变结构飞行器的多刚体建模和姿态控制
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
现有飞行器是具有单一飞行模式的飞行器,其功能和性能往往只是体现在某些特定的任务上。而随着航空航天技术和高新武器研制的不断发展,近年来人们对新一代飞行器在机动性、可靠性、精确性等方面都提出了更高的要求,变形飞行器作为一种全新概念的多用途、多形态飞行器,越来越受到人们的关注。飞行器的姿态控制系统是整个飞行器的重要组成部分,是飞行器稳定飞行的重要前提,因此研究飞行器的姿态控制问题具有重要的意义。本文结合国家自然科学基金(60674029)项目,首先设计了固定翼飞行器的姿态控制律,然后针对不同变结构飞行器进行了建模和控制方面的深入研究,最后介绍了飞行仿真的进展情况。研究内容具体包括如下几个方面:
     一、采用非线性设计工具中的分块反步设计法,结合输入状态稳定性理论,推导了飞行器姿态调节的非线性控制方案。对基于欧拉角和修正的Rodrigues参数建立的飞行器运动方程组,在解决姿态耦合问题后,推导了飞行器姿态调节的非线性控制方案,并证明了其鲁棒稳定性。设计了基于飞行器简化运动方程组的飞行器俯仰角姿态控制律。采用姿控发动机和空气动力提供姿态控制力矩的方式,对上述几种姿态控制律的实现进行了简要描述。
     二、依据变结构飞行器的构成将飞行器分成主刚体和各从刚体,选取主从刚体的质心和相关控制量的坐标分量作为广义速率,组成多刚体系统的广义坐标。借助各种几何条件和刚体间的约束关系,使用凯恩方法构建了变结构飞行器基于广义姿态的多刚体动力学模型。
     三、探讨了变结构飞行器广义姿态的解耦控制条件。在建立了飞行器内置滑块和机翼可伸缩两种情况下的多刚体力学模型的基础上,借助固定翼飞行器姿态控制方法设计的成功经验,采用反步设计法等非线性设计工具,提出了俯仰姿态控制的非线性方法。
     四、介绍了分布式通用3D飞行仿真平台的构建情况。
The aircraft existing is applied to certain specific missions. With the development of technology in aeronautics and astronautics, in recent years high demands for new generation of aircrafts are proposed in mobility, reliability and accuracy. As a type of multi-purpose and multi-configuration vehicle, morphing aircrafts draw more and more attention. The attitude control system plays a significant part in carrying out stable flight, thus research on attitude control system has important significance. Our research work is supported by the National Natural Science Foundation of China (Grant No 60674029). In this paper we propose a robust nonlinear attitude control method for fixed-wing aircrafts, investigate modeling and control strategy for several kinds of variable structure aircrafts. Finally the progress of flight simulation is simply presented. This paper mainly comprises the following aspects:
     1. We deduce nonlinear attitude control scheme on the basis of partitioned backstepping method and input-to-state stability theory. This method can be applied to mathematical models of aircrafts based on Euler angles and Modified Rodrigues Parameters. With this strategy the coupling of the model attitude can be dealt naturally. A stable attitude control is achived and the scheme has a good robust property subjected to external disturbances. In theory, we realize the above attitude control methods by means of attitude control engines and aerodynamic force.
     2. The variable structure aircraft is divided into the primary rigid body and the slave one according to its structure. Thus we choose the center of mass of the primary rigid body and coordinate components of relevant units as generalized coordinate. In virtue of geometric condition and constraint relation, we construct multi-rigid-body dynamics models of aircrafts, utilizing kane method.
     3. The decoupling control condition of the generalized attitude is discussed. We put forward nonlinear control plan for pitch attitude respectively, after the establishment of multi-rigid-body dynamics model of the aircraft with a moving-mass or movable wings.
     4. The progress of a distributed universal 3D flight simulation platform is introduced.
引文
[1] Thomas Michael Seigler. 2005. Dynamics and Control of Morphing Aircraft. Blacksburg, Virginia: Virginia Polytechnic Institute and State University.
    [2]马洪忠,彭建平,吴维等.智能变形飞行器的研究与发展.飞航导弹, 2006, (5).
