独轮自平衡机器人建模与控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
人或其他智慧生物需要经过一定的训练和学习才能骑行独轮自行车。独轮自平衡机器人是模拟人类骑行独轮车的行为构建的一种自平衡机器人系统,属于原理性仿生机器人。与一般移动机器人相比,独轮自平衡机器人与地面接触点数目降到最小,是一种典型的非完整、非线性、静不平衡系统。其建模和运动控制问题是控制科学及机器人学研究的重要问题。
     本文设计了具有竖直飞轮和下行走轮结构的独轮自平衡机器人系统,建立了相应的运动学和动力学模型,并在系统特性分析的基础上,进行了运动平衡控制问题的研究,取得了以下主要研究成果:
     1、独轮自平衡机器人系统
     本文设计了一种独轮自平衡机器人系统,其最重要的结构特征是竖直惯性飞轮和下行走轮相互配合:竖直惯性飞轮调节横滚自由度平衡;行走轮调节俯仰自由度平衡。此结构模拟了人类骑行独轮车的特征,动力学特性较为复杂,其建模与控制问题具有一定难度。所设计独轮自平衡机器人的电气系统为分层递阶结构:组织级以嵌入式PC为核心,辅以各种人机接口,负责监测、获取信息,决策和下达运动控制指令;协调级以DSP为核心,辅以状态感知传感器,主要负责运动平衡控制;执行级为电机伺服系统,负责控制双轮电机完成指定运动。整个控制结构构成一种仿生的姿态感觉运动系统。
     2、独轮自平衡机器人的动力学建模与分析
     本文运用拉格朗日法建立了独轮自平衡机器人的动力学模型,并对其进行了实验验证。实验结果符合物理事实,验证了所建模型正确;其次,分析了独轮自平衡机器人的系统特性,证明独轮自平衡机器人在直立平衡点不稳定和局部可控;再次,分析了独轮自平衡机器人各设计参数:质量、重心高度、飞轮惯量等,对运动平衡控制系统的影响规律;最后,利用虚拟样机技术建立了独轮自平衡机器人的三维模型,并与数学模型相互验证正确性。本文建立的模型及相关分析为独轮自平衡机器人的设计和控制提供了一定理论依据。
     3、基于非线性PD控制方法的独轮自平衡机器人运动平衡控制
     本文针对独轮自平衡机器人的运动平衡控制问题,提出一种基于非线性PD的三环控制方法。该方法包括电机伺服驱动内环、姿态平衡控制中环和运动位移控制外环,其中,电机伺服驱动内环通过两个PID控制器分别实现上、下电机转矩伺服,控制器输入为姿态平衡控制器的输出转矩;姿态平衡控制中环为一种非线性PD控制器(PDNLB),控制机器人稳定平衡,PDNLB采用tan(θ)作为非线性比为非线性微分环节,PDNLB输入为由机器人运动控制器提供的期望姿态;外环为直线位移PD控制器,输入为期望的直线位移,输出经耦合转化为期望俯仰和横滚倾角。通过仿真实验对比分析了PDNLB与线性PD姿态平衡控制器的动态性能和鲁棒性,结果表明在相同参数下,PDNLB的动态性能指标、抗扰动和对象参数变化的适应能力均优于线性PD和LQR控制器。进行了独轮自平衡机器人静止平衡和运动位移控制的仿真以及物理系统实验,实验结果验证了本文提出的控制方法是一种解决独轮自平衡机器人运动平衡控制问题的有效方法。
     4、基于非线性动态逆控制方法的独轮自平衡机器人平衡控制
     针对独轮自平衡机器人的非线性控制问题,根据多变量非线性控制的理论—逆系统方法,设计了独轮自平衡机器人伪动态逆控制器,给出了具体实现方法。针对独轮自平衡机器人系统为最小相位系统,逆系统不存在的问题,通过时标分离的方法构建系统的伪逆,构成独轮自平衡机器人伪动态逆控制系统。针对动态逆系统精确模型难于获得、动态逆方法设计控制系统不便、伪动态逆控制性能难于保障的问题,利用神经网络具有逼近任意连续的n输入m输出映射的能力,提出基于神经网络的独轮自平衡机器人动态逆控制方法。该方法利用BP神经网络逼近系统的动态逆模型,构成参考模型神经网络动态逆控制系统。实验结果表明:该方案能够利用BP神经网络逼近系统的逆系统,可有效解决独轮自平衡机器人系统建模不精确、逆系统精确解析解难于求得等问题,并实现机器人的姿态平衡控制;但是该方法用于独轮自平衡机器人控制时,超调量、调节时间等控制性能并不理想,并且鲁棒性较差。
     5、基于迭代学习控制方法的独轮自平衡机器人运动平衡控制
     本文针对独轮自平衡机器人的姿态平衡控制问题,提出了基于神经网络反演方法的迭代学习控制方法。迭代学习控制方法,是在线性控制的基础上引入基于跟踪误差的指数型能量函数作为评价机制,通过迭代学习不断修正控制量以克服机器人系统的未知参数和干扰带来的不确定性,类似于人类的条件反射的学习过程。而神经网络反演控制是通过RBF神经网络进行反演迭代学习。并从理论上证明其跟踪误差的渐进收敛性。这种方案既具有线性控制系统思想简单、方法明确的优点,又能够利用在线学习过程动态补偿系统不确定性、非线性、耦合性、建模误差等因素对控制器的影响。计算机仿真实验表明,所提出的独轮自平衡机器人神经网络反演迭代学习控制方法在一定范围内是有效的。通过仿真实验对比分析了神经网络反演迭代学习控制、非线性PD三闭环控制、层叠结构伪非线性动态逆控制、神经网络动态逆控制与线性姿态平衡控制的动态性能和鲁棒性,结果表明在相同对象参数下,神经网络反演迭代学习控制的动态性能指和鲁棒性较好,非线性PD控制和非线性动态逆控制次之,线性控制方法和神经网络动态逆控制性能较差。
     课题获得国家863计划项目(2007AA04Z226);国家自然科学基金项目(61075110);北京市教委重点项目(KZ200810005002);北京市自然科学基金项目(4102011)的资助。取得的科研成果,对于优化独轮自平衡机器人的系统结构,分析独轮自平衡机器人的运动规律和内在特性,研究自平衡机器人的运动平衡控制问题具有积极意义和一定的参考价值。课题研制的样机已获得多项国家专利,在机器人技术和控制科学的研究、教学领域,以及服务机器人、娱乐机器人领域有一定的应用价值。
Unicycle riding is a kind of senior motor skills of human beings or other intelligent animals after training. Single-wheeled Self-Balancing Robot (SWSBR, SWR) is a kind of intelligent mimetic systems imitating human behavior of riding an unicycle.
