动脉粥样硬化斑块中糜酶活性的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
背景
     冠心病和脑卒中是严重危害人类健康的常见病和多发病,其病理基础是动脉粥样硬化(AS)。大量证据表明,在AS的形成和发展过程中,内皮细胞、平滑肌细胞、巨噬细胞、T淋巴细胞、肥大细胞等发挥了重要的作用。晚近的研究证实肥大细胞与AS的发生发展密切相关。肥大细胞通过分泌多种炎症介质,包括糜酶(chymase)、组胺和各种化学因子及细胞因子,诱导血管炎症反应、内皮功能失调、泡沫细胞形成、胞外基质降解和微血管新生等,对AS斑块的形成及斑块稳定性起着重要作用。其中,肥大细胞分泌的糜酶与AS病程进展关系尤为密切。综合研究表明,糜酶可能通过以下途径促进AS的形成和发展过程:(1)通过介导非经典途径激活血管组织中的肾素—血管紧张素系统(RAS),引起血管紧张素Ⅱ(Ang Ⅱ)生成增加,促进AS病变的进展和斑块易损;(2)通过水解活化多种炎性因子,促进AS的炎症反应过程,加速AS的进展;(3)通过降解载脂蛋白AI(Apo-AI),阻碍泡沫细胞的胆固醇外向转运,引起胞内脂质淤积,导致细胞坏死脂质沉积,促进AS斑块的形成和发展;(4)直接蛋白水解斑块纤维帽的基质成分,如:连接蛋白、层粘连蛋白、弹性蛋白、Ⅳ型和Ⅴ型胶原,导致纤维帽变薄,促进斑块向不稳定方向转变;(5)通过活化基质金属蛋白酶-1(MMP-1)、MMP-2、MMP-3和MMP-9,导致斑块纤维帽的基质成分水解而影响斑块的稳定性;(6)通过活化多种炎性因子诱导斑块血管平滑肌细胞(VSMC)凋亡并抑制其分泌活性,促进斑块纤维帽变薄,降低斑块稳定性等;(7)通过促进Ang Ⅱ及内皮素—1(ET-1)等递质的分泌,增加血管病变局部的血流剪切力,促进AS斑块向不稳定方向发展。总之,糜酶在AS的发生和发展过程中发挥着
Backgroud
    Acute cardiovascular disease and cerebrovascular disease are two common and multi-onset diseases, which have serious effects on the health of human beings, and their pathological basis is atherosclerosis (AS) .Extensive evidence supports that endotheliocyte, smooth muscle cells, macrophages , T lymphocyte and mast cells play a vital role in the development of atherosclerosis. Recent studies show that mast cells have a close relationship with atherosclerosis due to their secretion of inflammmatory factors such as chymase, histamine and other cytokines. Research shows that chymase prompts development of atherosclerosis through the following ways: (1) Increasing Ang II forming of vascular tissues by activating renin -angiotensin system (RAS), which prompts atherosclerosis development.(2) Accelerating atherosclerotic plaques development by activating inflammatory factors of atherosclerosis process; (3)Accelerating atherosclerotic plaques development by degradating apolipoprotein AI, which prevents foam cells from extraversing cholesterol. (4) Prompting plaque unstable by directly proteolyzing matrix ingredient of plaque cap such as connective protein, laminin , resilin, collogen IV and V, which causes caps of plaque thinner.(5)Making the plaque cap thinner by activating MMP-1, MMP-2, MMP-3, and MMP-9 and causing the plaque vulnerability.(6)Exerting a destabilizing effect on the plaque by inducing vascular smooth muscle cells(VSMCs)apoptosis and inhibiting VSMCs secretion by degradating fibronectin and activating inflammatory factors. (7) Augmenting shear stress acting on the arterial wall through many ways, which causes
引文
1. Lindstedt KA, Kovanen PT. Mast cells in vulnerable coronary plaques: potential mechanisms linking mast cell activation to plaque erosion and rupture. Curr Opin In Lipidol,2004;15:567-573.
    
    2. Kaartinen M. Mast cell infiltration in acute coronary syndromes implications for plaque rupture. J Am Coll Cardiol, 1998;32:606-612.
    
    3. Jeziorska M. Mast cell disruption, activation, and phenotype in atherosclerotic lesions of human carotid arteries. J Pathol, 1997;182:115-122.
    
    4. Galli SJ. New concept about the mast cells. New Engl J Med, 1993;328:257-266.
    
    5. Makoto Ihara, Hidenori Urata, Akio Kinoshita, et al. Increased chymase-dependent angiotensin II formation in human atherosclerotic aorta. Hypertension, 1999;33:1399-1405.
    
    6. Mizutani H, Schechter N, Lazarus G, et al. Rapid and specific conversion of precursor interleukin 1 beta(IL-l beta) to an active IL-1 species by human mast cell chymase. J Exp Med, 1991;174:821-825.
    
    7. Lindstedt KA, Leskinen MJ, Kovanen PT. Proteolysis of the pericellular matrix: a novel element determining cell survival and death in the pathogenesis of plaque erosion and rupture. Arterioscler Thromb Vasc Biol, 2004;24:1350-1358.
    
    8. Nakano A, Kishi F, Minami K, et al. Selective conversion of big endothelins to tracheal smooth muscleconstricting 31 -amino acid-length endothelins by chymase from human mast cells. J immunol, 1997; 159:1987-1992.
    
    9. Kakui S, Mawatari K, Ohnishi T, et al. Localization of the 31 -amino-acid endothelin-1 in hamster tissue. Life Sci, 2004;74(11): 1435-1443.
    
    10. Lindstedt KA, Kokkonen JO, Kovanen PT. Soluble heparin proteoglycans released from stimulated mast cells induce uptake of low density lipoproteins by macrophages via scavenger receptor-mediated phagocytosis. J Lipid Res,1992;33:65-75.
    
