室内飞艇的建模与控制技术的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近年来,随着现代材料技术、计算机技术、控制技术和航空技术的不断发展,无论在军用还是民用上,飞艇的飞行控制技术都获得了相当大的关注。飞艇其独特的飞行性能和良好的效费比,使飞艇成为一种极具发展前景的飞行器。其中,室内飞艇又有自己的优势,只需很少的动力就可长时间飞行,而且不受天气因素的影响,减少了控制难度,这使得室内飞艇具有更广泛的发展空间。
     根据室内飞艇的特点,建立了室内飞艇的数学模型,对其进行稳定性分析,在此基础上制定了飞行控制律,并通过MATLAB仿真验证了控制效果,具体内容如下:
     1.介绍了飞艇的发展历史、背景及其结构。并对国内外的飞艇研制现状作了简要的说明。总结了室内飞艇的广泛应用价值和良好的发展前景。
     2.以北京科技馆异形飞艇的项目为背景,建立了室内飞艇的数学模型。首要解决的问题是利用现有理论和数据,建立室内飞艇的数学模型,以便于进行控制器的设计。
     3.根据室内飞艇的运动方程,对室内飞艇进行稳定性分析。重点从分析室内飞艇的矩阵特征值入手,判断其稳定性情况。并根据特征质的变化到室内飞艇的运动特征模态,对其分类命名,并对其物理成因进行研究。
     4.研究了室内飞艇的控制规律。根据室内飞艇线性化解耦后的两组多输入多输出的状态方程,得到单输入单输出的传递函数形式,通过MATLAB中的SISO设计工具,采用闭环控制的方法,对控制量n2,n3进行PID控制。
In recent years, along with the development of modern material technology, computer technology, control technology and aviation technology unceasing development, no matter in military or civilian, airships autonomous control technology has received considerable attention. Because its unique flight performance and good cost-effectiveness ratio, airships become a kind of extremely development prospect of aircraft. What's more, the indoor airships also has its own advantages, for example, they can be long time flights with very little power , and from the weather influences, which reduces control difficulty. These advantages make indoor airship have wider development space.
     According to the characteristics of indoor airship, the mathematical model of indoor airship is established, then its stability is analyzed, and based on this, the flight control law is established ,and through the simulation of MATLAB verifies the control effect. the concrete content as follows:
     1.The development history, the background and structure of indoor airship are introduced. A brief description is made about the airships research status both at home and abroad .The indoor airships extensive application value and good development prospect are summarized.
     2.Based on the Beijing science and technology museum special-shaped airships project, the mathematical model of indoor airships is established. The first problem of this paper is to utilize the existing theory and data to establish a mathematical model of indoor airship, and this model should facilitate undertake the controller design.
     3.According to the indoor airships motion equation, its stability is analyzed. First of all, the indoor airships matrix eigenvalues is analyzed, which can judge its stability. And according to the characteristics of qualitative change to an indoor airships characteristics of the movement modal, named its classification, and its physical cause.
     4.Then this paper studies the control rule of indoor airship. According to the linear decoupling after dissolve of two groups of multiple input multiple output state equation, the transfer function which is single input and single output is got. Finally through MATLAB SISO design tools get the control law.
引文
[1] http://lhsys.blog.sohu.com/131173420.html,2009.9
    [2] Jones, S. P. and DeLaurier, J. D., Aerodynamic Estimation Techniques for Aerostats and Airships, AIAA Lighter-than-Air Systems Conference, AIAA, Annapolis, MD, 1981
    [3] Joseph B. Mueller, Michael A. Paluszek & Yiyuan Zhao, Development of an Aerodynamic Model and Control Law Design for a High Altitude Airship, AIAA.2004-6479
    [4] Peter Funk, Thorsten Lutz, Siegfried Wagner, Experimental investigations on hull-fin interferences of the LOTTE airship, Aerospace Science and Technology 7(2003)603–610
    [5] F. Goineau & M.V. Cook, the stability and control characteristics of the neutrally bouyant non-rigid airship, College of Aeronautics Report No.9911, August 1999
    [6] Khoury, G.A. and Gillett, J.D.,“Airship Technology,”Chapter 4,Cambridge University Press, Cambridge, 1999
    [7]杭州千野飞行器股份有限公司. http://www.114ku.com/tcompany/sortid8/25876/index.html
    [8]欧阳晋,屈卫东,席裕庚.平流层平台的发展及其自主控制关键技术,工业仪表与自动化装置, 2004年第1期
    [9]屈卫东,罗昌行,欧阳晋.无人飞艇的鲁棒航向控制系统设计,系统仿真学报,VbI_l6No.11 NOV.2004
    [10]欧阳晋.空中无人飞艇的建模与控制方法研究,上海交大博士论文,2003
    [11]方存光,王伟.自主飞艇浮力调节系统的建模及控制,控制与决策,第19卷6期,2004
    [12]方存光.平流层信息平台-自主飞艇动力学建模与控制的研究,东北大学博士论文,2003
    [13]刘冠邦,姜长生.智能自主控制在航迹控制系统中的应用,机械工程与自动化,2005
    [14]张明廉.飞行控制系统[M].北京:航空工业出版社,1994. 8~9
    [15]张明廉.飞行控制系统[M].北京:航空工业出版社,1994. 13
    [16] GA.库利,J.D吉勒特.飞艇技术[M].北京:科学出版社. 2007.10
    [17]苗景刚.飞艇动力学分析及运动控制[D].中国科学院研究生院硕士学位论文. 2008.5
    [18]张明廉.飞行控制系统[M].北京:航空工业出版社,1994. 14
    [19]王划一,杨西侠,林家恒,杨立才.自动控制原理[M].北京:国防工业出版社,2001
    [20] Jex H R, Magdaleno R E, Gelhausen Paul, et al. Pre- and post-flight-test models versus measured Skyship-500 control responses [A]. AIAA Lighter-Than-Air Technology Conference [C]. New York : AIAA, 1987. 87~ 99
    [21]沈清,胡德文.神经网络应用技术[M].长沙:国肪科技大学出版社,1993.