    [3]崔尔杰,白鹏,杨基明.智能变形飞行器的发展道路.航空制造技术, 2007, (8): 38-41.
    [4]徐敏,杨士斌,丛延.智能变形飞行器研究现状和发展趋势.
    [5]杜善义,张博明.飞行器结构智能化研究及其发展趋势.宇航学报, 2007, 28, (4): 773-778.
    [6]丛敏.美国研究变形结构飞行器.飞航导弹, 2005, (3): 1-2.
    [7] Akhilesh K. Jha, Jayanth N. Kudva. Morphing Aircraft Concepts, Classifications, and Challenges. Proceedings of SPIE, Bellingham, 2004, Vol.5388: 213-224.
    [8] Armando R. Rodriguez. Morphing Aircraft Technology Survey. 45th AIAA Aerospace Sciences Meeting and Exhibit. Reno, Nevada, 8-11 January 2007, 1-16.
    [9] J. N. Kudva, B. Sanders, J. Pinkerton-Florance. Overview of the DARPA/AFRL/NASA Smart Wing Program. Proceedings of SPIE, 2002, Vol.4698: 37-43.
    [10]李军府,艾俊强,董海锋.飞机变形技术发展探究.航空科学技术, 2009, (2): 3-6.
    [11] http://baike.baidu.com/view/278194.htm
    [12] Reshaping Aircraft. Technology Review, 2003, (3): 27.
    [13] Morphing UAVs change the shape of warfare. Aerospace America, 2004, (2): 28-29.
    [14]高为炳.变结构控制理论及设计方法.北京:科学出版社, 1996.
    [15]陈涛,胡超,黄文虎.航天器姿态调整时的变结构控制与振动抑制方法.宇航学报, 2007, 28, (5): 1199-1204.
    [16]高为炳.变结构控制研究的发展与现状.控制与决策, 1993, 8, (4): 241-248.
    [17]朱民雄,孙建华,徐旭东等.飞行器姿态系统变结构控制的研究.宇航学报, 1996, 17, (3): 86-90.
    [18]高为炳,程勉.柔性空间飞行器的变结构控制.北京航空学院学报, 1988, 1, (1): 67-75.
    [19] Hedrick J. K, Gopalswamy S. Nonlinear Flight Control via Sliding Methods. Journal of Guidance, Control and Dynamics, 1990, 13, (5): 850-858.
    [20] J. Huang, C.F. Lin. Application of Sliding Mode Control to Bank-To-Turn Missile Systems. Aerospace Control Systems, 1993 Proceedings. The First IEEE Regional Conference. 25-27 May, 1993, 569-573.
    [21] John L. Crassidis. Sliding Mode Control Using Modified Rodrigues Parameters. Journal of Guidance, Control and Dynamics, 1996, 19, (6): 1381-1383.
    [22] V.I.Utkin. Variable Structure Systems with Sliding Modes. IEEE Transaction on Automatic Control, 1997, 22, (2): 212-222.
    [23] Jean-Jacques E.Slotine, Weiping Li. Applied nonlinear control. Beijing: China Machine Press, 2006.
    [24]张曙光,方振平.反馈线性化飞行控制的应用问题研究.航空学报, 1998, 19, (2): 142-146.
    [25]韩艳铧,周凤岐,周军.基于反馈线性化和变结构控制的飞行器姿态控制系统设计.宇航学报, 2004, 25, (6): 637-641.
    [26]王庆超,李达.基于反馈线性化的动能拦截器姿态控制研究.宇航学报, 2005, 26, (3): 358-361.
    [27] Snell S. A, Enns D. F, Garrard W. L. Nonlinear inversion flight control for a supermaneuverable aircraft. Journal of Guidance, Control, and Dynamics, 1992, 15, (4): 976-984.
    [28] Stephen H. Lane, Robert F. Stengel. Flight control design using nonlinear inverse dynamics. Automatica, 1988, 24, (4): 471-483.
    [29]王关仙,李明,张子军.飞行器控制律设计方法发展综述.飞行力学, 2007, 25, (2): 1-4.
    [30]程英容,张奕群.基于四元数反馈线性化的飞行器姿态控制方法研究.航天控制, 2007, 25, (5): 13-16.