     Different from other mobile robot with multiple wheels, the unicycle riding robot system or SWSBR has only one wheel to touch the ground. And it is a statically instable, coupled and highly nonlinear plant in three dimensions. Modeling and control of flexible self-balancing robot are important issues in the fields of control science and robotic engineering. This dissertation studies and designs a Single-Wheeled Self-Balancing Robot (SWSBR), develops the kinematics model and dynamic model of the robot, and on the basis of system characters analyzing, the research on the robot’s motion and balancing control is carried out. The main contributions are as follows:
     (1) Single-Wheeled Self-Balancing Robot System
     This dissertation illustrates the design of a single-wheeled self-balancing robot system (SWSBR System), whose the most important structure character imitates the overall structure of the unicycle: the vertical flywheel to tune the roll DOF and the walk wheel to adjust the pitch DOF, with robot frame for all modules fixed on. There is only one walk wheel contacting with the ground. Its dynamic feature is complex, and its modeling and control are difficult. The electronic system of the robot is hierarchical architecture: the organization layer has an embedded PC as the center, supplemented by a variety of human-machine interface. It is responsible for monitoring, acquiring information, decision-making and movement control instructions issued; the coordination layer has a DSP as the core, supplemented by state sensors, is mainly responsible for balance and motion control; the execution layer is the motor servo system, and responsible for controlling the torques of wheels. The control system structure of the studied robot constitutes a bionic sensory-motor system.
     (2) Dynamic Modeling and Analysis of SWSBR
     In this dissertation, the dynamic model of SWSBR is derived by applying the Lagrange method. Based on the proposed model, firstly, the dynamic characters of SWSBR is analyzed, zero input response and zero states response simulation are carried out, the outcome is in compliance with the physical fact, which examines the validity of the model. Secondly, the system characters of SWSBR is analyzed, it is proved that SWSBR is not stable and locally controllable on its upright equilibrium point. Thirdly, the analysis of the SWSBR design parameters is carried out: quality, center of gravity, inertia flywheel and so on. Finally, the three-dimensional model of SWSBR consistent with the dynamic model and physical fact is built by virtual prototyping technology. The model and the analysis described in this dissertation provide some theoretical basis for the modeling and control of SWSBR.
     (3)Motion Balancing Control for SWSBR Based on Nonlinear Control Method
     This dissertation proposes a three-loop control method based on nonlinear PD for the posture balancing and motion control of SWSBR. The nonlinear PD three closed-loop control method includes driven inner loop, posture balancing control mid loop and motion control outer loop. The input of the motor controllers is the output torques of posture balancing controller. The input of posture balancing controller is the output of motion controller. In the posture control mid loop, the stable equilibrium of SWSBR is controlled by 2 nonlinear PD controllers, in which tan (θ) is the nonlinear aspect ratio, used as the nonlinear differential link. The inputs of motion controller are desired position. The simulation and real system experiments in static balancing control and motion control are carried out. The results prove that the control method proposed by this dissertation is effective for single-wheeled self-balancing robot. The simulation results are compared with linear PD or LQR controller. They show that with the same parameters, PDNLB dynamic performance and robustness are much better than linear PD and LQR controllers.
     (4) Dynamic Inversion Control Method for SWSBR
     For nonlinear control problems of single-wheeled self-balancing robot, inverse system method is proposed and pseudo-dynamic inversion controller is designed. Single-wheeled self-balancing robot system is a minimum phase system, inverse system does not exist. To constitute single-wheeled self-balancing robot dynamic pseudo-inverse control system, the time scale separation method is used in building the system pseudo-inverse. But this method has such problems as: accurate model for dynamic inverse system is difficult to obtain, construction of dynamic inversion control system is inconvenient, performance of pseudo-dynamic inversion control is difficult to maintain. And the neural network has capability of the approximate any continuous input-output mapping. So the dynamic inversion control based on neural network is proposed. The method uses BP neural network to approach the dynamic inverse model, constitutes a reference model of neural network dynamic inversion control system. The results show that the method can take advantage of BP neural network to approximate the inverse system, effectively solve problems that the exact analytical model is difficult to obtain, and achieve posture control; but the overshoot, settling time and other control performance are not satisfactory, and the robustness is poor.
     (6) Iterative Learning Control Method for SWSBR
     In this dissertation, an iterative learning control method of neural network backstepping control method for SWSBR's posture and position control is proposed. The iterative learning control is introduced based on the energy function of tracking error to overcome the uncertainty caused by the robot system parameters and disturbances. The neural network backstepping control method is the tool for iterative learning. It is based on the linear control and approximation of ideal control law by the neural network. The iterative learning control method not only has a simple and clear form, but also can compensate uncertainty, nonlinearity, coupling, modeling error and other factors through the online learning process. Simulation results show that the iterative learning control of neural network backstepping method for SWSBR's posture and position control are effective within a certain range and have better performance than linear control. Comparative results of experiments show that with the same parameters, the performance of iterative learning control of neural network backstepping method, adaptive neural network dynamic inversion control are the best; nonlinear PD three closed-loop control and dynamic inversion control are the second; linear control method, neural network dynamic inversion control and dynamic inversion control are the worst.
     This subject is supported by the National Natural Foundation (60774077) and the High Technology Development Plan (863) (2007AA04Z226). The research results have significance for optimizing the system structure of flexible robots, the analysis of the Single-Wheeled Self-Balancing Robot’s motion pattern and identity, and the study of motion and balancing control problem. Several patents have been granted to the proposed robot, which has application value in the fields of research and education for robotic technology and control science, and service/entertainment robot development.
引文
1 Wiener N. Cybernetics: Control and communication in the animal and the machine. New York: Wiley, 1948.
    2熊有伦.机器人学.北京:机械工业出版社. 1993: 125~146.
    3孙迪生等.机器人控制技术.北京:机械工业出版社. 1997: 180~194.
    4徐国华,谭民.移动机器人的发展现状及其趋势.机器人技术与应用. 2001. 24(3): 7~14.
    5李嗣福.计算机控制基础.中国科学技术大学出版社. 2001.
    6李磊,叶涛,谭民,陈细军.移动机器人技术研究现状与未来.机器人, 2002(7).
    7 R. R. Murphy著,杜军平,吴立成,胡金春译.人工智能机器人学导论.电子工业出版社, 2004: 42.
    8阮晓钢.机器生命的秘密.邮电大学出版社, 2005.
    9霍伟.机器人动力学与控制.高等教育出版社, 2005. 21~47.
    10李允明.国外仿人机器人发展概况.机器人. 2005, 27(6): 561~567.
    11宋伟刚.机器人学-运动学、动力学与控制,北京:科学出版社, 2007: 71~81.
    12谭民,徐德,候增广,王硕,曹志强.先进机器人控制,北京:高等教育出版社,2007.
    13 Statistical Department of International Federation of Robotics. World Robotics 2009 Service Robots. http://www.worldrobotics.org, 2010.
