105]蔡自力.平流层自治飞艇动力学建模与非线性控制研究[D].上海:上海交通大学,2006.
    [106]张燕.自主飞艇的建模与控制系统设计[D].上海:上海交通大学,2009.
    [107] Sagatun S I, Fossen T I. Lagrangian formulation of underwater vehiclesdynamics[C]. IEEE Conference on Decision Aiding for Complex System,Trondheim, Norway,1991.
    [108] Etkin B, Reid L D. Dynamics of Flight: Stability and Control [M].3rd ed. NewYork: Wiley,1996.
    [109]张明廉.飞行控制系统[M].北京:航空工业出版社,1994.
    [110] Brockhaus R. Flight Control [M]. London: Springer,1994.
    [111] Eric A. Kulczycki S M. Koehler A E. Development of an analyticalparameterized linear lateral dynamic model for an aerobot airship[C]. AIAAGuidance, Navigation, and Control Conference, Oregon, USA,2011.
    [112]廖晓昕.稳定性的理论、方法和应用[M].武汉:华中科技大学出版社,第二版,2009.
    [113] Atherton D P. Stability of Nonlinear Systems [M]. New York: Research StudiesPress,1981.
    [114] Paiva E C, Bueno S S, Bergerman M. A robust pitch attitude controller forAurora’s semi-autonomous robotic airship[C]. The13th AIAA Lighter-Than-AirSystems Technology Conference, Washington, USA,1999.
    [115] Khalil H K. Nonlinear System [M].3rd ed. New Jersey: Prentice Hall,2002.
    [116] Franco G. Robust Control via Variable Structure and Lyapunov Techniques [M].London: Springer-verlag,1996.
    [117]胡剑波,庄开宇.高级变结构控制理论及应用[M].西安:西北工业大学出版社,2008.
    [118]张袅娜.终端滑模控制理论及应用[M].北京:科学出版社,2011.
    [119] Yang Y N, Wu J, Zheng W. Concept design, modeling and station-keepingattitude control of an earth observation platform [J]. Chinese Journal ofMechanical Engineering,2012,25(6):1245-1254.
    [120]丘成桐,孙理察.微分几何讲义[M].北京:高等教育出版社,2004.
    [121]陈省身.微分几何讲义[M].第二版,北京:北京大学出版社,2003.
    [122]方勇纯,卢桂章.非线性系统理论[M].北京:清华大学出版社,2009.
    [123] Slotine J E, Li W. Applied Nonlinear Control [M]. New Jersey: Prentice Hall,1991.
    [124]胡跃明.非线性控制系统理论与应用[M].第二版,北京:国防工业出版社,2005.
    [125]焦晓红,关新平.非线性系统分析与设计[M].北京:电子工业出版社,2008.
    [126] Utkin V I. Sliding Modes in Control and Optimization [M]. New York:Springer-verlag,1992.
    [127] Zinober A S I. Variable structure and Lyapunov Control [M]. London:Springer-verlag,1994.
    [128]刘金锟,孙富春.滑模变结构控制理论及其算法研究与进展[J].控制理论与应用,2007,24(3):407-418.
    [129]高为炳.变结构控制的理论及设计方法[M].北京:科学出版社,1996.
    [130] Liang C Y, Su J P. A new approach to the design of a fuzzy sliding modecontroller [J]. Fuzzy Sets and Systems,2003,139(1):111-124.
    [131] Metin U, Tombul G S. Sliding mode control design with time varying slidingsurfaces for a class of nonlinear systems[C]. Proceedings of the IEEEInternational Conference on Control Applications, Munich, Germany,2006.
    [132] Xu J X, Lee T H, Wang M, Yu X H. Design of variable structure controllers withcontinuous switching control [J]. International Journal of Control,1996,65(3):409-431.
    [133] Abidi K, Xu J X. A discrete-time terminal sliding-mode control approach appliedto a motion control problem [J]. IEEE Transaction on Industrial Electronics,2009,56(9):3619-3627.
    [134] Chee P T, Yu X H, Man Z H. Terminal sliding mode observers for a class ofnonlinear systems[J]. Automatica,2010,46(3):826-850.
    [135] Neila M B, Damak T. Adaptive terminal sliding mode control for rigid roboticmanipulators [J]. Institute Journal of Automation and Computing,2011,8(2):215-220.
