城市环境下无人驾驶车辆运动控制方法的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
无人驾驶车辆是一种移动机器人,其关键技术涉及到环境感知、模式识别、导航定位、智能决策、控制工程以及计算机技术等众多学科的前沿研究领域,是验证机器感知与认知理论和关键技术的最佳实验平台,同时其技术单元也可以帮助人类驾驶员进行车辆自主驾驶工作,并以此提高行车的安全和效率。
     在无人驾驶车辆的单元技术中,在未知路况条件下的高速高精度轨迹跟踪自适应控制一直是研究的重点和难点。针对城市综合环境下无人驾驶车辆的运动控制问题,本文在传统方法的基础上,根据车辆控制模型的特殊性和城市环境的复杂多样性,提出了一些新的解决方案,以提高算法的适应性。具体的研究内容包括以下几个方面:
     1)对无人驾驶车辆控制理论的相关概念,对国内外研究成果进行分析,了解汽车的运动特性及建模仿真方法,了解不同环境对车辆运动的影响,了解驾驶员的驾驶过程,从人对车辆的控制方式来思考无人驾驶控制所要面临问题。
     2)对城市道路的分类和各自特点进行了归纳总结,明确了无人车在各种道路环境所要完成的任务;以“智能先锋”无人驾驶车辆平台为基础,介绍了平台的感知系统、决策系统、控制系统及执行机构。结合无人驾驶车辆在城市道路运动控制方面遇到的关键性问题提出控制系统采用的研究策略和设计思想。
     3)分析车辆纵向动力学,研究车辆纵向控制方法。分析总结“智能先锋”动力传动特性和制动力学特性,参考实际驾驶员对车辆的速度控制行为,结合专家控制方法,提出专家PID控制算法,根据实际驾驶员的驾车经验建立专家规则,解决在传动系统高度非线性和复杂的纵向干扰条件下的控制精度的问题,提高速度控制的鲁棒性,实现无人驾驶车辆在城市道路行驶的速度控制。
     4)研究基于车辆操作动力学的横向控制方法。建立车辆操纵动力学模型,进行车辆操纵动力学和轮胎侧向力学分析;在“预瞄—跟随”理论的控制模型和传统PID控制方法的基础上设计一种基于小脑模型神经网络与PID复合的无人驾驶车辆横向控制算法,使系统能够自动补偿被控模型和输入信号发生的非预知的变化,解决由于模型不精确或存在其他变化因素带来的控制不确定性问题,从而使无人车能够灵活的在各种道路环境实现稳定准确的道路跟踪行驶。
     5)研究车辆高速行驶时的运动学特性,联合考虑纵向控制和横向控制之间相互制约关系,根据车辆操纵稳定性及舒适性的要求建立了最高速度和最大转向角的约束规则,以保障车辆行驶安全性。
     本文最后在真实的城市道路环境中,以“智能先锋”无人驾驶车辆为实验平台,验证了上述研究内容的可行性和有效性,并根据实验结果总结了目前控制系统设计方法的优势和不足,也对进一步的研究提出了展望。
The autonomous vehicle is one kind of mobile robots, whose key technologies are related to frontier research fields of environmental perception, pattern recognition, navigation and positioning, intelligent decision-making, control engineering, computer technology, and many other disciplines. It is not only the best experimental platform to exam the cognitive theory and the critical technology, but also, at the same time, its unit technology can help humans drive cars automatically to improve the driving safety and efficiency.
     In the technology of autonomous vehicle, the high speed and high precision self-adaptative control of trajectory tracking in unknown traffic conditions is always the key difficulty. To deal with the problems of autonomous vehicle's motion control in urban environment and to improve the known traditional method, this paper presents some new solutions dealing with the specific characteristics of vehicle control model and complex diversity of city environment, to enhance the adaptability of the algorithms. Our research includes the following several aspects, specifically:
     1) We first briefly introduce the concept of vehicle control theory and the state-of-the-art international and domestic achievements. This includes the understanding of vehicle's kinetic characters with its modeling and simulation, the understanding of the environmental influence on the vehicle's and the understanding of the driving process upon considering the way that human drives.