    14胡晓朋,梁莉.单轴电动车平衡.机械设计与研究.2003,19(1): 75~76.
    15屠运武,徐俊艳等.自平衡控制系统的建模与仿真.系统仿真学报. 2004,4,16(4): 839~841.
    16 C. Ozaka, H. Kano, M. Masubuchi. Stability of a Monocycle-type Inverted Pendulum Third Vehicle Automation, Symposium of Japan Automation and Control Society, 1980: 63~66.
    17 K.Hofer. Electric Vehicle on One Wheel. Proceedings of IEEE Conference on Vehicle Power and Propulsion, Chicago, USA, 2005: 517~521.
    18 Z. Q. Sheng and K. Yamafuji, Study on the Stability and Motion Control of a Unicycle (Part I: Dynamics of Human Riding Unicycle and Its modeling by link mechanism). International Journal of Japan Society Mechatronics and Engeering, Series C, 1995.6, 38(2): 249~259.
    19 Sheng, Z., Yamafuji, K. Realization of a Human Riding a Unicycle by a Robot. Proceedings of IEEE International Conference on Robotics and Automation, 1995(2): 1319~1326.
    20 Z. Q. Sheng, K. Yamafuji. Postural Stability of a Human Riding a Unicycle and Its Emulation by a Robot. IEEE Transactions on Robotics and Automation, 1997, 10: 709~720.
    21 Ulyanov, S.V, Yamafuji, K. Fuzzy Intelligent Emotion and Instinct Control of a Robotic Unicycle. Proceedings of International Workshop on Advanced Motion Control, 1996(1): 127~132.
    22 S.V. Ulyanov, S. Watanabe, V.S. Ulyanov, K. Yamafuji, L.V. Litvintseva, G.G. Rizzotto. Soft computing for the intelligent robust control of a robotic unicycle with a new physicalmeasure for mechanical controllability. Soft Computing, 1998, 73~88.
    23 http://sicl.ucsd.edu/jaschavp/Project.html.
    24 Majima, S, Kasai, T. Kadohara, T.A Design of a Control Method for Changing Yaw Direction of an Underactuated Unicycle Robot.TENCON 2006. 2006 IEEE Region 10 Conference,Hong Kong, China, 2006: 1~4.
    25 Y.Isomi and S.Majima. Tracking control method for an Underactuated Unicycle Robot Using an Equilibrium State. 2009 IEEE International Conference on Control and Automation, Christchurch, New Zealand, 2009: 1844~1849.
    26 Schoonwinkel, Design and Test of a Computer Stabilized Unicycle. Ph.D. dissertation, Stanford Univ., CA, 1987.
    27 D. W. Vos and A. H. von Flotow, Dynamics and Nonlinear Adaptive Control of an Autonomous Unicycle. Proceedings of 29th Conference of Decision Control, 1990: 182~187.
    28 D.W. Vos. Dynamics and Nonlinear Adaptive Control of an Autonomous Unicycle: Theory and Experiment. PHD thesis, Massachusetts Institute of Technology, MIT.1991.
    29 H. Benjamin Brown, Jr, Yangsheng Xu. A Single-Wheel, Gyroscopically Stabilized Robot. Proceedings ofthe 1996 IEEE International Conference on Robotics and Automation, Minneapolis, Minnesota, 1996: 3658~3663.
    30 H. Benjamin Brown, Jr, Yangsheng Xu. A Single-WheelL, Gyroscopically Stabilized Robot. IEEE Robotics &Automation Magazine, 1997, 39~44.
    31 Yangsheng Xu, Kwclk Wai Au, Gora C. Nandy and H. Ben Brown. Analysis of Actuation and Dynamic Balancing For a Single Wheel Robot. Proceedings of the 1998 IEEE/RSJ Intl. Conference on Intelligent Robots and System, Victoria, B.C., Canada, 1998: 1789~1794.
    32 Gora C. NandylT, Yangsheng Xu. Dynamic model of a gyroscopic wheel. Proceedings of the 1998 IEEE International Conference on Robotics & Automation, Leuven, Belgium, 1998: 2683~2688.
    33 Y. Xu, H.B. Brown and K.W. Au. Dynamic Mobility with Single-wheel Configuration. International Journal of Robotic Research, 1999(18): 728~738.
    34 Shu-Jen Tsai, Enrique D. Ferreira, Christiaan J. J. Paredis. Control of the Gyrover: A Single-Wheel Gyroscopically Stabilized Robot. Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, Kyongju, South Korea, 1999: 179~184.
    35 Yangsheng Xu, Wai-Kuen Yu, Kwok-Wai Au. Modeling Human Strategy in Controlling a Dynamically Stabilized Robot. Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, Kyongju, South Korea, 1999: 507~512.
    36 Kwok Wai Au, Yangsheng Xu. Decoupled Dynamics and Stabilization of Single Wheel Robot. Proceedings of the 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems, Kyongju, South Korea, 1999: 197~203.
    37 Yoav Naveh, Pinhas Z.Bar-Yoseph, Yoram Halevi. Nonlinear Modeling and Control of aUnicycle. Dynamics and Control, 1999, 12(9): 279~296.
    38 Yangsheng Xu, Loi Wah Sun. Stabilization of a Gyroscopically Stabilized Robot on an Inclined Plane. Proceedings of the 2000 IEEE International Conference on Robotics & Automation, San Francisco, CA, 2000: 3549~3554.
    39 Yangsheng Xu, Loi Wah Sun. Dynamics of a Rolling Disk and a Single Wheel Robot on an Inclined Plane. Proceedings of the 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems, Takamatsu, Japan, 2000: 811~816.
    40 Kwok Wai Au, Yangsheng Xu. Path Following of a Single Wheel Robot. Proceedings of the 2ooo IEEE lntemational Conference on Robotics & Automation, San Francisco. CA, 2000: 2925~2930.
    41 Ferreira, E. D., Shu-Jen Tsai, Paredis, C. J. J., Brown H. B. Jr. Control of the Gyrover: a single-wheel gyroscopically stabilized robot. Advanced Robotics, 2000, 14(6): 459~475.
    42 W. Nuknlwuthiopas 13. Laowattana and T. Maneewarn. Dynamic Modeling of a One-wheel Robot by Using Kane’s method. IEEE IClT’02, Bangkok, Thailand, 2002: 524~529.
    43 Yongsheng Ou, Yangsheng Xu. Balance control of a single wheel robot. Proceedings of the 2002 IEEE/RSJ Intl. Conference on Intelligent Robots and System, Lausane, Switzerland, 2002: 2043~2048.
    44 Yongsheng Ou. Dynamically Stable Systems: Control, Learning and Input Selection. Ph.D. dissertation, Chinese Univercity of Hong Kong, China, 2004.
    45 Yongsheng Ou, Yangsheng Xu. Convergence Analysis for a Class of Skill Learning Controllers. Proceedings of the 2004 International Conference on Robotics and Automation, New Orleans, LA, 2004: 2653~2658.