    [136] Venkataraman S T, Gulati S. Control of nonlinear system using terminal slidingmode [J]. Transaction of the AMSE,1991,115(9):554-564.
    [137] Silveria G F, Carvalho J R, Madrid M K. Lateral control of an aerial unmannedrobot using visual servoing techniques [C]. The Second Workshop on RobotMotion and Control, Bukowy Dworek, Poland,2001.
    [138]韦巍,何衍.智能控制基础[M].北京:清华大学出版社,2008.
    [139] Zadeh L A. Fuzzy sets [J]. Information Control,1965,8:338-353.
    [140]李士勇.模糊控制[M].哈尔滨:哈尔滨工业,2011.
    [141] Mamdani E H, Efstathiou H J, Sugiyama K. Developments in fuzzy logic control
    [C]. Proceedings of the IEE, Las Vegas, NV, USA,1974.
    [142] Sugeno M. An introductory survey of fuzzy control [J]. Information Sciences,1985,36(1):59-83.
    [143]罗兵,甘俊英,张建民.智能控制技术[M].北京:清华大学出版社,2011.
    [144] Lin T C. Stable indirect adaptive type-2fuzzy sliding mode control usingLyapunov approach [J]. International Journal of Innovative Computing,Information and Control,2010,6(12):5725-5748.
    [145]王丰尧.滑模变结构控制[M].北京:机械工业出版社,1995.
    [146] Kim K J, Park J B, Choi Y H. Chattering free sliding mode control[C].Proceedings of SICE-ICASE International Joint Conference, Busan, Korea,2006.
    [147] Bartolini G, Punta E. Chattering elimination with second order sliding modesrobust to coulomb friction [J]. Journal of Dynamic Systems, Measurement, andControl,2000,122(4):679-686.
    [148] Wong L J, Leung F H F, Tam P K S. A chattering elimination algorithm forsliding mode control of uncertain non-linear systems [J]. Mechatronics,1998,8(7):765-775.
    [149] Kachroo P, Tomizuka M. Chattering reduction and error convergence in thesliding-mode control of a class of nonlinear systems [J]. IEEE Transaction onAutomatic Control,1996,41(7):1063-1068.
    [150] Hwang C L. Sliding mode control using time-varying switching gain andboundary layer for electro-hydraulic position and differential pressure control [J].Control Theory and Applications,1996,143(4):325-332.
    [151] Chen M S, Hwang Y R, Tomizuka M. A state-dependent boundary layer designfor sliding mode control [J]. IEEE Transactions on Automatic Control,2002,47(10):1677-1681.
    [152] Hamerlain M, Youssef T, Belhocine M. Switching on the derivative of control toreduce chatter [J]. Proceeding on control Theory and Application,2001,148(1):81-96.
    [153] Kawamura A, Itoh H, Sakmoto K. Chattering reduction of disturbance observerbased sliding mode control [J]. IEEE Transaction on Industry Applications,1994,30(2):456-461.
    [154] Kang B P, Ju J L. Sliding mode controller with filtered signal for robotmanipulators using virtual plant controller [J]. Mechatronics,1997,7(3):277-286.
    [155] Xu J X, Pan Y J, Lee T H. A gain scheduled sliding mode control scheme usingfilter techniques with application to multi-link robotic manipulator [J]. Journal ofDynamic Systems, Measurement, and Control,2000,122(4):641-649.
    [156] Marks R J. Intelligence: computational versus artificial [J]. IEEE Transaction onNeural Networks,1993,4(5):737-739.
    [157] Lin F J, Wai R J. Sliding-mode-controlled slider-crank mechanism with fuzzyneural network [J]. IEEE Transaction on Industrial Electronics,2001,48(1):60-70.
    [158] Ertugrul M, Kaynak O. Neural sliding mode control of robotic manipulators [J].Mechatronics,2000,10(1):239-263.
    [159] Lin F J, Chou W D. An induct ionmotor servo drive using sliding mode controllerwith genetic algorithm [J]. Electric Power Systems Research,2003,64(2):93-108.
    [160] Cihan K Z. Parameter tuning of fuzzy sliding mode controller using particleswarm pptimization [J]. International Journal of Innovative Computing,Information and Control,2010,6(10):4755-4766.
    [161] Kung C C, Kao TY, Chen T H. Adaptive fuzzy sliding mode controller design[C].Proceedings of the IEEE International Conference on Fuzzy Systems, Hawaii,USA,2002.