    11. Lindstedt KA, Kovanen PT. Mast cells in vulnerable coronary plaques: potential mechanisms linking mast cell activation to plaque erosion and rupture. Curr Opin In Lipidol, 2004; 15:567-573.
    12. Jason L Johnson, Christopher L Jackson, Gianni D Angelini, et al. Activation of matrix-degrading metalloproteinases by mast cell proteases in atherosclerotic plaques. Arteriosclerosis, Thrombosis and Vascular Biology, 1998; 18:1707-1716.
    13. Frank BT, Rossall JC, Caughey GH, et al. Mast cell tissue inhibitor of matrix metalloproteinase-1 is cleaved and inactivated extracellularly by alpha-chymase. J Immunol, 2001 ;166:2783-2792.
    14. Tchougounova E, Lundequist A, Fajardo I, et al. A key role for mast cell chymase in the activation of pro-matrix metalloprotease-9 and-2. J Biol Chem, 2005; 280:9291-9296.
    15. Iba Y, Shibata A, Kato M, et al. Possible involvement of mast cells in collagen remodeling in the late phase of cutaneous wound healing in mice. Int Immunopharmacol. 2004;4:1873-1880.
    16. Leskinen M, Wang Y, Leszczynski D. Mast cell chymase induces apoptosis of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 2001;21:516-522.
    17. Jin D, Takai S, Yamada M, et al. The functional ratio of chymase and angiotensin converting enzyme in angiotensin I-induced vascular contraction in monkeys, dogs and rats. Jpn J Pharmacol, 2000;84:449-454.
    18.王醒.李鹏,陈兰英.放免法同时测定糜酶转基因小鼠心脏中血管紧张素转换酶及糜酶样活性.基础医学与临床,2000;20(3):90-92.
    19. Takai S, Shiota N, Jin D, et al. Functional role of chymase in angiotensin Ⅱ formation in human vascular tissue. J Cardiovasc Pharmacol, 1998;32(5):826-833.
    20. Alberse RC. The IgE response and atopy. Eur Respir J Suppl, 1991; 13:78-84.
    21. Lindstedt L, Lee M, Kovanen PT. Chymase bound to heparin is resistant to its natural inhibitors and capable of proteolyzing high density lipoproteins in aortic intimal fluid. Atherosclerosis,2001; 155:87-97.
    22.陈主初,吴瑞生,主编.实验动物学.第1版.湖南:科学技术出版社,2002.186-187.
    23. Liu MJ, Wang Z, Li HX, et al. Mitochondrial dysfunction as an early event in the process of apoptosis induced by woodfordin I in human leukemia K.562 cells. Toxicol Appl Pharmacol. 2004;194:141-155.
    
    24. Krishna A, Terranova PR Compartmentalized mast cell degranulations in the ovarian hilum, fat pad, bursa and blood vessel regions of the cyclic hamster: relationships to ovarian histamine and blood flow. Acta Anat. 1991 ;141:18-25.
    
    25. Makoto Ihara, Hidenori Urata, Akio Kinoshita, et al. Increased chymase-dependent angi-otensin II formation in human atherosclerotic aorta. Hypertension, 1999;33(6): 1399-1405.
    
    26. Ross R.Atherosclerosis-an inflammatory disease.N Eng J Med, 1999,340: 115-126.
    
    27. Lendon CL,Davies MJ, Born GVR,et al. Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis, 1991; 87:87-90.
    
    28. Van der WA, Becker AE, van der Loos CM, et al.The site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation, 1994; 89:36-44.
    
    29. Kaartinen M, Penttila A, Kovanen PT. Acculation of activated mast cells in the shoulder regions. Circulation ,1994;90:1669-1678.
    
    30. Kaartinen M,van der WA, van der Loos CM, et al . Mast cell infiltration in acute coronary syndromes:implications for plaque rupture.J Am Coll Cardiol, 1998; 32: 1965-1971.
    
    31. Kaartinen M, Penttila A, Kovanen PT. Mast cells in rupture-prone areas of human coronary atheromas produce and store TNF-a. Circulation, 1996;94:2787-2792.
    
    32. Kovanen PT, Kaartinen M, Paavonen T, et al. Infiltrates of activated mast cells at the site of coronary atheromatous erosion or rupture in myocardial infarction. Circulation, 1995;92:1084-1088.
    
    33. Chen H, Li D, MehtaJL. Modulation of matrix metalloproteinase - 1,its tissue inhibitor,and nuclear factor-kappa B by losart an inhypercholesterolemic rabbits. Cardiovasc Pharmacol, 2002;39:332-339.
    34. Prasad A, Koh KK, Schenke WH, et al. Role of angiotensin Ⅱ type 1 receptor in the regulation of cellular adhesion molecules in atherosclerosis. Am Heart J, 2001;142:248-253.
    35. Proudfoot JM, Croft KD, Puddey IB, et al. Angiotensin Ⅱ type 1 receptor antagonists inhibit basal as well as low-density lipoprotein and platelet-activat2 ing factor-stimulated human monocyte chemoattractant protein-1. Pharmacol Exp Ther, 2003;305:846-853.
    36.王海蓉,李建军,蒋锡嘉,等.血管紧张素Ⅱ对培养血管内皮细胞核因子KB激活及厄贝沙坦干预研究.中华心血管病杂志,2004;32:64-67.
    37. Prasad A, Habib TT, Schenke WH, et al. Acute and chronic angiotensin-receptor antagonist reverses endotherlial dysfunction in artherosclerosis. Circulation, 2000; 101:2349-2354.
    38.谈红,潘其兴,梁春香,等.氯沙坦、卡托普利及联合用药对肾动脉粥样硬化的干预.中国动脉硬化杂志,2003;11:299-303.
    39. Keider S, Heinrich R, Kaplan M, et al. Angiotensin Ⅱ ad2 ministration to atherosclerosis mice increase macrophage uptake of oxidized LDL. Arterioscler Thromb Vasc Biol, 2001;21:1464-1469.
    40.黄东,葛均波,梁春,等.凝集素样氧化型低密度脂蛋白受体在兔自体静脉移植物粥样硬化病变中的表达及洛沙坦干预作用的研究.中华心血管病杂志,2004;32:915-918.
    41. Hussein O, Shneider J, Rosenblat M, et al. Valsartan therapy has addi2 tive antioxidative effect to that of fluvastatin therapy against low density lipoprotein oxidation:studies in hypercholesterolemic and hypertensive patients. J Cardiovasc Pharmacol, 2002;40:28-34.
    42. Kohno M, Ohmori K, Nozaki S, et al. Effects of valsartan on angiotensin Ⅱ-induced migration of human coronary artery smooth muscle cells. Hypertens Res, 2000;23:677-681.
    43. Grohe C, Kahlert LC. Angiotensin converting enzyme inhibition modulate cardiac fibroblast growth. Hypertension, 1998;16:377-384.
    44. Oubina MP, De N, Vazquez S, et al. Valsartan improves fibrinolytic balance in atherosclerotic rabbits. Hypertension ,2002;20:303-310.
    