    46 Tanveer Saleh, Yap Haw Hann, Zhu Zhen, A. AI Mamun, V. Prahlad. Design of a Gyroscopically Stabilized Single-Wheeled Robot. Proceedings of the 2004 IEEE International Conference on Robotics, Automation and Mechatronics, Sigapore, 2004: 904~908.
    47 Yangsheng Xu, Samuel Kwok-Wai Au. Stabilization and Path Following of a Single Wheel Robot. IEEE/ASME Transaction on Mechatronics, 2004, 9(2): 407~419.
    48 Aria Alasty, Hodjat Pendar. Equations of Motion of a Single-Wheel Robot in a Rough Terrain. Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 2005: 879~884.
    49 Abdullah Al Mamun, Zhu Zhen, Prahlad Vadakkepat, Tong Heng Lee. Tracking Control of the Gyrobot - a Gyroscopically Stabilized Single-Wheeled Robot. IECON Proceedings, 2005: 1839~1844.
    50 Zhen Zhu, Abdullah Al Mamun, Prahlad Vadakkepat, Tong Heng Lee. Line Tracking of the Gyrobot - a Gyroscopically Stabilized Single-Wheeled Robot. Proceedings of the 2006 IEEE International Conference on Robotics and Biomimetics, Kunming, China, 2006: 293~298.
    51 Zhen Zhu, Myint Phone Naing, Abdullah Al-Mamun. A 3-D Simulator using ADAMS forDesign of an Autonomous Gyroscopically Stabilized Single Wheel Robot. Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics, San Antonio, TX, USA, 2009: 4455~4460.
    52 Zhen Zhu, Naing M.P., Al-Mamun A.: Integrated ADAMS+MATLAB environment for design of an autonomous single wheel robot. 35th Annual Conference of the IEEE Industrial Electronics Society, Porto, Portugal, 2009: 2253~2258.
    53 http://www.murataboy.com/ssk-3/.
    54 T. B. Lauwers, G. A. Kantor, R. L. Hollis. A Dynamically Stable Single Wheeled Mobile Robot with Inverse Mouse-Ball Drive. Proceedings of the 2006 IEEE International Conference on Robotics and Automation, Orlando, Florida, May 2006,2006: 2884~2889.
    55 Umashankar Nagarajan, George Kantor, Ralph L. Hollis. Trajectory Planning and Control of an Underactuated DynamicallyStable Single Spherical Wheeled Mobile Robot. 2009 IEEE International Conference on Robotics and Automation. Kobe International Conference Center. Kobe, Japan, 2009: 3743~3748.
    56 Witaya Wannasuphoprasit, R. Brent Gillespie, J. Edward Colgate, Michael A. Peshkin. Cobot Control. International Conference on Robotics and Automation Albuquerque, New Mexico, 1997: 3571~3576.
    57 Ryo Nakajima, Takashi Tsubouchi, Shin’ichi Yuta, Eiji Koyanagi. A Development of a New Mechanism of an Autonomous Unicycle. Proceedings of IROS, 1997: 906~912.
    58 Hiroshi Ohsaki, Masami Iwase, Shoshiro Hatakeyama. A Consideration of Nonlinear System Modeling using the Projection Method. SICE Annual Conference 2007, Kagawa University, Japan, 2007: 1915~1920.
    59 Zhaoqin Guo, Jian-Xin Xu, Tong Heng Lee. A Gain-scheduling Optimal Fuzzy Logic Controller Design for Unicycle. 2009 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, Singapore, 2009: 1423~1428.
    60 Jian-Xin Xu, Zhaoqin Guo, Tong Heng Lee. A Sliding Mode Control Scheme for an Underactuated Unicycle. 2009 IEEE International Conference on Control and Automation, Christchurch, New Zealand, 2009: 897~902.
    61 Dmitry V. Zenkov, Anthony M. Bloch, Jerrold E. Marsden. Stabilization of the Unicycle with Rider. Proceedings of the 38 Conference on Decision & Control. Phoenix, Arizona, USA, 1999: 3470~3471.
    62 Dmitry V. Zenkov, Anthony M. Blochy. The Lyapunov_Malkin Theorem and Stabilization of the Unicycle with Rider. Systems and Control Letters, 2002, 45(4): 293~302.
    63 Hiroshi Ohsaki, Masami Iwase, Teruyoshi Sadahiro, Shoshiro Hatakeyama. A Consideration of Human-Unicycle Model for Unicycle Operation Analysis based on Moment Balancing Point. Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics, San Antonio, TX, USA, 2009: 2468~2473.
    64 Hiroshi Ohsaki, Masami Iwase, Shoshiro Hatakeyama. A Consideration of Nonlinear SystemModeling using the Projection Method. SICE Annual Conference 2007, K agawa University, Japan, 2007: 1915~1920.
    65 Takashi Shimamura, Hiroshi Ohsaki. Analysis of human’s stabilization controller in a unicycle operation using Inverse Regulator Problem of Optimal Control. Proceedings of the 2009 IEEE International Conference on Systems, Man, and Cybernetics, San Antonio, TX, USA, 2009: 2474~2479.
    66 Takahiro Kawasaki, Teruyoshi sadahiro, Masami iwase, Shoshiro Hatakeyama. Detection of Similarity of Trajectory of Center of Gravity in Operating Unicycle Uses Motion Capture System. 2009 Ninth International Conference on Intelligent Systems Design and Applications, Pisa, Italy, 2009: 773~778.
    67 Hiroshi Ohsaki, Masaya Kinoshita, Yoshiaki Sugimoto, Kohei Yoshida, HideoYoshida. Development of a Control System for Supporting to Grow Human Skill of a Unicycle. SICE Annual Conference 2008, University Electro-Communications, Japan, 2008: 2229~2233.
    68 Masaya Kinoshita, Kohei Yoshida, Yoshiaki Sugimoto, Hiroshi Ohsaki. Support Control to Promote Skill of Riding a Unicycle. 2008 IEEE International Conference on Systems, Man and Cybernetics, Singapore, 2008: 2202~2206.
    69 Minh-Quan Dao, Kang-Zhi Liu. Gain-Scheduled Stabilization Control of a Unicycle Robot. JSME Inteenational Journal, 2005, 48(4): 649~656.
    70 Mark Mellors. Robotic Unicycle: Mechanics & Control. Technical Milestone Report, Pembroke College, 2005.
    71 www.roboticunicycle.info.
    72 Ruan Xiaogang, Hu Jingmin, Wang Qiyuan. Modeling with Euler-Lagrange Equation and Cybernetical Analysis for a Unicycle Robot. 2009 2nd International Conference on Intelligent Computing Technology and Automation, ICICTA 2009, Changsha, Hunan, China. 2: 108~111.