    [31] Sanner R. M, E. Slotine. Gaussian network for direct adaptive control. IEEE Transactions on Neural Networks, 1992, 2, (6): 837-863.
    [32] Kim B. S, Calise A. J. Nonlinear flight control using neural networks. Journal of Guidance, Control and Dynamics, 1997, 20, (1): 26-33.
    [33]张立明.人工神经网络的模型及其应用.上海:复旦大学出版社, 1993.
    [34]王彪,唐超颖.航天器姿态的神经网络动态逆控制.系统工程与电子技术, 2007, 29, (2): 246-249.
    [35]郭建国,周军.基于滑模神经网络的自主飞艇姿态控制.飞行力学, 2009, 27, (1): 40-42.
    [36]朱家强,郭锁凤,孙增.基于神经网络的鲁棒自适应逆飞行控制.控制理论与应用, 2005, 22, (2): 182-188.
    [37]李阳.基于遗传算法的神经网络PID姿态控制系统设计.中国宇航学会首届学术年会论文汇编, 2005, 280-285.
    [38]杨大明.空间飞行器姿态控制系统.哈尔滨:哈尔滨工业大学出版社, 2000.
    [39] Miroslav Krsti?, Panagiotis Tsiotras. Inverse Optimal Stabilization of a Rigid Spacecraft.IEEE Transactions on Automatic Control,1999, Vol.44,No.5:1042-1049.
    [40] Steinberg Marc. L, Anthony B. Nonlinear adaptive flight control with a backstepping design approach. AIAA Guidannce, Navigation, and Control Conference and Exhibit, Boston, 1998, 728-738.
    [41]苏丙末,曹云峰.基于Backstepping的无人机飞控系统设计研究.南京航空航天大学学报,2001,Vol.1,No.3:250-253.
    [42]杨俊华,吴捷,胡跃明.反步方法原理及在非线性鲁棒控制中的应用.控制与决策, 2002, 17, 641-653.
    [43] Miroslav Krsti?, Kanellakopoulos I, Kokotovic P. V. Nonlinear and Adaptive Control Design. New York: Wiley, 1995.
    [44]董文瀚,孙秀霞,林岩.超机动飞行的非线性反推自适应控制.飞行力学, 25, (2): 39-42.
    [45]肖业伦.飞行器运动方程.北京:航天工业出版社,1987.
    [46] S V Yallapragada, B S Heck, J D Finney.Reaching. Conditions for Variable Structure Control with Output Feedback.Journal of Guidance, Control and Dynamics, 1996, 19, (4): 848-853.
    [47]曹建福,韩崇昭,方洋旺.非线性系统理论及应用.西安:西安交通大学出版社, 2006.
    [48]吴森堂,费玉华.飞行控制系统.北京:北京航空航天出版社, 2005.
    [49]方振平,陈万春,张曙光.航空飞行器飞行动力学.北京:北京航空航天出版社, 2005.
    [50]贾书惠.刚体动力学.北京:高等教育出版社, 1987.
    [51] M. D. Shuster,“A survey of attitude representations,”Journal of Astronautical Sciences, 1993, 44, (4), 439-517.
    [52] W. F. Phillips, C. E. Hailey. Review of attitude representations used for aircraft kinematics. Journal of Aircraft, 2001, 38, (4): 718-737.
    [53] Kaplan M. H. Modern spacecraft dynamics and control. New York: Wiley, 1976.
    [54] S. R. Marandi, V. J. Modi. A Preferred Coordinate System and the Associated Orientation Representation in Attitude Dynamics. Acta Astronautica, 1987, 15, (11): 833-843.
    [55] Dale Enns, Dan Bugajski, Russ Hendrick. Dynamic inversion: an evolving methodology for flight control design. Journal of Control, 1994, 59, (1): 71-91.
    [56] L. Sonneveldt, Q. P. Chu, J. A. Mulder. Nonlinear flight control design using constrained adaptive backstepping. Journal of Guidance, Control and Dynamics, 2007, 30 (2): 322-336.
    [57] Hess, R.A. Advances in aircraft flight control. Automatic Control, 1999, 44, (4): 887-889.