    45. Li P, Fukuhar M, Diz DI, et al. Langiotensin II AT(1) receptor antagonistir besartan prevents thromboxane A(2) - induced vaso2 constriction in canine coronary arteries and human platelet aggregation. Pharmacol Exp Ther, 2000;292:238-246.
    
    46. Napoleone E, Di A, Camera M, et al. Angiotensin converting enzyme inhibitors downregulate tissue factor synthesis in monocytes. Circ Res, 2000;86:139-143.
    
    47. Schechter NM, Choi JK, Slavin A, et al. Indentification of a chymotripsin Like proteinase in human mast cells. J Immunol, 1986; 137:926-70.
    
    48. Cornish KC, Joyner WL, Gilmore JP. Direct evidence for the presence of a different converting enzyme in the hamster cheek pouch. Circ res, 1979;44:540-544.
    
    49. Trachte GL, Leger AM. Inotropic and vasoactive effects of the naturelly occuring angiotensins in isolated cardiac muscle and coronary arteries. Res Commun Chem Pathol Pharnacol, 1979;25:419-427.
    
    50. Okuniahi H, Miyazaki M, Toda N. Evidence for a putatively new angiotensin Ⅱ generating enzyme in the vascular wall. J Hypertens, 1984;2:277-284.
    
    51. Okuniahi H, Miyazaki M, Okamura H, et al. Different distribution of two types of angiotensin Ⅱ-generating enzymes in the aortic wall. Biophy Res Commun, 1987;149:1186-1192.
    
    52. Urata H, Kinoshita A, Misono KS, et al. Identification of a highly specific chymase as the major angiotensin Ⅱ-forming enzyme in the human heart. J Biol Chem, 1990;265:22348-22357.
    
    53. Urata H, Healy B, Stewart RW, et al. Angiotensin II-forming pathways in normal and failing human heart. Circ Res ,1990;66:883-890.
    
    54. Urata H, Strobel F, Ganten D. Widespread tissue distribution of human chymase. J Hypertens, 1994; 12:17-822.
    
    55. Schwartz LB, Austen KF. Structure and function of the chemicalmediators of mast cells. Prog Allergy, 1984;34:271-321.
    
    56. Urata H, Kinoshita A, Perez DM, et al. Cloning of the gene and cDNA for human heart chymase. J Biol Chem, 1991;266:17173-17179.
    
    57. Lindstedt KA, Kokkonen JO, Kovanen PT. Soluble heparin proteoglycans released from stimulated mast cells induce uptake of low density lipoproteins by macrophages via scavenger receptor-mediated phagocytosis. J Lipid Res, 1992;33:65-75.
    
    58. Kinoshita A, Urata H, Bumpus FM, et al.Multiple determinants for the high substrate specificity of an angiotensin II-forming chymase from the human heart. J Biol Chem, 1991 ;266:19192-19197.
    
    59. Akasu M, Urata H, Kinoshita A, et al. Difference in tissue angiotensin II-forming pathways by species and organs in vitro. Hypertension , 1998;32:514-520.
    
    60. Chandrasekharan UM, Sanker S, Glynias MJ, et al. Angiotensin II-forming activity in a reconstructed ancestral chymase. Science, 1996; 271: 502-505.
    
    61.Ihara M, Urata H, Kinoshita A, et al. Increased chymase dependent angiotensin II formation in human atherosclerotic aorta. Hypertension, 1999;33:1399-1405.
    
    62. Uehara Y, Urata H, Sasaguri M, et al. Increased chymase activity in internal thoracic artery of patients with hypercholesterolemia. Hypertension, 2000; 35: 55-60.
    
    63. Uehara Y, Urata H, Ideishi M, et al. Chymase inhibition suppresses high-cholesterol diet-induced lipid accumulation in the hamster aorta. Cardiovasc Res, 2002;55:870-876.
    
    64. Sanker S, Chandrasekharen UM, Wilk D, et al. Distinct multisite synergistic interactions determine substrate specificities of human chymase and rat chymase for angiotensin II formation and degradation. J Biol Chem, 1997;272:2963-2968.
    
    65. Takai S, Sakaguchi M, Jin D, et al. Different angiotensin II-forming pathways in human and rat vascular tissues. Clin Chim Acta, 2001;305:191-195.
    
    66. Jin D, Takai S, Yamada M, et al. The functional role of chymase and angiotensin converting enzyme in angiotensin Iinduced vascular contraction in monkeys, dogs and rats. Jpn J Pharmacol, 2000;84:449- 454.
    
    67. Padmanabhan N, Jardine AG, McGrath JC, et al. Angiotensin convertin genzyme-independent contraction to angiotensin I in human resistance arteries. Circulation 1999;99:2914-2920.
    
    68. Dietschv JM, Tueley SD, Spadv DK. Role of liver in the mainteinance of cholesterol and low density lipoprotein homeostasis in different animal species including humans. J Lipid Res, 1993;34:1637.
    
    69. Harris WS. N-3 fatty acids and serum lipoproteins:animal studies. Am J Clin Nutr, 1997;65:1611-1616.
    
    70. Kris-Etherton PM, Dietschy J. Design criteria for studies examining individual fatty acid effects on cardiovascular disease risk factors:human and animal studies. Am J Clin Nutr, 1997,65:1588-1596.
    
    71. Kokkonen JO, Kovanen PT. Stimulation of mast cells leads to cholesterol accumulation in macrophages in vitro by a mast cell granule-mediated uptake of low density lipoprotein. Proc Natl Acad Sci USA, 1987;84:2287-2291.
    
    72. Hua M, Kovanen PT. IgE-Dependent Generation of Foam Cells: An Immune Mechanism Involving Degranulation of Sensitized Mast Cells With Resultant Uptake of LDL by Macrophages. Arteriosclerosis, Thrombosis, and Vascular Biology. 1995;15:811-819.
    
    73. Johnson JL, Jackson CL. Atherosclerotic plaque rupture in the apolipoprotein E knockout mouse. Atherosclerosis, 2001; 154:399-406.
    