     2) This paper also summarizes the classification of urban streets and their respective characteristic, in a way that the tasks that the autonomous vehicle faced in various conditions clear. With the so-called "Intelligent Pioneer" as a basis platform of the autonomous vehicle, we introduce the platform of sensing systems, decision-making systems, control systems, and implementing agencies. We propose a control system's research strategy and design idea that combine the key problems of autonomous vehicle's motion control in urban environment.
     3) We analyze the vehicle longitudinal dynamics and study the method of vehicle longitudinal control. The power transmission characteristics and brake mechanical properties of "Intelligent Pioneer" is analyzed and summarized, according to the behavior of driver's speed control, combining the expert control method. We develop the expert PID control algorithm, that establishes expert rules according to the driving experience, solves the problem of control accuracy when the transmission system is highly nonlinear and the longitudinal interference is too complex, so that the robustness of speed control system can be improved and the goal of speed control of autonomous vehicle's driving in urban road can be established.
     4) We study the method of lateral control for vehicle operation dynamics. The model of vehicle operation dynamics is established for the research of vehicle operation dynamics and tire lateral mechanics. Upon the formally established theory and traditional PID control, this paper presents a new autonomous vehicle's lateral control algorithm based on a composite of the CMAC and PID control. This enables the system to compensate automatically when the model and input signal occur changes unpredictability, such that the autonomous vehicle can drive steadily and accurately in any kind of urban environments.
     5) We study the kinematic characteristics when a car travels at a high speed. We consider the restricted relationship between vertical control and lateral control federatively and establish the constraint between the highest speed and biggest steering angle at the request of stability and comfort, to ensure the safety of the vehicles.
     At last, this paper takes "Intelligent Pioneer" as the experimental platform to check the feasibility and to examine the research above in the real urban environment. We also summarize the advantages and shortages of control system's design procedures. Future research directions are also proposed.
引文
Albus J. S.1975. Data Storage in the Cerebellar Model Articulation Controller (CMAC)[J]. J. Dyn. Syst. Meas. Control, Trans. ASME 97,228-233 (1975).
    Albus J.S.1975 A new approach to manipulator control:The cerebellar model articulation controller(CMAC)[J] Journal of Dynamic Systems, Measurrment,and Control Transactions of ASME,(12):220-227.
    Albus J.S.1991. Outline for a Theory of Intelligence[J]. IEEE Trans. Syst. Man Cybern. 21:473-509.
    Albus.J.2002.4D/RCS:a reference model architecture for intelligent unmanned ground vehicles[C]. SPIE AeroSense Conference, Unmanned Ground Vehicle Technology Ⅳ, (Orlando, USA).
    Andrew Bacha and et al.2008.Odin:Team VictorTango's Entry in the DARPA Urban Challenge," Journal of Field Robotics,25(8):467-492.
    Astrom K.J. et al.1986.Expert Control[J].Automatica,22(3):277-286
    Bars, R., Colaneri, P., De Souza, C. E., & Duqard, L., Allgower, F., Kleimenov, A., & Scherer, C.2006.Theory, Algorithms and technology in the design of control systems[J], Annual Review in Controls,30(1):19-30.
    Barton M.2001. Controller development and implementation for path planning and following in an autonomous urban vehicle[D]. University of Sydney, Sydney, Australia.
    Bertozzi M, Bombini L, Broggi A, Buzzoni M, Cardarelli E, Cattani S, Cerri P, Debattisti S, Fedriga RI, Felisa M, Gatti L, Giacomazzo A, Grisleri P, Laghi MC, Mazzei L, Medici P, Panciroli M, Porta PP, Zani P.2010. The VisLab intercontinental autonomous challenge: 13,000 km,3 months, no driver[C]. In: Proceedings of the 17th World congress on ITS, Busan, South Korea, Oct.2010.
