自体髓核组织所致背根节GDNF表达以及与痛觉过敏之间关系的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
突出的椎间盘对神经根主要有两种损害方式,一方面是椎间盘对神经根的机械压迫;另一方面是髓核组织引起的炎症刺激神经根。近年来对于髓核组织与痛觉过敏的关系引起了许多学者的关注。研究证明单独使用髓核组织刺激神经根(无机械压迫)不但能使神经根和脊髓背根节(DRG)产生形态学和血流动力学的变化,还能使之产生与痛觉过敏相关的兴奋性升高以及异位电活动。髓核组织通过何种机制引起痛觉过敏需要进一步研究。
    现在认为损伤神经元的异位电活动是痛觉异常的生理基础[5]。而异位电活动是离子通道和受体异位堆积的结果[6]。多数学者认为髓核组织引发的炎症反应是其导致痛觉过敏的病理生理基础。但是神经元必须出现离子通道和受体的堆积才会出现异位电活动并进一步导致痛觉过敏等痛觉异常,炎症通过那些机制促使神经元出现离子通道和受体的堆积,其中的病理生理机制仍不十分清楚。近年来一些学者开始关注胶质细胞源性神经营养因子(GDNF)在此过程中所起的作用。推测GDNF通过调控DRG内GDNF依赖性神经元的基因表达,使其出现离子通道和受体的堆积进而引起异位电活动,导致痛觉过敏。要证明此假说必须首先证明GDNF的表达变化与痛觉过敏有关联。
    本研究采用腰神经根周围自体髓核组织移植动物模型,通过神经行为学、HE染色、电镜、免疫组化、免疫荧光、逆转录-聚合酶链式反应(RT-PCR)等方法,探讨髓核组织对DRG的损伤作用、诱发痛觉过敏的规律及其相互关系以及从分子水平研究痛觉过敏与DRG中内源性GDNF表达的相互关系。结果如下:
    1. 神经根周围移植髓核组织可以造成大鼠相应下肢的痛觉过敏;
    
    
    2. 髓核组织对DRG有明显损伤作用,造成DRG组织水肿和神经元超微结构改变;这些改变与痛觉过敏有联系;
    3. GDNF及其受体GDNFR-α、Ret主要分布于DRG神经元中的中小型神经元,提示了GDNF可能对痛觉过程有调控作用;
    4. 髓核组织的刺激使DRG高表达GDNF蛋白及mRNA;GDNF表达量的升高与痛觉过敏的出现具有显著的相关性,从分子水平证实了内源性GDNF极有可能参与了大鼠痛觉过程的调控。
Herniated intervertebral disc does an injury to the nerve roots in two ways. They are mechanical pressure and inflammation. In recent years, the relationship between the nucleus pulposus and hyperalgesia has been widely concerned. It has been proved that without mechanical pressure the nucleus pulposus alone can make the dorsal root ganglion (DRG) induce morphological and hemodynamical changes. In addition, it increases the excitability of the neurons in the DRGs and makes them present ectopic discharge which is associated with hyperalgesia. But the mechanism of the hyperalgesia induced by nucleus pulposus is still not completely understood.
    It is widely believed that the basically reason of pain disorders is the ectopic discharge derived by injury to the nerves. And the ectopic discharge is the result of ectopic presentation of the ionic channels and receptors. Most of the researchers believe that inflammatory reaction derived by nucleus pulposus is the reason of hyperalgesia. But after the inflammatory reaction takes place there must be ectopic presentation of the ionic channels and receptors produced by injured neurons which induces ectopic discharge and hyperalgesia. It is not clear now how inflammatory reaction makes the neurons presence ionic channels and receptors abnormally. In recent years, many researchers begin to pay attention to the role of glial cell line-derived neurotrophic factor(GDNF) in this course. They guess that GDNF up-regulates the expression of the ionic channels and receptors which induces ectopic discharge and hyperalgesia. To improve this hypothesis we must make sure that the expression change of GDNF in DRGs is related to hyperalgesia.
    In this study, we harvest the nucleus pulposus from the tails of rats and transplant it to the peripheral of the same rat's lumbar nerve roots . Based on this animal model, using
    