    74. Constantinides P, Chakravarti RN. Rabbit arterial thrombosis production by systemic procedures. Arch Pathol, 1961,72:197-208.
    
    75. Abela GS, Picon PD, Friedl SE, et al. Triggering of plaque disruption and arterial thrombosis in an athersclerotic rabbit model. Circulation, 1995,91:776-784.
    
    76. von der ThUsen JH, van Vlijmen BJM, Hoeben RC, et al. Induction of atherosclerotic plaque rupture in apolipoprotein E~-/-~mice after adenovirus-mediated transfer of p53. Circulation, 2002,105:2064-2070.
    
    77. Chen WQ, Zhang Y, Zhang M, et al. Establishing an animal model of unstable atherosclerotic plaques. Chin Med J(Engl), 2004; 117:1293-1298.
    1. Doggrell SA, Wanstall JC. Vascular chymase: pathophysiological role and therapeutic potential of inhibition, Cardiovasc Res, 2004;61:653-62.
    
    2. Lindstedt KA, Kovanen PT. Mast cells in vulnerable coronary plaques: potential mechanisms linking mast cell activation to plaque erosion and rupture. Curr Opin In Lipidol, 2004;15:567-573.
    
    3. Tchougounova E, Lundequist A, Fajardo I, et al. A key role for mast cell chymase in the activation of pro-matrix metalloprotease-9 and -2. J Biol Chem, 2005; 280:9291-9296.
    
    4. Iba Y, Shibata A, Kato M, et al. Possible involvement of mast cells in collagen remodeling in the late phase of cutaneous wound healing in mice. Int Immunopharmacol, 2004;4:1873-1880.
    
    5. Jason L Johnson, Christopher L Jackson, Gianni D Angelini, et al. Activation of matrix-degrading metalloproteinases by mast cell proteases in atherosclerotic plaques. Arteriosclerosis, Thrombosis and Vascular Biology, 1998; 18: 1707-1716.
    
    6. Leskinen M, Wang Y, Leszczynski D. Mast cell chymase induces apoptosis of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 2001 ;21:516-522.
    
    7. Jin D, Takai S, Yamada M, et al. The functional ratio of chymase and angiotensin converting enzyme in angiotensin I-induced vascular contraction in monkeys, dogs and rats. Jpn J Pharmacol, 2000;84:449-454.
    
    8. Takai S, Jin D, Murama M, et al. Chymase as a novel target for the prevention of vascular diseases. Trends in Pharmacological ciences, 2004;25:518-522.
    
    9. Isaji M, Miyata H, Ajisawa Y, et al. Inhibition by tranilast of vascular endothelial growth factor (VEGF)/vascular permeability factor (VPF) induced increase in vascular permeability in rats. LifeSci, 1998;63:171-174.
    
    10. Katoh N, Hirano S, Yasuno H. Solitary mastocytoma treated with tranilast. J Dermatol, 1996;23:335-339.
    11. Jin D, Takai S, Shiota N, et al. Tranilast, an anti-allergic drug, possesses antagonistic potency to angiotensin Ⅱ. Eur J Pharmacol, 1998;361:199-205.
    12. Shiota N, Okunishi H, Takai S, et al. Tranilast suppresses vascular chymase expression and neointima formation in balloon-injured dog carotid artery. Circulation, 1999;99:1084-1090.
    13. Takahashi A, Taniguchi T, Ishikawa Y, et al. Tranilast inhibits vascular smooth cell growth and intimal hyperplasia by induction of p21waf1/cip1/sdi1 and p53. Circ Res, 1999;84:543-550.
    14. Izawa A, Suzuki J, Takahashi W, Amano J, Isobe M. Tranilast inhibits cardiac allograft vasculopathy in association with p21(Waf1/Cip1) expression on neointimal cells in murine cardiac transplantation model. Arterioscler Thromb Vasc Biol, 2001;21:1172-1178.
    15. Saiura A, Sata M, Hirata Y, et al. Tranilast inhibits transplant-associated coronary arteriosclerosis in a murine model of cardiac transplantation. Eur J Pharmacol, 2001;433:163-168.
    16.陈主初,吴瑞生,主编.实验动物学.第1版.湖南:科学技术出版社,2002,186-187.
    17. Liu M J, Wang Z, Li HX, et al. Mitochondrial dysfunction as an early event in the process of apoptosis induced by woodfordin I in human leukemia K562 cells. Toxicol Appl Pharmacol. 2004; 194:141-155.
    18. Nagase H, Woessner JF. Matrix Metalloproteinases. J Biol Chem, 1999;274: 21491-21494.
    19.许增禄.显示胶原及其类型的苦味酸天狼猩红.偏振光方法.基础医学与临床杂志.1996,12:75.
    20. Krishna A, Terranova PF. Compartmentalized mast cell degranulations in the ovarian hilum, fat pad, bursa and blood vessel regions of the cyclic hamster: relationships to ovarian histamine and blood flow. Acta Anat. 1991;141:18-25.
    21. Makoto Ihara, Hidenori Urata, Akio Kinoshita, et al. Increased chymase-dependent angi-otensin Ⅱ formation in human atherosclerotic aorta. Hypertension, 1999;33(6): 1399-1405.
    22. Moreno P, Falk E, Palacious IF, et al. Macrophages infiltration in acute coronary syndromes:implications for plaque rupture. Circulation, 1995;90:775-778.
    
    23. Ross R. Atherosclerosis-an inflammatory disease.N Eng J Med, 1999,340: 115-126.
    
    24. Urata H, Healy B, Stewart B W, et al. Angiotensin Ⅱ-forming pathways in normal and failing humam hearts. Circ Res, 1990,66:883-890.
    
    25. Urata H, Kinoshita A, Misono K S, et al. Identification of a highly specific chymase as the major angiotensin Ⅱ -form-ing enzyme in the human heart. J Biol Chem, 1990, 265: 22348-22357.
    
    26. Urata H, Kinoshita A, Perez D M, et al. Cloning of the gene and cDNA for human heart chymase. J Biol Chem, 1991,266:17173-17179.
    
    27. Uehara Y, Urata H, Sasaguri M, et al. Increased chymase activity in internal thoracic artery of patients with hypercholesterolemia. Hypertension, 2000;35:55-60.
    