    Betrozzi,M., A.Broggi, and A,Fascioli.2000. Vision-based intelligent vehicles:State of the art and persepectives[J]. Robotics and Autonomous Systems:1-16.
    Borner, B. and Isermann, R.2005. The Characteristic Velocity Stability Indicator for Passenger Cars[J]. Vehicle System Dynamics,43(8):601-612,.
    Brown, K.2004. Adaptive Control Strategy For An Automated Steering Controller[D], [MS]. The Ohio State University.
    Brusaglino,G.1992. Safe and effective mobility in Europe-the contribution of the PROMETHEUS programme[C]. IEEE Colloquium on Prometheus and Drive:101-110.
    Brusaglino,G.1992. Safe and effective mobility in Europe-the contribution of the PROMETHEUS programme[C]. In IEE Colloquium on Prometheus and Drive,101-110.
    Byme.R.H.1995. Design of a Model Reference Adaptive Controller for Vehicle Road Following[J]. Mathematical and Computer Modelling,22:343-354.
    Campion G, Bastin G, Novel B.1996. Structural properties and classification of kinematic and dynamic models of wheeled mobile robots[J]. IEEE Trans.Robotics and Automation.12: 47-62.
    Canudas-de-Wit, C. Tsiotras, P., Velenis, E., Basset, M. and Gissinger, G.2003.Dynamic Friction Models for Road/Tire Longitudinal Interaction[J]. Vehicle System Dynamics,39(3):189-226.
    Chiang&Lin.1996. CMAC with General Basis Functions[J]. Neural Networks,9(7):1199-1211.
    Choomuang R, Afzulpurkar N.2005. Hybrid Kalman Filter/Fuzzy Logic based Position Control of Autonomous Mobile Robot[J]. International Journal of Advanced Robotic Systems,2(3): 197-208.
    Chris Urmson and et al.2008. Autonomous Driving in Urban Environments:Boss and the Urban Challenge[J]. Journal of Field Robotics,25(8):425-466.
    Dejun Zhuang.2007. The Vehicle Directional Control Based on Fractional Order PDμ Controller[J]. Journal of Shanghai Jiaotong,41(2):278-283.
    Delorme D., Song B.2001. Human Driver model for SmartAHS[R], California PATH Research Report UCB-ITS-PRR-2001-12.
    Doi Masayoshi, Mori Yasuchika.2011. Generalized Minimum Variance Control for Time-varying System[J]. Transactions of the Society of Instrument and Control Engineers,45(6):298-304.
    Falcone, P., Borrelli, F., Asgari, J., Tseng, H.E. and Hrovat, D.2007. Predictive Active Steering Control for Autonomous Vehicle Systems [J]. IEEE Transactions of Control System Technology,15(3):566-580.
    Fernando A. Auat Cheein, Celso De La Cruz, Teodiano F. Bastos and Ricardo.2010. SLAM-based Cross-a-Door Solution Approach for a Robotic Wheelchair [J]. International Journal of Advanced Robotic Systems,7(2):155-164.
    Gao Feng, Li Keqiang, Lian Xiaomin.2006. Hierarchical switching control of multiple models based on robust control theory[J]. ACTA Automatica Sinica,32(3):411-416.
    Gao Feng, Wang Jianqiang, Li Keqiang.2006. Herarchical switching control of longitudinal acceleration with large uncertainties[C]. IEEE International conference on vehicular electronics and safety:270-275.
    Ghanbari A., Noorani S.2011. Optimal Trajectory Planning for Design of a Crawling Gait in a Robot Using Genetic Algorithm[J]. International Journal of Advanced Robotic Systems,8: 29-36.
    Gohl, J., Rajamani, R., Alexander, L. and Starr, P.2002.The Development of Tilt-Controlled Narrow Ground Vehicles [J].Proceedings of the American Control Conference,2002.
    Guvenc, B. A.&; Kural, E.2006. Adaptive cruise control simulator[J]. In IEEE Transaction on Control Systems Magazine:42-55.