    [58] Ali Jafari. Koshkouei, Russel El Mills, Alan S. I.Zinober. Adaptive backstepping control. Berlin: Springer, 2002.
    [59] R.A. Freeman, P.V. Kokotovic. Backstepping design with nonsmooth nonlinearities. IFAC NOLCOS 1995, Tahoe City, California, 483-488
    [60] Khalil H. K. Nonlinear systems(3rd edition). New Jersey: Pretice-Hall, 2002.
    [61]洪奕光,程代展.非线性系统分析与控制.北京:科学出版社, 2005.
    [62]胡跃明.非线性控制系统理论与应用.北京:国防工业出版社, 2005.
    [63] Petar Kokotovic, Murat Arcak. Constructiver nonlinear control: a historical perspective. Automatica, 2001, 37: 637-662.
    [64] Eduardo D. Sontag. On the input-to-state stability property. European Journal of Control, 1995: 1-20.
    [65] Eduardo D. Sontag. Further facts about input to state stabilization. 1990, 35, (4): 473-476.
    [66] John. W. C. Robinson. Block backstepping for nonlinear flight control law design. Berlin: Springer, 2007.
    [67] B. Xian, D. M. Dawson, M. L. Mcintyre. A discontinuous output feedback controller and velocity observer for nonlinear mechanical systems. Automatica, 2004, 40: 695-700.
    [68] Fernando Lizarralde, John T. Wen. Attitude control without angular velocity measurement: a passive approach. IEEE Transactions On Automatic Control, 1996, 41, (3): 468-472.
    [69] P. K. Menon, G. D. Sweriduk. Integrated Guidance and Control of Moving-Mass Actuated Kinetic Warheads. Journal of Guidance, Control, and Dynamics, 2004, 27, (1): 118-126.
    [70] Thomas Michael Seigler. David A. Neal, Daniel J. Inman. Dynamic modeling of large-scale morphing aircraft. 47th AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference. Newport, Rhode Island, 1-4 May, 2006: 1-11.
    [71] Adam M. Wickenheiser, Ephrahim Garcia. Aerodynamic modeling of morphing wings using an extended lifting-line analysis. Journal of Aircraft, 2007, 44, (1): 10-16.
    [72] Thomas R. Kane, David A. Levinson. Dynamics: theory and applications. New York: McGraw-Hill, 1985.
    [73] Thomas R. Kane.现代应用动力学.上海:上海翻译出版公司, 1987.
    [74] Raymond H. Byrne, Rush D. Robinett, Beverly Rainwater Sturgis. Moving mass trim control system design. AIAA guidance, navigation and control conference. San Diego, 29-31 July, 1996:1-19.
    [75] Thomas Petsopoulos, Frank J. Regan, Jewel Barlow. Moving-mass roll control system for fixed-trim reentry vehicle. Journal of Spacecraft and Rockets, 1996, 33, (1): 54-60.
    [76]薛定宇,陈阳泉.基于Matlab/Simulink的系统仿真技术与应用.北京:清华大学出版社, 2002.
    [77]许波,刘征. Matlab工程数学应用.北京:清华大学出版社, 2000.
    [78]张劲夫,秦卫阳.高等动力学.北京:科学出版社, 2004.
    [79]边宇虹.分析力学与多刚体动力学基础.北京:机械工业出版社, 1998.
    [80]刘延柱,洪嘉振,杨海兴.多刚体系统动力学.上海:高等教育出版社, 1989.
    [81]陈乐生,王以伦.多刚体动力学基础.哈尔滨:哈尔滨工程大学出版社, 1995.
    [82]徐明友,丁松滨.飞行动力学.北京:科学出版社, 2003.
    [83]鲁道夫.布罗克豪斯.飞行控制.北京:国防工业出版社, 1999.
    [84]朱自强,吴宗成.现代飞机设计空气动力学.北京:北京航空航天大学出版社, 2005.
    [85]金尚年,马永利.理论力学.北京:高等教育出版社, 2006.
    [86]吴子牛,王兵,徐珊姝等.空气动力学.北京:清华大学出版社, 2007.
    [87]谢础,贾玉红等.航空航天技术概论.北京:北京航空航天大学出版社, 2008.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700