    28. Majesky MW, Lindner V, Twardzik DR, et al. Production of transforming growth factor-pi during repair of arterial injury. Clin Invest, 1991 ;88:904-910.
    
    29. Lindstedt KA, Leskinen MJ, Kovanen PT. Proteolysis of the pericellular matrix: a novel element determining cell survival and death in the pathogenesis of plaque erosion and rupture. Arterioscler Thromb Vasc Biol, 2004;24:1350-1358.
    
    30. Eghbali M, Tome RR, Sukhatme VP, et al. Differential effects of transforming growth factor beta-1 and phorbol myristate acetate on cardiac fibroblasts regulation of fibrillar collagen mRNAs and expression of early transcription factor. Circ Res, 1991;69:483-490.
    
    31. Majesky MW, Lindner V, Twardzik DR, et al. Production of transforming growth factor-pi during repair of arterial injury. Clin Invest, 1991 ;88:904-910.
    
    32. Wayne A, Border, Nancy A, et al. Interaction of transforming growth factor-β ang angiotension Ⅱ in renal fibrosis. Hypretension, 1998;3:181 -188.
    
    33. Rosenkranz S, Flesch M, Bohm M, et al. Alterations of beta-adrenergic signaling and cardiac hypertrophy in transgenic mice overexpressing TGF-beta. Am J Physiol Heart Circ Physiol, 2002;283:1253-1262.
    34. Gonzalez W, Chen Z, Deborah H, et al. Transforming growth factor-β regulation of endothelin expression in rat vascular cell and organ culture. J Cardiovasc Pharmacol, 2001;37:219-226.
    
    35. Agrotis A, Saltis J, Bobik A, et al. Transforming growth factor-β1 gene activation and growth of smooth muscle from hypertension rats. Hypertension, 1994;23:593-599.
    
    36. Wang YF, Shiota N, Markus J, et al. Mast cell chymase inhibits smooth muscle cell growth and collagen expression in vitro. Arterioscler Thromb Vasc Biol, 2001;21:1928-1933.
    
    37. Nakano A, Kishi F, Minami K, et al. Selective conversion of big endothelins to tracheal smooth muscleconstricting 31-amino acid-length endothelins by chymase from human mast cells. J immunol, 1997; 159:1987-1992.
    
    38. Wypij DM, Nichols JS, Novak PJ, et al. Role of mast cell chymase in the extracellular processing of big-endothelin-1 to endothelin-1 in the perfused rat lung. Biochem Pharmacol, 1992;43.845-853.
    
    39. Kakui S, Mawatari K, Ohnishi T, et al. Localization of the 31-amino-acid endothelin-1 in hamster tissue. Life Sci, 2004;74:1435-1443.
    
    40. Cui P, Tani K, Kitamura H, et al. A novel bioactive 31-amino acid endothelin-1 is potent chemotactic peptide for human neutrophils and monocytes. J Leukoc Biol,2001;70:306-312.
    
    41. Suzaki Y, Yosizumi M, Yamashita Y, et al. Determination of plasma concentrations of endothelin-1(1-31) and endothelin-1 in healthy subjects and patients with Atherosclerosis. J Cardiovasc Pharmacol, 2003 ;41:83.
    
    42. Magujre J, Kuc RE, Davenport AP, et al. Vasoconstrictor activity of novel endothelin peptide, ET-1(1-31) in human mammary and coronary arteries invitro. Br J pharmacol, 2001; 134:1360.
    
    43. Mawatar K, Skakui, Harada N, et al. Endothelin-1(1-31) level are increased in atherosclerotic lesions of the thoracic aorta of hypercholesterolemi chamsters. Atherosclerosis, 2004; 175:203.
    
    44. Niwa Y, Nagata N, Oka M, et al. Production of nitric oxide from endothelial cells by 31 amino acid length endothelin-1,a novel vasoconstrictive product by human chymase. Life Sience, 2000; in press.
    
    45. Kishi F, Minami K, Okishima N, et al. Novel 31 amino acid length endothelin cause contraction of vascular smooth muscle. Biochem Biophys Res Commun, 1998;248:387-390.
    
    46. Mizutani H, Schechter N, Lazarus G, et al. Rapid and specific conversion of precursor interleukin 1 beta(IL-1 beta) to an active IL-1 species by human mast cell chymase. J Exp Med, 1991;174:821-825.
    
    47. Moyer CF, Sajuthi D, Tulli H, et al. Synthesis of IL-alpha and IL-beta by arterial cells in athero sclerosis. Am J Pathol, 1991; 138:951-960.
    
    48. Oppenheim JJ. There is more than one interleukin-1. Immunology Today, 1986; 7:45.
    
    49. Colotta F, Dowe SK, Sim JE, et al. The type Ⅱ decoy receptor: a novel regulatory pathway for interleukin 1. Immunol Today, 1994;15:562-566.
    
    50. Attur MG, Dave M, Cipolletta C, et al. Reversal of autocrine and paracrine effects of interleukin 1 in human arthritis by type Ⅱ decoy receptor. J Biol Chem, 2000;275:40307-40315.
    
    51. Ouvenne P, Vannier E, Dinarello C, et al. Elevated levels of soluble interleukin-1 receptor type Ⅱ and Interleukin-1 receptor antagonist in patients with chronic arthritis: correlations with markers of inflammation and joint destruction. Arthritis Rheum, 1998;41:1083-1089.
    
    52. Dinarellot CA. Interleukin-1. Cytokine Growth Factor Reviews, 1997;8: 253-265.
    
    53. Schalkwijk CG, Vet E de, Pferlschifter, et al. Interleukin-1β and transforming growth factor-β2 enhance cytosolic high molecular mast phospholipase A2 activity and induce prostaglandin E2 formation in rat mesangial cells. Eur J Biochem, 1992;210:169-176.
    
    54. Pfeilschifter J, Schalkwijk CG, Briner V, et al. Cytokine stimulated secretion of group 2 phosphorlipase A2 by rat mesangial cells. J Clin Invest, 1993; 92:2516-2523.
    55. Liu Y, Liu T, Mccarron RM, et al. Evidence for activation of endothelium and monocytes in hypertensive rats. Am J Physiol, 1996;39:2125-2131.
    