    [162] Bagheri A, Moghaddam J J. Simulation and tracking control based onneural-network strategy and sliding-mode control for underwater remotelyoperated vehicle [J]. Neurocomputing,2009,72,1934-1950.
    [163] Fateh M M. Robust fuzzy control of electrical manipulators [J]. Journal ofIntelligent Robot System,2010,60:415-434.
    [164] Sadati N, Talasaz A. Chattering free adaptive fuzzy sliding mode control[C]Proceedings of the IEEE Conference on Cybernetics and Intelligent System,Singapore,2004.
    [165] Rojko A, Jezernik K. Sliding-mode motion controller with adaptive fuzzydisturbance estimation [J]. IEEE Transaction of Industry Electronics.2004,51(5):936-971.
    [166] Tong S C, Li H X. Fuzzy adaptive sliding-mode control for MIMO nonlinearsystems [J]. IEEE Transactions on fuzzy systems,2003.11(3):354-360.
    [167] Sun F C, Sun Z Q, Feng G. An adaptive fuzzy controller based on sliding modefor robot manipulators [J]. IEEE Transactions on system, man, and cybernetics,1999,29(4):661-667.
    [168] Liu J K, Wang X H. Advanced sliding mode control for mechanical system [M].Beijing: Tsinghua University Press,2011.
    [169] Li J, Zhou S. Xu S. Fuzzy control system design via fuzzy Lyapunov functions[J]. IEEE Transactions on Systems, Man, and Cybernetics,2008,38(6):1657-1661.
    [170]施红,宋保银,周雷,姚秋萍.平流层飞艇的控制模式对其定点特性的影响[J].航空学报,2009,30(5):800-805.
    [171]王晓亮.平流层对地观测平台非线性气动力及其运动的研究[D].上海:上海交通大学,2006.
    [172]梁栋,李勇.平流层飞艇定点保持模式控制方法研究[J].航天控制,2008,26(4):35-39.
    [173]付平,周军,郭建国.基于变结构控制方法的自主飞艇定点控制[J].飞行力学,2008,26(5):28-30.
    [174] Driankov D, Hellendoorn H, Reinfrank M. An Introduction to Fuzzy Control [M].Berlin: Springer-Verlag,1980.
    [175]王立新.模糊系统与模糊控制教程[M].北京:清华大学出版社,2003.
    [176]刘福才.非线性系统的模糊模型辨识及其应用[M].北京:国防工业出版社,2006.
    [177] Wang L X, Mendel J M. Fuzzy basic functions, universal approximation, andorthogonal least squares learning [J]. IEEE Transaction on Control NeuralNetworks,1992,3(5):807-814.
    [178] Dubois D, Prade H. Fuzzy Sets and System: Theory and Applications [M].Florida: Academic Press,1980.
    [179] Cox E. The Fuzzy Systems Handbook [M]. MA: Academic Press,1994.
    [180] Wang L X, Mendel J M. Generating fuzzy rules by learning from examples [J].IEEE Transaction on Systems, Man, and Cybernetics,1992,22(6):1414-1427.
    [181] Lewis F L, Zhu S Q, Liu K. Function approximation by fuzzy system [C].Proceeding of Ameriacan Control Conference, Seattle, USA,1995.
    [182] Wang D G, Song W Y, Li H X. Design and approximation capabilities analysisof time-variant fuzzy systems [J]. Internatiaonl Journal of Innovative Computing,Information and Control,2011,7(3):1121-1133.
    [183]李殿璞.非线性控制系统[M].西安:西北工业大学出版社,2009.
    [184]佟绍成.非线性系统的自适应模糊控制[M].北京:科学出版社,2006.
    [185] Liu J K, Wang X H. Advanced sliding mode control for mechanical systems [M].Beijing: Tsinghua Publishing Company,2011.
    [186]刘艳军.非线性系统自适应模糊控制算法的研究[D].大连:大连理工大学,2007.
    [187] Wang L X. Stable adaptive fuzzy control of nonlinear systems [J]. IEEETransaction on Fuzzy Systems,1992,22(6):1414-1427.
    [188] Chen J Q, Chen L J. Study on stability of fuzzy closed-loop control systems [J].Fuzzy Sets and Systems,1993,57(2):159-168.
    [189] Yu J P, Chen B, Yu H S. Position tracking control of induction motors viaadaptive fuzzy backstepping [J]. Energy Conversion and Manage.2010,51:2345-2352.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700