    Hassler, D., Johnson B. S. and Kinstle, M. F.2009. Vehicle Dynamics Benchmarking and Simulation[N]. SAE Paper 2009-01-0465.
    Hatipoglu, C, Ozguner, U. & Redmill, K. A.2003. Automated lane change controller design[J]. IEEE Transactions on Intelligent Transportation System,4 (1):13-22.
    Hedrick J.K., Tomizuka M., and Varaiya P.1994. Control issues in automated highway systems[J]. IEEE Control Systems Magazine,14(6):21-32.
    Hessburg, T.1994. Fuzzy logic control for lateral vehicle guidance[J]. IEEE Control System Magazine,14:55-63.
    Junjie, H, Crolla, D.A., Levesley, MC and Manning, W.J.2006. Co-ordination of Active Steering, Driveline and Braking for Integrated Vehicle Dynamics Control[J]. Proceedings of the Institution of Mechanical Engineers Part D, Journal of Automobile Engineering,220(10): 1401-1420,2006.
    Kamiya,H.1996. Intelligent technologies of Honda ASV[C]. IEEE International conference on Intelligent Vehicles Symposium:236-241.
    King-Lung Huang etc.1997. Cascade-CMAC Neural Network Application on the Color Scanner to Printer Calibration[R]. Proceedings of the 1997 IEEE International Conference on Neural Networks,10-15.
    Lacey Gunter, Ji Zhu.2005. Computing the solution path for the regularized support vector regression[C]. In Advances in neural information processing systems:483-490.
    Le-Anh T, De Koster MB.2004. A review of design and control of automated guided vehicle systems[J]. Erasmus Research Institute of Management (ERIM), report series no: 2004-03-LIS.
    Lee, H., Tomizuka, M.2001. Coordinated Longitudinal and Lateral Motion Control of Vehicles for IVHS[J]. Transactions of the ASME, Journal of Dynamic Systems, Measurement and Control, 123:535-543.
    Lenain R, Thuilot B, Cariou C, Martinet P.2005. Model Predictive Control for vehicle guidance in presence of sliding:application to farm vehicles path tracking[C]. IEEE Conf. on robotics and automation:885-890.
    Leonard J. and et al.2008.A Perception-Driven Autonomous Urban Vehicle", Journal of Field Robotics,25(10):727-774.
    Lewis, AS, and El-Gindy, M.2003.Sliding mode control for rollover prevention of heavy vehicles based on lateral acceleration[J]. International Journal of Heavy Vehicle Systems,10(112):9-34.
    Li, Y., Ang, K. H., k Chong, G.2006. PID control system analysis and design[J]. In Proceedings of the IEEE Control Systems Magazine:32-41.
    Li,Z., Jin H. B.2011. Fuzzy Model Reference Adaptive Controller Design for Multivariable Nonlinear System[J]. International Journal of Digital Content Technology and its Applications,5(9):95-103.
    Liang, C.Y. and Peng, H.1999. Optimal adaptive cruise control with guaranteed string stability[J]. Vehicle System Dynamics,32(4):313-330.
    Lin CS,Chiang CT.1997. Learning convergence of CMAC technique[J].IEEE Trans.on Neural Network,(8):1281-1292.
    Markoff J.2010. Google cars drive themselves[N]. in traffic. New York Times. October 9.
    Masato Abe, Yoshio Kano, Kazuasa Suzuki.2001. Side-slip Control to Stabilize Vehicle Lateral Motion by Direct Yaw Moment. JSAE Review,22.
    Masato Abe.2009. Vehicle Handling Dynamics:Theory and Application[M]. Butterworth-Heinemann.
    McRuer, D.T., Hofman,L.G,1968, New Approaches to Human Pilot/Vehicle Dynamic Analysis[R]. AFFDL-TR-67-150, February.