    56. Kirii H, Niwa T, Yamada Y, et al. Lack of Interleukin-1β Decreases the Severity of Atherosclerosis in ApoE-Deficient Mice. Arterioscler Thromb Vasc Biol, 2003;23:656.
    
    57. Wang X, Feuerslein GZ, Clark RK, et al. Enhanced leucocyte adhesion to interleukin-1 beta stimulated vascular smooth muscle cells is mainly through intercellular adhesion molecule-1. Cardiovasc Res, 1994;28:1808.
    
    58. Haraldsen G, Kvale D, Lien B, et al. Cytokine regulated expression of Eselection, intercellular adhesion molecular-1 (ICAM-1), and vascular cell adhesion molecule-1 (VCAM-1) in human intestinal microvascular endothelial cells . J Immunol, 1996; 156:2588.
    
    59. Sironi M, Sciacca F L, Matteucci C, et al. Regulation of endothelial and mesothelial cell function by interleukin-13:selective induction of vascular cell adhesion molecule-1 and amplification of interleukin-6 production. Blood, 1994;84:19131.
    
    60. Fruebis J, Gonzalez V, Silvestre M, et al. Effect of probucol treatment on gene expression of VCAM-1, MCP-1, andM-CSF in the aortic wall of LDL recep to rdeficient rabbits during early atherogenesis. Arterioscler Thromb Vasc Biol, 1997;17:1289.
    
    61. Pelletier JP, DiBattista JA, Routhley P, et al. Cytokines and inflammation in cartilage degradation. Rheum Dis Clin North Am, 1993;19:545-568.
    
    62. Lotz M, Blanco FJ, Von Kempis J, et al. Cytokine regulation of chondrocyte function. J Rheumatol, 1995;43:104-108.
    
    63. Neidel J, Sihulze M, Sova L, et al. Practical significance of cytokine determination in joint fluid in patients with arthroses or rheumatoid arthritis. Z Orthop Ihre Grenzgeb, 1996; 134:381-385.
    
    64. Pelletier JP, McCollum R, Cloutier JM, et al. Synthesis of metalloproteases and interleukin 6 (IL-6) in human osteoarthritic synovial membrane is an IL-1 mediated process. J Rheumatol, 1995;43:109-114.
    65. Smith MD, Triantafillou S, Parker A, et al. Synovial membrane inflammation and cytokine production in patients with early osteo-arthritis. J Rheumatol, 1997;24:365-371.
    
    66. Hessler JR. Lipoprotein oxidation and Iipoprote in induced cytotoxicity. Atherosclerosis, 1983;3:125-127.
    
    67. Libby P. Interleukin-2:a mitogen for human vascular smooth muscle cells that induce the release of growth inhibitory prostanoids. J Clin Invest, 1988;81: 847-852.
    
    68. Balbay Y, Tikiz H, Baptiste RJ, et al. Circulating IL-1β, IL-6, TNF-α and soluble ICAM-1 in patients with chronic stable angina and myocardial infarction. Angiology,2001;52:109-114.
    
    69. Westacott CI, Sharif M. Cytokines in osteoarthritis:mediators or markers of joint destruction. Semin Arthritis Rheum, 1996,25:254-272.
    
    70. Kirii H, Niwa T, Yamada Y, et al. Lack of Interleukin-1β Decreases the Severity of Atherosclerosis in ApoE-Deficient Mice. Arterioscler Thromb Vasc Biol, 2003;23:656.
    
    71. Liu Y, Liu T, Mccarron RM, et al. Evidence for activation of endothelium and monocytes in hypertensive rats. Am J Physiol, 1996;39:2125-2131.
    
    72. Takahashi H, Nishimura M, Sakamoto M, et al. Effects of IL-1β on blood pressure, sympathetic nerve activity, and pituitary endocrine functions in anesthetized rats. Am J Hypertens, 1992;5:224-229.
    
    73. Lindstedt KA, Kokkonen JO, Kovanen PT. Soluble heparin proteoglycans released from stimulated mast cells induce uptake of low density Hpoproteins by macrophages via scavenger receptor-mediated phagocytosis. J Lipid Res, 1992;33:65-75.
    
    74. Benoit P, Emmanuel F, Caillaud JM, et al. Somatic gene transfer of human apoA-1 inhibits atheroscleosis progression in mouse models. Circulation, 1999;99:105-110.
    
    75. Paszty C, Maeda N, Verstuyft J, et al. Apolipoprotein A-1 transgene corrects apolipoprotein E deficjency induced atheroscleros is in mice. J Clin Invest, 1994;94:899-903.
    
    76. Liu AC, Lawn RM, Verstuyft J, et al. Human apolipoprotein A-1 prevents atherosclerosis associated with apolipoprotein (a) intransgenic mice. J Lipid Res, 1994;35:2263-2267.
    
    77. Tangirala RK, tsukamoto K, Chun SH, et al. Regression of atherosclerosis induced by liver directed gene transfer of apolipoprotein A-1 in mice. Circulation, 1999; 100:1816-1822.
    
    78. Sun S, Trachtenberg JD, Cochrane H, et al. Apolipoprotein A-l inhibits atherosclerotic lesions progression. Circulation, 1993;88:549-552.
    
    79. Francis GA, Tsyjita M, Terry TL, et al. Apolipoprotein A-1 efficiently binds to and mediates cholesterol and phospholipid efflux from human but not rat aortic smooth muscle cells. Biochemistry, 1999;38:16315-16322.
    
    80. Lindstedt L, Lee M, Kovanen PT. Chymase bound to heparin is resistant to its natural inhibitors and capable of proteolyzing high density lipoproteins in aortic intimal fluid. Atherosclerosis,2001; 155:87-97.
    
    81. Castro G, Nihoul LP, Dengremont C, et al. Cholesterl efflux,lecithin:cholesterol acyltransferase activity,and prebeta particle formation by serum from human apolipoprotein A-1 and Ⅱ transgenic mice consistent with the latter being less effective for reverse cholesterol transport. Biochemistry, 1997;36:2243-2249.
    
    82. Navab M, Hama SY, Anantharamaiah GM, et al. Normal high density lipoprotein inhibits three steps in the formation of mildly oxidized low density lipoprotein: steps 2 and 3. J Lipid Res, 2000;41:1495-1508.
    