    73阮晓钢,胡敬敏,蔡建羡,武卫霞.基于模糊控制理论的一种独轮机器人的控制算法.控制与决策, 2010(6): 862~866.
    74阮晓钢,胡敬敏,王启源,刘航.一种独轮机器人的滑模控制.控制工程. 2011(1): 128~132.
    75郭磊,廖启征,魏世民,崔建伟.独轮车机器人的动力学建模与非线性控制.系统仿真学报, 2009, 21: 2730~2733.
    76 J.A. Nelder and R. Mead, A simplex method for function minimization, The Computer Journal, 7, 1964: 308~313.
    77阮晓钢.神经计算科学-在细胞的水平上模拟脑功能北京:国防工业出版社, 2006.
    78 B.L.Riemann, S.M.Lephart.The Sensorimotor System, Part I: The Physiologic Basis of Functional Joint Stability.Journal of Athletic Training. 2002, 37(1): 71~79.
    79 J. Kanayama, Y, Kimura, F. Miyazaki and T. Noguchi, A stable tracking control method for an autonomous mobile robot. Proceedings of IEEE International Conference on Robotics andAutomation, 1990: 384~389.
    80 F. Grasser, A. D’Arrigo, S. Colombi, A. C.Rufer. JOE: A Mobile Inverted Pendulum. IEEE Trans. on Industrial Electronics, 2002, 49(1): 107~114.
    81王晓宇.两轮自平衡机器人的研究.哈尔滨工业大学博士学位论文. 2009.
    82 M.Jun, S. I. Roumeliotis, G. S. Sukhatme. State. Estimation of an Autonomous Helicopter Using Kalman Filtering. Proceedings of the 1999 IEEE International Conference on Intelligent Robotics and Systems. 1999: 1346~1353.
    83 A. J. Baerveldt, R. Klang. A Low-Cost and Low-Weight Attitude Estimation System for an Autonomous Helicopter. Proceedings of the 1997 IEEE International Conference on Intelligent Engineering Systems. 1997: 391~395.
    84 J.Borenstein, L. Feng. Measurement and Correction of Systematic Odometry Errors in Mobile Robots.IEEE Transactions on Robotics and Automation. 1996, 12(6): 869~880.
    85 J.Borenstein, L.Feng. Correction of Systematic Odometry Errors in Mobile Robots. Proceedings of the 1995 IEEE International Conference on Intelligent Robots and Systems.Pittsburgh, 1995: 569~574.
    86蔡伯根.利用GPS和惯性传感器的融合和集成实现车辆定位.北方交通大学学报. 2000, 24(5): 7~14.
    87孙増圻.智能控制理论与技术.清华大学出版社, 1997.
    88徐科军,张瀚,陈智渊. TMS320X2812XDSP原理与应用.北京航空航天大学出版社,2006.
    89刘豹主编.现代控制理论.北京:机械工业出版社, 1983.
    90袁士杰.吕哲勤,多刚体系统动力学.北京:北京理工出版社, 1992.
    91刘延柱.高等动力学,北京:高等教育出版社, 2001.
    92胡寿松.自动控制原理.北京:科学出版社, 2002.
    93张晓华.系统建模与仿真,北京:清华大学出版社, 2006.
    94李欣源,阮晓钢,任红格.柔性双轮平衡机器人的动力学建模与分析.机器人, 2010, 32(1): 138~144.
    95 N. Orlandea: Development and application of node-analogous sparsity-oriented methods for simulation of mechanical dynamic systems. PhD thesis, University of Michigan, Ann Arbor MI (1973)
    96 R. Rampalli: ADAMS– a Sparse Matrix Approach to Solving Multi-body Dynamics Problems. NASA Workshop on Multi-Body Simulation, California Institute of Technology. 1987.
    97 MathWorks Inc. Lockheed Martin Space Systems Uses SimMechanics with a Real-Time Simulator to Automate Mars Reconnaissance Orbiter Development. www.mathworks.com. (2010-04-2).
    98 Sameul B Kesner: Mobility Feasibility Study of Fuel Cell Powered Hopping Robots for Space Exploration. Massachusetts Institute of Technology, Massachusetts, USA, 2007.
    99 Randel Lindemann: Dynamic Testing and Simulation of the MARS Exploration Rover. Proceedings of IDETC/CIE 2005 2005 ASME International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, Long Beach, California, USA, 2005.
    100郑大钟.线性系统理论.北京:清华大学出版社, 2002: 317~336.
    101 Arimoto S, Control Theory of Non-Linear Mechanical Systems: A Passivity-bassed and Circuit-Theoretic Approach. Oxford, Eng: Clarendon Press, 1996.
    102 IFAC Special Issueon PID Controller, Coontrol Engineering Practice, 2001, 9(11).
    103 IEE Special Issue on PID control, IEE Proceedings D-Control Theory and Applications, 2002, 149(1).
    104 Z. Gao. From linear to nonlinear control means: apractical progression. ISA Transactions, 2002, 41(2): 177~189.
    105王丰尧.滑模变结构控制.北京:机械工业出版社, 1995.
    106高为炳.变结构控制理论及设计方法.北京:科学出版社. 1996.
    107刘金琨.先进PID控制MATLAB仿真.北京:电子工业出版社, 2004.
    108蔡自兴.智能控制.北京:电子工业出版社, 2007.
    109姜长生,王从庆,魏海坤,陈谋.智能控制与应用.北京:科学出版社, 2007.
    110韩京清.非线性控制器.自动化学报, 1994, 20(4): 447~490
    111周琼,褚健,高峰.一种非线性PID控制器的设计与整定.控制系统, 1997, 3: 46~48
    112 Kelly R. Global positioning of robot manipulators via PD control plus a class of nonlinear integral actions. IEEE Transactions on Automatic Control, 1998, 43: 934~938.
    113高元楼,谢克明,林廷圻,陈玉成.一种新型的非线性PID控制器及其应用.太原理工大学学报, 1999, 30(3): 240~249.
    114苏玉鑫,郑春红,段宝岩,保宏.一类非线性PID控制系统稳定性分析.控制与决策, 2002, 17: 755~757.
    115任永平,李圣怡.一种非线性PID控制器及其参数分析.信息与控制, 2005, 34(4): 486~489.
    116胡包钢.非线性PID控制器研究—比例分量的非线性方法.自动化学报. 2006, 32(2): 219~227.
    117郭彦青,姚竹亭,王楠.非线性PID控制器研究.中北大学学报(自然科学版), 2006, 27(5): 423~425.
    118 Su Y. X., Sun D., Ren L., Mills J. K.,―Integration of saturated PI synchronous control and PD feedback for control of parallel manipulators,‖IEEE Trans. Robotics,2006, 22: 202~207.
    119苏玉鑫,郑春红, Peter C. Mfiller.非线性机械系统PID控制渐近稳定性分析.自动化学报, 2008, 34(12): 1544~1548.