    [22]郭欣,明振.平流层飞艇技术研究[J].中国浮空大会论文集,2007.315-317.
    [23] R Hermann and A J Krener. Nonlinera controllability and observality[J]. IEEE Trans Automat Contr1977, 22(5):728-740
    [24] Gomes V B, Ramos J G,Airship dynamic modeling for autonomous operation[C]//Proceedings of the 1998 IEEE International Conference on Robotics and Automation, Belgium: IEEE, 1998: 3462-3467
    [25]张德丰. MATLAB/Simulink建模与仿真[M].北京:电子工业出版社,2009.6.
    [26] Samsung Electronics.S3C2410X 32-Bit RISC Microprocessor User's manual. 2003.
    [27]陶永华.新型PID控制及其应用[M].北京:机械工业出版社,2002.
    [28] Ziegler B P. High autonomy systems: concepts and models[C]//Proc. A1, Simulation,and Planningin High AutonomySystems, 1990
    [29]陈刚,沈林成.复杂环境下路径规划问题的遗传路径规划方法.机器人,2001, 23(1):40-50
    [30]徐丽娜.神经网络控制[M].北京:电子工业出版社,2003.
    [31] Xue Fu Zhang.Virtual Decoupling Flight Control via Real-Time Trajectory Synthesis and Tracking, Ph. D. Thesis, 2000
    [32]韩正之,刘建华,郑毅,张钟俊.非线性控制系统的特性[J].控制与决策,1994-7
    [33] Tuckerman L.B.Inertia factor of ellipsoids for use in airship design, Naca-report-210
    [34] Emmanuel Hygounenc, Il-Kyun Jung, Philippe Soueres, Simon Lacroix, The Autonomous Blimp Project of LAAS-CNR: Achievements in Flight Control and TerrainMapping, 5th European Framework Programme
    [35] Josue Jr. G. Ramos, Ely Carneiro de Paiva, Jose Raul Azinheira, Samuel Siqueira Bueno, Silvio Mano Maeta, Luiz Gustavo Bizarro Mirisola, Marcel Bergeman, Bruno Guedes Faria ,Autonomous Flight Experiment With A Robotic Unmanned Airship, International Conference on Robotics & Automation, Seoul ,Korea. May 21-26, 2001
    [36]胡跃明.非线性控制系统理论与应用[M].国防工业出版社,2002,140-145
    [37]刘金琨.先进PID控制MATLAB仿真[M].北京:电子工业出版社,2004.
    [38]夏雨佳,曲卫东.平流层通信平台动力学模型的建立[J].航空计算技术, 2000,30(3)
    [39] FK - 20.飞艇六自由度动力学模型分析报告[R].2002-8
    [40]愈立.鲁棒控制——线性矩阵不等式处理方法[M].北京:清华大学出版社,2002
    [41]杨晖.先进无人机飞行控制技术研究[J].飞行力学,2002,20(1):1-4
    [42] Reuven Meth,Rama Chellappa.Automatic classification of targets in synthetic aperture radar imagery using topographic features[C]. SPIE Conference on Algorithms for Synthetic Aperture Radar ImageryⅢ. 1998:186-193.
    [43] Joseph Diemunsch, John Wissinger.Moving and Stationary Target Acquisition and Recognition (MSTAR) Model-Based Automatic Target Recognition : Search Technology for a Rohust ATR[C]. SPIE, 1998, 3370, 481-492.
    [44] B K P Horn . Robot vision [M]. Cambridge, MA: MIT Press, 1986.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700