    83. Navab M, Hama SY, Cooke CJ, et al. Normal high density lipoprotein inhibits three steps in the formation of mildly oxjdized low density lipoprotein: step 1. J Lipid Res, 2000;41:1481-1494.
    
    84. Ross R. Atherosclerosis an inflammatory disease. N Engl J Med, 1999; 340: 115-126.
    
    85. Burkhard L, Rolf MZ, Hans H. Arteial inflammation and atheroscle rosis. TCM, 2002;12:154-159.
    
    86. Clay MA, Pyle DH, Rye KA, et al. Time sequence of the inhibition of endothelial adhesion molecule expression by reconstituted high density lipoproteins. Atherosclerosis, 2001;157:23-29.
    
    87. Burger D, Dayer JM. High density lipoprotein associated apolipoprotein A-1.the missing link between infection and chronic inflammation? Autoimmunity Reviews, 2002; 1:111-117.
    
    88. Deckert V, Lizard C, Duverger N, et al. Impairment of endothelium dependent arterial relaxation by high fat feeding in apoE deficient mice: toward normlization by human apoA-1 expression. Circulation, 1999; 100:1230-1235.
    
    89. Nagase H, Woessner JF. Matrix Metalloproteinases. J Biol Chem, 1999;274: 21491-21494.
    
    90. Tchougounova E, Lundequist A, Fajardo I, et al. A key role for mast cell chymase in the activation of pro-matrix metalloprotease-9 and -2. J Biol Chem, 2005;280:9291-9296.
    
    91. Iba Y, Shibata A, Kato M, et al. Possible involvement of mast cells in collagen remodeling in the late phase of cutaneous wound healing in mice. Int Immunopharmacol, 2004;4:1873-1880.
    
    92. Lindstedt KA, Kovanen PT. Mast cells in vulnerable coronary plaques: potential mechanisms linking mast cell activation to plaque erosion and rupture. Curr Opin In Lipidol, 2004; 15:567-573.
    
    93. Frank BT, Rossall JC, Caughey GH, et al. Mast cell tissue inhibitor of matrix metalloproteinase-1 is cleaved and inactivated extracellularly by alpha-chymase. J Immunol, 2001; 166:2783-2792.
    
    94. Shan PK, Falk E, Badimon JJ, et al. Human monocyte derived maorophages induce collagen breakdows in fibrous caps of atherosclerotic plagues. Circulation, 1995;95:1565-1569.
    
    95. Henney AM,Wakeley PR,Davies MJ, et al. Localication of stromelysin gene expression in atherosclerotic plaque by an in situ hybridization. Proc Natl Acad Sci U S A, 1991,84:15-20.
    
    96. Nikkari ST, O'Brien KD, Ferguson M, et al. Interstitial collagenase (MMP-1) expression in human carotid atherosclerosis. Circulation, 1995,92:1393-1398.
    97.郭爱桃,韦立新,石怀银,等.基质金属蛋白酶-1与冠状动脉粥样硬化斑块破裂的关系.中华病理学杂志,2000;29:263-266.
    98. Crisby M, Nordin G, Shah PK, et al. Pravastatin treatment increases collagen content and decreases lipid content inflammation metalloproteinases and cell death in human carotid plaques implications of plaque stabilization. Circulation, 2001; 103:926-933.
    99. Inokabo Y, Hanada H, Ishizaka H, et al. Plasma levels of matrix metalloprote inase-9 and tissue inhibitor of metalloprote inase-1 are increased in the coronary circulation in patients with acute coronary syndrome. Am Heart J, 2001; 141:211-217.
    100. Loftus IM, Navlor AR, Goodall S. Increased matrix metalloproe inase-9 activitv in unstable carotid plaque. A potential role on acute plaque disruption Stroke, 2003;31:40-47.
    101. Magid R, Muiphy TJ, Galls ZS. Expression of matrix metallprote inase-9 in endothelial cells is differentially regulated by shear stress Role of cmvc. J Biol Chem, 2003;278:32994-329949.
    102. Han DK, Haudenschild CC, Hong MK. Evidence for apoptosis in human atherogenesis and in a rat vascular injury model. Am J Pathol, 1995; 147: 267-277.
    103. Bennett MR, Evan GI, Schwatz SM. Apoptosis of human vascular smooth muscle cells derived from normal vessels and coronary atherosclerotic plaque. J Clin Invest, 1995;95:2266-2272.
    104. Alain Tedgui. Apoptosis as a determinant of atherothrombosis. Thromb Haemost, 2001 ;86:420-426.
    105. Holvoet P, Vanhaecke J, Janssens S, et al. Oxidized LDL and malondialdehyde-modified LDL in patients with acute coronary syndromes and stable coronary artery disease. Circulation, 1998;98:1487-1494.
    106. Toshima S, Hasegawa A, Kurabayashi M, et al. Circulating oxidized low density lipoprotein levels: a biochemical risk marker forcoronary heart disease. Arterioscler Thromb Vasc Biol, 2000;20:2243-2247.
    107. Biassuci LM, D'Onofrio G, Liuzzo G, et al. Intercellular neutrophil myeloperoxidase is reduced in unstable angina and acute myocardial infarction, but its reduction is not related to ischaemia. J AM Coll Cardiol, 1996; 27: 611-616.
    108. Kockx MM. Apoptosis in the atheroclerotic plaque: quantitative and qualitative aspects. Arterioscler Thromb Vasc Biol, 1998,18:1519-1522.
    109. Isner JM, Keamey M, Bortman S, et al. Apoptosis in human atherosclerosis and restenosis. Circulation, 1995 ;91:2703-2711.
    110. Kockx MM, Knaapen MW. The role of apoptosis in vascular disease. J Pathol, 2000;190:267-280.
    111. Leskinen M, Wang Y, Leszczynski D. Mast cell chymase induces apoptosis of vascular smooth muscle cells. Arterioscler Thromb Vasc Biol, 2001;21:516-522.
    112. Boyle J J, Weissheng PL. Bennetl MR. Human marrophage induced rascular smooth muscle cell apoplosis requires NO enhancem of Fas/Fas 1, interations. Arterioseler Thromb Vase Biol, 2002;22:1624-1630.
    113.余茜,刘羲,许川山.脑缺血损伤与一氧化碳及细胞凋亡的关系.中国临床康复,2002;6:3518-3519.
    114. Horiuchi M, Akishita M, Dzau VJ. Molecular and cellular mechanism of angiotensin Ⅱ-mediated apoptosis. Endocrine Res, 1998;24:307-314.
    115. Shaw A, Xu Q. Biomechanieal stress induced signaling in smooth muscle cell: an update. Curr Vase Pharmacol, 2003;1:41-58.
    116. Mayr M, Chao HL, Zou YP, et al. Biomeclranical stress induced apoplosis in vein grafts involves p38 milogen aclivaled protein kinases. FASEB J, 2000; 14:261-270.
    117. Florian W, Mamuel M, Qingbo X. Mechanical stretch induced apoplosis in smooth muscle cells is mediateal bu β1-integrin signaling pathways. Hyptertension, 2003;41:903-911.
    118. Davies MJ. Pathophysiology of acute coronary syndromes. Heart, 2000;83: 361-366.
    119. Falk E. Why do plaques rupture? Circulation, 1992;86:30-42.
    120. Dzau VJ, Gbbons GH, Morishita R, et al. New perspectives in hypertention research: potentials of vascular biology. Hypertention, 1994; 23:1132-1140.
    