    Michael Montemerlo and et al.2008.Junior:The Stanford Entry in the Urban Challenge[J]. Journal of Field Robotics,25(9):569-597.
    Millerm TW,Glanz FH,Kraft LG.1999. An associative neural network alternative to backpropagation[C]. Proceedings of IEEE, (78):1561-1567.
    Mokhiamar, O. and Abe, M.2004. Simultaneous Optimal Distribution of Lateral and Longitudinal Tire Forces for the Model Following Control[J]. Journal of Dynamic Systems, Measurement and Control,126:125-134.
    Pacejka, H.B.1996.The Tyre as a Vehicle Component[C]. XXVI FISITA Congress, Prague, June 16-23.
    Pan Zhao, Jiajia Chen, Tao Mei and Huawei Liang.2011. Dynamic Motion Planning for Autonomous Vehicle in Unknown Environments [C]. IEEE Intelligent Vehicles Symposium: 284-289.
    Park P., Fischione C., Bonivento A., Johansson K. H., and Sangiovanni Vincentelli A.2009. Breath:an adaptive protocol for industrial control application using wireless sensor networks[J]. IEEE Transactions on Mobile Computing,10:821-838.
    Park PC,Miller J.1989. Convergence properties of associtive memory storage for learning control system[J]. Automation and Remote Contorl, (50):254-286.
    Patete A., Furuta K., Tomizuka,M.2008. Self tuning control based on generalized minimum variance criterion for auto-regressive models[J]. Automatica,44:1970-1975.
    Pittle, D. R.2004. Stability Control-Standard or Optional? [C]. Consumer Union of United States, SAE International 2004 Automotive Dynamics, Stability and Controls Conference and Exhibition.
    Prokop, G.2001.Modeling Human Vehicle Driving by Model Predictive Online Optimization[J]. Vehicle System Dynamics,35(1):19-53.
    Puntunan S., Parnichkun M.2006. Online Self-Tuning Precompensation for a PID Heading Control of a Flying Robot[J], International Journal of Advanced Robotic Systems,4(3): 323-330.
    Rajesh Rajamani.2006.Vehicle Dynamics and Control[M]. America:Springer Verlag.
    Reddy R.N. Ellis J.R.1981.Contribution to the Simulation of Driver-Vehicle-Road System. SAE Paper, No.810513.
    Roman Prokop, Petr Hustak, Zdenka Prokopova.2002. Simple robust controllers:Design, tuning and analysis [J]. International Journal of Control:905-921.
    Salami M., Cain G.1995. An adaptive PID controller based on genetic algorithm processor[J]. Genetic Algorithms in Engineering Systems:Innovations and Applications, Conference Publication,414:12-14.
    Scott G.M., Shavlik J.W., Ray W.H.1992. Refining PID controller using neural networks [J]. Advances in Neural Information Processing Systems,4:746-757.
    Segel L.1956. Theoretical Prediction and Experimental Substantiation of the Response of the Automobile to Steering Control", automobile division, The Institute of Mechanical Engineers: 26-46.
    Serrano F.J.,Vidal A.R.,Roriguez A.1998. Generalizing CMAC architecture and training[J]. IEEE Trans Neural Networks,9(6):1950-1964.
    Shladover, S.E., C.A. Desoer, J.K. Hedrick, M. Tomizuka, J. Walrand, W. Zhang, D.H. McMahon, H. Peng, S. Sheikholeslam, and N. Mckeown.1991. Automatic Vehicle Control Developments in the PATH Program[J]. IEEE Transactions on Vehicular Technology,40(1): 431-438.
    Shoemaker,C.M. and J.A.Bomstein.1998. Overview of the Demo Ⅲ UGV Program[C]. In Part of the SPIE Conf. on Robotic and Semi-Robotic Ground Vehicle Technology,202-211.
    Shoemaker.C.M. and J.A.Bomstein.1998. Overview of the Demo Ⅲ UGV Program[C]. In Part of the SPIE Conf. on Robotic and Semi-Robotic Ground Vehicle Technology:202-211.