    120 Dianwei Qian, Jianqiang Yi, Dongbin Zhao, Yinxing Hao. Hierarchical Sliding Mode Control for Series Double Inverted Pendulums System. International Conference on Intelligent Robots and Systems, 2006.10, Beijing, China, 2006: 4977~4982.
    121王伟,易建强,赵冬斌,刘殿通. Pendubot的一种分层滑模控制方法.控制与决策, 2005, 22(3): 417~422.
    122刘博,王永.一类欠驱动系统的分层FTSMC控制.计算机仿真, 2008, 25(11): 302-305.
    123赖旭芝,蔡自兴,吴敏.一类欠驱动机械系统的模糊与变结构控制.自动化学报, 2001, 27(6): 850~854.
    124程福雁,钟国民,李友善.二级倒立摆的参变量模糊控制.信息与控制, 1995, 24(3): 189~192.
    125张乃尧.倒立摆的双闭环模糊控制.控制与决策, 1996, 11(1): 85~88.
    126 B. G. Hu, G.K.I. Mann, R.G. Gosine. Control curve design for nonlinear (or fuzzy) proportional actions usting spline-based functions. Automatica, 1998, 34(9): 1125~1133.
    127 Yoo Byungkook, Ham Woonchul. Adaptive Fuzzy Sliding Mode Control of Nonlinear System. IEEE Transactions on fuzzy systems, 1998, 6(2): 315~321.
    128 Ryu SeHee, Park JahngHyon. Fuzzy Logic Based Tuning of Sliding Mode Controller for Robot Trajectory Control. Proceedings of the 2001 IEEE International Conference on Robotics and Automation, 2001: 2974~2978.
    129 Ha Q.P., Nguyen Q.H., Durrant-Whyte H.F. Fuzzy Sliding-Mode Controller with Applications. IEEE Transaction on Industrial Electronics, 2001, 48(1): 38~45.
    130 Hsu Yachen, Chen Guanrong, Li Hanxiong. A Fuzzy Adaptive Variable Structure Controller with Applications to Robot Manipulators. IEEE Transactions on Systems, Man and Cybernetics-part B: cybernetics, 2001, 31(3): 331~340.
    131 Rainer Palm, Dimiter Driankov. Design of a Fuzzy Gain Scheduler Using Sliding Mode Control Principles. Fuzzy Sets and Systems, 2001: 13~23.
    132李洪兴,苗志宏,王加银.四级倒立摆的变论域自适应模糊控制.中国科学(E辑), 2002(2): 65~75.
    133班晓军,李士勇.倒立摆的一种FUZZY-PD复合控制器设计.哈尔滨工业大学学报, 2003, 35(11): 1290~1293.
    134 Z. Chen, W. Yan, Z.S. Li, G.J. Wang, G.Y. Xu. HSIC-based nonlinear PID controller. Control and Decision, 2003, 18(6): 694~697.
    135 B.G. Hu, H. Ying. Review of fuzzy PID control techniques and some important issues. Acta Automatica Sinica, 2001, 27(4):567~584.
    136 Hayashi, H. Nomura, N. Wakami. Artificial Neural Network Driven Fuzzy Control and Its Application to the Learning of Inverted Pendulum System. Proceedings of the 3ndd IFSA congress, Seattle, 1989: 610~613.
    137 A.E.B. Ruano, P.J. Fleming, D.I. Jones. Connectionist approach to PID autotuning. IEE Proceedings D-Control Theory and Applications, 1992, 139(3): 279~285.
    138 Yazarel H., Cheah C. C., Liaw H. C. Adaptive SP-D control of a robotic manipulator in the presence of modeling error in a gravity regressor matrix: theory and experiment. IEEE Transactions on Robotics and Automation, 2002, vol. 18, pp. 373~379.
    139李春文,冯元琨.多变量非线性控制的逆系统方法.清华大学出版社, 1991: 27~32.
    140贺昱曜,闫茂德.非线性控制理论及应用.西安:西安电子科技大学出版社, 2007.
    141刘金琨.机器人控制系统的设计与MATLAB仿真北京:清华大学出版社, 2008.
    142 Lane S H. Flight control design using nonlinear inverse dynamics. Automatica, 1988, 24(4): 471~483.
    143 Snell S A. Nonlinear inversion flight control for a super maneuverable aircraft. Journal of Guidance, Control and Dynamics, 1992, 15(4): 976~984.
    144 Adams R. J., Banda S. S. Robust Flight Control Design Using Dynamic Inversion and Struetured Singular Value Synthesis. IEEE Transactions on Control System Technology. 1993, 1(2): 80~92.
    145 Reiner J., Balas G. J., Garrard W. L. Robust Dynmaie Inversion for Control of Height Maneuverable Aireraft. Journal of Guidance, Control and Dynamics, 1995, 18(l): 18~24.
    146 Reiner J., Balas G. J., Garrard W. L. Flight Control Design Using Robust Dynamic Inversion and Time-Seale Separation. Automatiea. 1996, 32(11): 1493~1504.
    147 Menon P. K., Yousefpor M. Design of Nonlinear Auto pilots for Angle of Attack Missiles. Optimal Synthesis.1996.
    148李春文,苗原,冯元馄等.非线性系统控制的逆系统法(I)-单变量控制理论.控制与决策. 1997, 12(5): 529~535.
    149李春文,苗原,冯元瑶等.非线性系统控制的逆系统法(II)-多变量控制理论.控制与决策. 1997, 12(6): 625~630.
    150 Sharma M., Calise A. J., Corban J. E. An Adaptive Auto pilot Design For Guided Munitions. AIAA Guidanee, Navigation and Control Conferenee. Boston-MA, 1998.
    151 Sehumaeher C., Khargonekar P. P. Stability Analysis of a Missile Control System With a Dynamic Inversion Controller. Journal of Guidance, Control and Dynamics, 1998, 21(3): 508~514.
    152 Lane S. H, Stengel R. F. Flight Control Using Non-Linear Inverse Dynamies. Automatiea. 1998, 24: 471~483.
    153 Miekle M. C., Zhu J. J. Bank-to-turn roll-ywa-pitch auto Pilot design using dynamic nonlinear inversion and PD-eigenvalue assignment, Proeeedings of the Ameriean Control Conefrenee, 2000, 2: 28~30.
    154 Johnson E N. Limited authority adaptive flight control. Georgia Institute of Technology, 2000.
    155 Jevaud E., Hareaut J-Philippe, Siguerdidjane H. Three-Axes Missile Auto Pilot Design: From Linear to Nonlinear Control Strategies. Journal of Guidance, Control, and Dynamies. 2001. 24: 64~71.
    156敖百强,李君龙.基于反馈线性化的飞行器姿态运动的变结构控制方法研究.现代防御技术. 2003, 31(3): 41~44.