    121. Khachigian LM, Anderson KR, Halnon NJ, et al. Egr-1 is activated in endothelial cells exposed to fluid shear stress and interacts with a novel shear stress response element in the PDGF A-chain piorroter. Arterioscler Thromb Vasc Biol, 1997; 17:2280-2860.
    
    122. Brothertom AFA, Bark JC. Prostacyclin biosynthesis in cultured vascular endothelium is limited by deactivation of cyclooxyenase. J Clin Invest, 1983; 72:1-255。
    
    123. Shiomi M Ito T, Hirouchi Y, et al. Fibromuscular cap composition is important for the stability of established atherosclerotic plaques in mature WHHL rabbits treated with statins. Atherosclerosis. 2001,157: 75-84.
    
    124. Lendon CL, Davies MJ, Born GVR, et al. Atherosclerotic plaque caps are locally weakened when macrophages density is increased. Atherosclerosis, 1991;87:87-90.
    
    125. Vander Wal AC, Becker AE, Vander Loos CM ,et al.The site of intimal rupture or erosion of thrombosed coronary atherosclerotic plaques is characterized by an inflammatory process irrespective of the dominant plaque morphology. Circulation 1994; 89:36-44.
    
    126. Davies MJ, Woolf N, Rowles P, et al: lipid and cellular constituents of unstable human aortic plaques. Basic Res Cardiol,1994;89:33-39.
    
    127. Huang H, Virmani R, Younis H, et al. The impact of calification on the biomechanical stability of atherosclerotic plaques. Circulation, 2001; 103: 1051-1056.
    
    128. Eitzman DT, Westrick RJ, Xu Z, et al. Hyperlipidemia promotes thrombosis after injury to atherosclerotic vessels in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol, 2000;20:1831 -1834.
    
    129. Lindstedt L, Lee M, Kovanen PT. Chymase bound to heparin is resistant to its natural inhibitors and capable of proteolyzing high density lipoproteins in aortic intimal fluid. Atherosclerosis, 2001; 155:87-97.
    130. Rekhter MD, Hicks GW, Brammer DW, et al. Hypercholesterolemia causes mechaical weakening of rabbit atheroma. Local collagen loss as a prerequisite of plaque rupture. Circ Res, 2000;86:101-108.
    
    131. Sukhova GK, Shi GP, Simon DI, et al. Expression of the elastolytic cathepsins S and K in human atheroma and regulation of their production in smooth muscle cells. J Clin Invest, 1998; 102:576-583.
    
    132. Jason L Johnson, Christopher L Jackson, Gianni D Angelini, et al. Activation of matrix-degrading metalloproteinases by mast cell proteases in atherosclerotic plaques. Arteriosclerosis, Thrombosis and Vascular Biology, 1998; 18: 1707-1716.
    
    133. Amento EP, Ehsani N, Palmer H, et al. Cytokines and growth factors positively and negatively regulate interstitial collagen gene expression in human vascular smooth muscle cells. Arterioscler Thromb, 1991;11:1223-1230.
    
    134. Bennett MR. Apoptosis of vascular smooth muscle cells in vascular remodeling and atherosclerotic plaque rupture. Cardiovasc Res, 1999;41:361-368.
    
    135. Jin D, Takai S, Shiota N, et al. Tranilast, an anti-allergic drug, possesses antagonistic potency to angiotensin II. Eur J Pharmacol, 1998;361:199-205.
    
    136. Shiota N, Okunishi H, Takai S, et al. Tranilast suppresses vascular chymase expression and neointima formation in balloon-injured dog carotid artery. Circulation, 1999;99:1084-1090.
    
    137. Takahashi A, Taniguchi T, Ishikawa Y, et al. Tranilast inhibits vascular smooth cell growth and intimal hyperplasia by induction of p21waf1/cipl/sdi1 and p53. Circ Res, 1999;84:543-550.
    
    138. Izawa A, Suzuki J, Takahashi W, Amano J, Isobe M. Tranilast inhibits cardiac allograft vasculopathy in association with p21(Waf1/Cip1) expression on neointimal cells in murine cardiac transplantation model. Arterioscler Thromb Vasc Biol,2001;21:1172-1178.
    
    139. Saiura A, Sata M, Hirata Y, et al. Tranilast inhibits transplant-associated coronary arteriosclerosis in a murine model of cardiac transplantation. Eur J Pharmacol, 2001 ;433:163-168.
    140. Tamai H, Katoh K, Yamaguchi T, et al. The impact of tranilast on restenosis after coronary angioplasty: the second tranilast restenosis following angioplasty trial (TREAT-2). Am Heart J, 2002;143:506-513.
    
    141. Holmes DR, Savage M, Lablanche JM, et al. Results of prevention of restenosis with tranilast and its outcomes (PRESTO) trial. Circulation, 2002; 106: 1243-1250.
    
    142. Isaji M, Miyata H, Ajisawa Y, et al. Inhibition by tranilast of vascular endothelial growth factor (VEGF)/vascular permeability factor (VPF) induced increase in vascular permeability in rats. LifeSci, 1998;63:171-174.
    
    143. Katoh N, Hirano S, Yasuno H. Solitary mastocytoma treated with tranilast. J Dermatol, 1996;23:335-339.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700