    Shumeet Baluja.1996. Evolution of an artificial neural network based autonomous land vehicle controller[J]. IEEE Transactions on Systems, Man, and Cybernetics,26(3):450-463.
    Sidhu, A., Mikesell, D.R., Guenther, D.A., Bixel, R., and Heydinger, G.2007. Development and Implementation of a Path-Following Algorithm for an Autonomous Vehicle[R]. SAE Paper 2007-01-0815.
    Tao Mei, Huawei Liang, Bin Kong, Jing Yang, Hui Zhu, Bichun Li, Jiajia Chen, Pan Zhao, et al. 2012. Development of "Intelligent Pioneer" Unmanned Vehicle [C]. IEEE Intelligent Vehicles Symposium:938-943.
    Thrun, S., M. Montemerlo, H. Dahlkamp, D. Stavens, A. Aron, J. Dievel, P. Fong, J. Gale, M. Halpenny, G. Hoffman, K. Lau, C. Oakley, M. Palatucci, V. Pratt, P. Stang, S. Strohbanc, C. Dupont, L. Jendrossek, C. Koelen, C. Markey, C. Rummel, J. Niekerk, E. Jensen, P. Alessandrini, G. Bradski, B. Davies, S. Ettinger, A. Kaehler, A. Nefian, and P. Mahoney.2006. Stanley:The Robot that Won the DARPA Grand Challenge[J]. Journal ofField Robotics,23: 661-692.
    Tohru Yoshioka, Tomohiko Adachi, Tetsuro Butsuen, Haruki Okazaki.1999. Application of sliding-mode theory to direct yaw-moment control[J]. JSAE Review, 20(1999):523-529.
    Travis, W., R. Daily, D.M. Bevly, K. Knoedler, R. Behringer, H. Hemetsberger, J.Kogler, W. Kubinger, B. Alefs.2006. SciAutonics-Aubum Engineering's Low-Cost High-Speed ATV for the 2005 DARPA Grand Challenge[J]. Journal of Field Robotics,23:580-597.
    Trepagnier, P.G., J. Nagel, P.M. Kinney, C. Koutsougeras, and M.Dooner.2006. KAT-5;Robust Systems for Autonomous Vehicle Navigation in Challenging and Unknown Terrain [J]. Journal of Field Robotics,23:509-526.
    Visioli A.2006. Practical PID Control[M]. Springer Verlag Advances in Industrial Control Series.
    Wai R.J.2003. Tracking control based on neural network strategy for robot manipulator[J]. Neurocomputing,51:425-445.
    Wei Wang, Kenzo Nonami and Yuta Ohira.2006. Model Reference Sliding Mode Control of Small Helicopter X.R.B based on Vision [J]. International Journal of Advanced Robotic Systems,5(3):233-242.
    Werling, M. & Groll, L. (2008). Low-level controllers realizing high-level decisions in an autonomous vehicle[C]. In IEEE Transactions on Intelligent Vehicles Symposium: 1113-1118.
    Whitcomb D. W., MiIIiken W. F.,1956. Design Implications of a General Theory of Automobile Stability and Control[J]. automobile division, The Institute of Mechanical Engineers:83-107.
    Wit, J., C.D. Crane Ⅲ, and D. Armstrong.2004. Autonomous Ground Vehicle Path Tracking[J]. Journal of Robotic Systems,21:439-449.
    Wonslaik Chee & Masayoshi Toraizuka.1994. Vehicle Lane Change Meneuvcr in Automated[J]. Highway Systems,10:192-196.
    Wu, S. J., Chiang, H. H., Perng, J. W., Lee, T. T.& Chen, C. J. (2005). The automated lane-keeping design for an intelligent vehicle[C]. In Proceedings of the IEEE Intelligent Vehicle Symposium:508-513.
    Yoshikazu, H., Eiichi, O. and Shigeyuki, H.2005.Optimum Vehicle Trajectory Control for Obstacle Avoidance Problem[C]. Proceedings of the IEEE International Symposium on Industrial Electronics,1:367-372.