    157唐超颖,沈春林.逆系统方法在航天器姿态控制系统中的应用.航天控制. 2003(1):32~36.
    158朱家强,郭锁凤.有伪控制补偿的自适应动态逆控制系统设计与仿真.统仿真学报, 2003, 15(5): 727~730.
    159 Botrots S. M., Caglayan A. K., Zaeharias G. L. Learning the Nonlinear Inverse Flight Dynamies Using Radial Basis Funetions. Proceeding of the ACC, Washington. 1995: 3510~3514.
    160 Sadhukhan D., Feteih S. F8 Neurocontroller Based on Dynamics Inversion. Journal of Guidance, Control and Dynamics, 1996, 19(1): 150~156.
    161于秀萍.基于动态逆系统和神经网络理论的BTT导弹控制系统研究.哈尔滨:哈尔滨工程大学, 2004.
    162孙国强,胡寿松.基于神经网络动态逆的歼击机自适应跟踪控制.南京航空航天大学学报, 2004, 36(4): 516~519.
    163 Xia Y S, Feng G, Wang J. A primal-dual neural network for on-line resolving const rained kinematics redundancy in robot motion control. IEEE Transactions on Systems, Man and Cybernetics, 2005, 35 (1): 542~564.
    164戴先中.多变量非线性系统的神经网络逆控制方法.北京.科学出版社, 2005.
    165黄小波,胡寿松.神经网络动态逆在歼击机安全着陆中的控制.电光与控制, 2007, 14(3): 5~7.
    166武国辉,王正杰,范宁军,尚连.微小型飞行器的神经网络动态逆控制方法.航空学报, 2008, 29: s8~s14.
    167郭建国.基于自适应动态逆的自主飞艇速度控制系统设计.宇航学报, 2008, 29(5): 1505~1514.
    168陈谋,邹庆元,姜长生,吴庆宪.基于神经网络干扰观测器的动态逆飞行控制.控制与决策, 2008, 23(3): 283~287.
    169 Meng Bo, Jing Yuan-wei, Liu Xiao-ping. Asymptotical Stabilization of Nonaffine Nonlinear Systems Using Singular Perturbation Theory. Journal of System Simulation, 2009, 21(5): 1423~1426.
    170陈龙胜,王长坤.基于神经网络的自动着陆飞行鲁棒自适应逆控制.飞行力学, 2010, 28(4): 32~36.
    171 Suguru Arimoto, Sadao Kawamura, Fumio Miyazaki. Bettering Operation of Robotics by Leaning. Journal of Robotic System, 1984, 1(2): 123~140.
    172 Krst icM, Kanellakopoulo s I, Koko tovic P V. Nonlinear and Adaptive Control Design. New Yowk: Wiley Interscience, 1995.
    173 Polycarpou M M, Ioannou P A. A Robust Adaptive Nonlinear Control Design. Automatica, 1996, 32(3): 423~427.
    174林辉,王林.迭代学习控制理论.西安:西北工业大学出版社, 1998.
    175孙明轩,黄宝健.迭代学习控制.北京:国防工业出版社, 1999.
    176谢胜利.迭代学习控制的理论与应用.北京:科学出版社, 2005.
    177于少娟,齐向东,吴聚华.迭代学习控制理论及应用.北京:机械工业出版社, 2005.
    178任雪梅.高为炳.任意初始状态下的迭代学习控制.自动化学报, 1994, 20(1): 74~79.
    179 Chang W S, Suh I H, Oh J H. Synthesis and analysis of digital multiple repetitive control systems. American Control Conferece, Proceedings of the 1998, 5: 2687~2691.
    180 Swaroop D, Hedrick J, Yip P, Gerdes J. Dynamic Surface Control for a Class of Nonlinear Systems. IEEE Trans. Autom. Control, 2000, 45(10): 1893~1899.
    181方忠,韩正之,陈彭年.迭代学习控制新进展.控制理论与应用, 2002, 19(2): 161~165.
    182晋玉强,胡云安.非线性系统鲁棒自适应设计与计算机仿真.海军航空工程学院学报, 2003, 18(6): 639~642.
    183 Hu Yun-An, Jin Yu-Qiang, Cui Ping-Yuan. Robust Controller Design for Missile System with Input Unmodeled Dynamics. Flight Dynamics, 2003, 21(4): 42~45.
    184 Hu Yun-An, Jin Yu-Qiang, Cui Ping-Yuan. Nonlinear Controller Design for Missile System with General Set of Uncertainties. Acat Aeronautica Et Astronautica Sinica. 2004, 25(2): 154~157.
    185 Tayebi A. Adaptive iterative learningcontrol for robot manipulators. Automatica, 2004, 40: 1196~1203.
    186 Kang M K, Lee J S, Han K L. Kinematic path-tracking of mobile robot using iterative learning control. Journal of Robotic Systems, 2005, 22(2): 111~121.
    187许建新,侯忠生.学习控制的现状与展望.自动化学报, 2005, 31(6): 943~955.
    188李仁俊,韩正之.迭代学习控制综述.控制与决策, 2005, 20(9): 961~966.
    189 Arimoto S, Kawamura S, MiyazakOuyuan P R, Zhang W J, Gupta M M.An adaptive switching leaning control method for trajectory tracking of robot manipulators. Mechatronics, 2006, 16: 51~61.
    190孟德元,贾英民,杜军平,余发山.含多状态时滞的连续时间迭代学习控制系统稳定性分析.自动化学报, 2010, 05: 696~703.
    191张玉东,方勇纯.一类输出饱和系统的学习控制算法研究.自动化学报, 2011, 01: 92~98
    192陈冰玉,孙明轩,朱胜.输出重定义下的非线性非最小相位系统迭代学习控制.控制理论与应用, 2010, 07: 948~952.
    193 Jong H O, Jin S L. Control of Flexible Joint Robot System by Backstepping Design Approach. Proceedings of the 1997 IEEE International Conference on Robotics and Automation, New Mexico, 1997, 3435~3440.
    194 Jiang Z P, Nijmeujer H. Tracking control of mobile robots: A case study in backstepping. Automatica, 1997, 33(7): 1393~1399.
    195杨小军,潘泉,张洪才.一类非线性系统基于Backstepping的自适应稳定控制.西北工业大学学报, 2005, 23(1): 28~31.
    196 Liu J K, Sun F C. Nominal Model-Based Sliding Mode Control with Backstepping for 3-Axis Flight Table. Chinese Journal of Aeronautics, 2006, 19(1): 65~71.
    197 Zou AM, Hou ZG, Tan M. Adaptive Control of a Class of Nonlinear Pure-Feedback SystemsUsing Fuzzy Backstepping Approach. IEEE Traansactions on Fuzzy Systems, 2008, 16(4): 886~897.
    198 Tong SC, He XL, Zhang HG. A Combined Backstepping and Small-Gain Approach to Robust Adaptive Fuzzy Output Feedback Control. IEEE Transactions on Fuzzy Systems, 2009, 17(5): 1059-1069.
    199 Benzineb O, Salhi H, Tadjine M, Boucherit, M. S. Benbouzid, M. E. H. A PI/Backstepping Approach for Induction Motor Drives Robust Control. International Review of Electrical Engineering, Part A, 2010, 5(2): 426~432.
    200 Narendra K S, Parthasarathy K. Identification and Control of Dynamical Systems Using Neural Networks. IEEE Transactions on Neural Network, 1990, 1(1): 4~27.
    201 Hornik K, Stincombe M, White H. Universal Approximation of an Unknown Mapping and its Derivatives Using Multilayer Feedforward Networks.Neural Network, 1990, 3: 211~223.
    202 Narendra K S, Parthasarathy K. Gradient Methods for Optimization of Dynamical Systems Containing Neural Networks. IEEE Transactions on Neural Network, 1991, 2(2): 252~262.
    203 Lewis F L, Liu Kai, Yesildirek Aydin. Neural Networks Robot Controller with Guaranteed Tracking Performance. IEEE Transactions on Neural Network s, 1995, 6 (3) : 703~714
    204 Watanabe K, Tang J, Nakamura M, Koga S, Fukuda T. A Fuzzy-Gaussian Neural Network and Its Application to Mobile Robot Control. IEEE Transactions on Control Systems Technology. 1996. 4(2): 193~199.
    205 Psillakis H E, Alexandridis A T. Adaptive Neural Motion Control of n-link Robot Manipulators Subject to Unknown Disturbances and Stochastic Perturbations. IEE Proceedings of-Control Theory Appl, 2006, 153(2): 127~138.
    206 Gao Wwenzhi, Rastko R Selmic. Neural Network Control of a Class of Nonlinear Systems with Actuator Saturation. IEEE Transactions on Neural Networks, 2006, 17(1): 147~156.
    207 Wai Rong-Jong, Chang Li-Jung. Stabilizing and Tracking Control of Nonlinear Dual-Axis Inverted- Pendulum System Using Fuzzy Neural Network. IEEE Transactions on Fuzzy Systems, 2006, 14(1): 145~168.
    208 Park J, Sandberg I W. Universal Approximation Using Radial Basis Function Networks. Neural Computation, 1991, 3(2): 246~257.
    209陈谋,姜长生,吴庆宪,曹邦武.基于RBF神经网络的一类不确定非线性系统自适应H∞控制.控制理论与应用, 2003, 20(1): 27~32.
    210 Zhang You-An, Wu Jin-Hua, Yang Hua-Dong. A/A Missile Control System Design for High Angle of Attack Maneuvering Based on RBF Neural Networks. Flight Dynamics, 2003, 21(3): 48~51.
    211邵克勇,高宏宇,于显利,杨圆圆,张会珍.基于径向基神经网络的非线性系统自适应控制.大庆石油学院学, 2006, 30(1): 85~131.
    212蔡智慧,唐忠,马士英.基于RBF神经网络的永磁同步电机在线辨识与模型参考自适应控制.华东电力,2008, 36(2): 108~112.
    213刘慧明,刘亮,董洪灿.基于RBF网络的模型参考自适应控制.青岛科技大学学报(自然科学版),2008, 29(1): 68~76.
    214李炜,许德智,李二超.基于动态补偿逆的非线性RBF内模控制及其应用.化工自动化及仪表, 2010, 37 (3): 43~46.
    215 Zhang T, Ge S S, Hang C C. A daptive Neural Network Control for Strict Feedback Nonlinear Systems Using Backstepping. Automatica, 2000, 36 (12): 1835~1840.
    216 Ognjen K, Nitin S, Frank L L, Chiman M K. Design and Implementation of Industrial Neural Network Controller Using Backstepping. IEEE Transactions on Industrial Electronics, 2003. 50(1): 193~201.
    217杨小军,李俊民.一类非线性系统基于Backstepping的自适应鲁棒神经网络控制.控制理论与应用, 2003, 20 (4): 589~592.
    218 Pashilkar A A, Sundararajan N, Sarratchandran P. Adaptive Back-Stepping Neural Controller for Reconfigurable Flight Control Systems. IEEE Transactions on Control Systems Technology, 2006, 14(3): 553~561.
    219 Alanis AY, Sanchez EN, Loukianov AG. Discrete-time adaptive backstepping nonlinear control via high-order neural networks. IEEE Traansactions on Neural Networks, 2007, 18(4): 1185~1195.
    220 Jafarian H, Eghtesad M, Tavasoli A. Combined Adaptivw-Robust and Neural Network Control of Tow Rled Cooperation Robots Using Backtepping Design. International Journal of Robotics & Automation, 2008, 23(2): 106~116.
    221梁晓俐.一类非线性系统的自适应神经网络反推控制设计及稳定性分析.纺织高校基础科学学报, 2009, 22(4): 505~511.
    222 Peng YF. Adaptive intelligent backstepping longitudinal control of vehicle platoons using output recurrent cerebellar model articulation controller. Expert Systems with Applications, 2010, 37(3): 2016~2027.
    223 Chen WS, Li JM. Globally Descentralized Adaptive Backstepping Neural Network Tracking Control for Unknow Nonliear Interconnected Systems. Asian Journal of Control, 2010, 12(1): 96~102.
    224 Chen WS, Jiao LC, Li J, Li RH. Adaptive NN Backstepping Output-Feedback Control for Stochastic Nonlinear Strict-Feedback Systems with Time-Varying Delays. IEEE Traansactions on System Man and Cybernetics Part B-Cybernetics, 2010, 40(3): 939~950.
    225 Han SI, Lee KS. Robust friction state observer and recurrent fuzzy neural network design for dynamic friction compensation with backstepping control. Mechatronics, 2010, 20(3): 384~401.
    226任晓军,刘瑞昌,陈亚,杨智勇.基于RBF神经网络的一类非线性系统反演鲁棒自适应控制.海军航空工程学院学报, 2008, 23(6): 645~654.
    227 Wu Dongsu, Gu Hongbin, Liu Hui. RBF-based backstepping control of semi-active landing gear system with solenoid valve actuator. Proceedings of 2009 IEEE InternationalConference on Intelligent Computing and Intelligent Systems, ICIS 2009, Shanghai, China: 858~863.
    228 Qian Yang, Weiguo Liu, Guangzhao Luo. Backstepping control of PMSM based on RBF neural network. Proceedings of International Conference on Electrical and Control Engineering, ICECE 2010, Wuhan, China: 5060~5064.
    229 Mei Rong, Wu QingXian, Jiang ChangSheng. Robust adaptive backstepping control for a class of uncertain nonlinear systems based on disturbance observers. Science China-Information Sciences, 2010, 53(6): 1201~1215.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700