    Yung-Hsiang, J. H. and Gerdes, J.C.2005. Stabilization of steer-by-wire vehicle at the limits of handling using feedback linearization[J]. Proceedings of ASME International Mechanical Engineering Congress and Exposition (IMECE).
    Zhijun Li, Weidong Chen, Hong Liu.2008. Robust Control of Wheeled Mobile Manipulators Using Hybird Joints[J]. International Journal of Advanced Robotic Systems,5(1):83-90.
    安部正人,陈辛波.1998.汽车的运动和操纵[M].机械工业出版社.
    蔡自兴.2004.智能控制(第二版)[M].北京:电子工业出版社.
    丛爽,郑毅松.2003.几种局部连接神经网络结构及性能的分析与比较[J].计算机工程,29(12):11-13.
    丛岩峰.2011.高速公路环境中自主驾驶车辆运动规划与控制[D]:[博士].吉林:吉林大学.
    傅京孙,蔡自兴,徐光估.2003.人工智能及其应用[M].北京:清华大学出版社.
    高振海,管欣,李谦,等.2002.基于预瞄跟随理论的驾驶员跟随汽车目标速度的控制模型[J].吉林大学学报(工学版),32(1):1-5.
    管欣,张素民,高振海,等.2010.利用七自由度车辆模型估计汽车状态参数[J].科学技术与工程,10(16):3888-3892.
    郭孔辉.1991.汽车操纵动力学[M].长春:吉林科学技术出版社.
    贺玉龙,卢仲贤,马国雄,刘小明,任福田.2002.高速公路直线段车辆稳定运行速度模型[J].公路,2002(10):99-103.
    李淼.2009.基于滚动时域的车辆速度估计[D]:[硕士].长春:吉林大学.
    欧青立,何克忠.2000.室外智能移动机器人的发展及其关键技术研究[J].机器人,2000(6):519-525.
    全永桑.1989.城市交通控制[M].北京:人民交通出版社.
    任殿波,张继业,张京明,等.智能车辆弯路换道轨迹规划与横摆率跟踪控制[J].中国科学:技术科学,2011,41(3):306-31
    孙增圻,等.1997.智能控制理论与技术[M].北京:清华大学出版社.
    王荣本,张荣辉,储江伟,等.2007.区域交通智能车辆控制器优化设计和品质分析[J].农业机械学报,38(1):22-25.
    王顺晃,舒迪前.2005.智能控制系统及其应用[M].北京:机械工业出版社.
    王威.杨平.2008.智能PID控制方法的研究现状及应用展望[J].自动化仪表,2008(10):86-92.
    王仲民.2006.移动机器人路径规划及轨迹跟踪问题研究[D]:[博士].河北工业大学.
    文国玮.2005.城市交通与道路系统规划[M].北京:清华大学出版社.
    徐士良.2005.计算机软件技术基础[M].北京:清华大学出版社.
    徐友春,王荣本等.2001.世界智能车辆近况综述[J].汽车工程,2001(5):289-295.
    严蔚敏,吴伟民.1996.数据结构:C语言版[M].北京:清华大学出版社.
    杨得军.1997.汽车驾驶模拟器操作触感模拟系统的开发与建模[D]:[硕士].吉林:吉林工业人学.
    游峰.2005.智能车辆自动换道与自动超车控制方法的研究[D]:[博士].吉林大学.
    喻凡.2004.车辆动力学及其控制[M].人民交通出版社.
    张殿业,明士军,石茂清.2003.中国道路交通安全问题探讨[J].交通运输工程与信息学报,1(2):1722.
    张荣辉.2007.视觉引导区域交通智能车辆cybercar导航控制器设计[D]:[硕士].长春:吉林大学.
    冢田幸广.2007.ITS最近的动向[A].日本国土交通省.第22届中日公路交流会议资料集[C].北京:日本国土交通省.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700