    behavior test﹑hematoxylin and eosin(HE) staining﹑electron microscope ﹑immunocytochemistry(ICC)﹑immunofluorescence﹑reverse transcription polymerase chain reaction(RT-PCR), we try to find out hyperalgesia induced by nucleus pulposus and the harmful effects on DRGs and the relationship between them. We also research about the expression change of GDNF in DRGs and the relationship between the hyperalgesia and the change of the endogenetic GDNF in DRGs. The main results and conclusions are as follows:
    1. Peripheral apply of the nucleus pulposus to rat's lumbar nerve roots results in hyperalgesia of related hindlimb.
    2. Nucleus pulposus alone can injury the DRG. Edema and ultrastructure morphological changes can be found. And these changes are related to hyperalgesia.
    3. GDNF、GDNFR-αand Ret are mainly distributed in the medium and small neurons in DRG which indicates GDNF perhaps takes part in the regulation of pain.
    4. Production of the protein and mRNA of GDNF is all up-regulated after nucleus pulposus transplantation.Increasing level of the GDNF expression is corresponding to the presence of hyperalgesia which strongly indicates in molecular level that GDNF is involved in the regulation of pain.
引文
1. Mixter WJ, Ban JS. Rupture of the intervertebral disc with involvement of the spinal canal. New Engl J Med 211 (1934) 210-215.
    2. 陆裕朴等。实用骨科学。第一版,北京:人民军医出版社,1998,1141
    3. Sminonds M, Kumar S. The basis of low back pain. Neuro Orthopedics 1992;13:1-7
    4. Saal JS. The role of inflammation in lumbar pain. Spine 1995 Aug 15;20(16):1821-7 Comment in: Spine. 1996 Apr 1;21(7):898-899
    5. Takebayashi T, Cavanaugh JM, Cuneyt Ozaktay A, et al. Effect of nucleus pulposus on the neural activity of dorsal root ganglion. Spine. 2001 Apr 15;26(8):940-945
    6. Bennett G J, Xie Y K. A peripheral mononeuropathy in rat that produces disorder of pain sensation like those seen in man. Pain,1988,33:87-107
    7. Xie Y K, Zhang J M, Petersen M, et al. Functional change on dorsal root ganglion cell after chronic nerve constriction in the rat. J Neurophysiol, 1995,73:1811-1820
    8. 谢益宽,肖文华,李惠清。神经损伤区新生离子通道与异位电活动的关系。中国科学,B辑,1991(12):1289-1294
    9. Yabuki S, Igarashi T, Kikuchi S. Application of nucleus pulposus to the nerve root simultaneously reduces blood flow in dorsal root ganglion and corresponding hindpaw in the rat. Spine. 2000 15;25(12):1471-6
    10. Omarker K, Myers RR. Pathogenesis of sciatic pain: role of herniated nucleus pulposus and deformation of spinal nerve root and dorsal root ganglion. Pain 1998 78(2):99-105
    11. Byrod G, Rydevik B, Nordborg C, et al. Early effects of nucleus pulposus applicattonon spinal nerve root morphology and function. Eur Spine J. 1998 7(6) :445-9
    
    
    12. Olmarker K,Blomqoist J,Slrtimberg J,Nannmark U,Thomsen P,Rydevik B. Inflammatogenic propenies of nucleus pulposus. Spine. 20 (1995) 665-669.
    13. 李继硕。神经解剖学。第四军医大学出版,1993,57-60
    14. Molliver D C, et al. Nerve growth factor receptor TrkA is down-regulated during postnatal development by a subset of dorsal root ganglion neurons. J Comp Neurol. 1997;381:428-438
    15. Molliver D C, et al. IB4-binding DRG to GDNF dependence in early postnatal. Neuron 1997;19:849-8615
    16. Bennett HLH et al. A distinct sabgroup ot small DRG cells express GDNF receptor components and GDNF is protective for these neurons after nerve injury. J Neurosci 1998; 18(8): 3059-3072
    17. Fjell J, et al. Differential role of GDNF and NGF in the maintenance of two TTX-resistant sodium channels in adult DRG neurons. Mol Brain Res 1999; 67:267-282
    18. Koltzenburg M. The changing sensitivity in the life of the nociceptor. Pain. 1999 Aug;Suppl 6:S93-102
    19. Bar KJ, Saldanha GJ, Kennedy AJ, et al. GNDF and its receptor component Ret in injured human nerves and dorsal root ganglia. Neuroreport, 1998, 9:43~47
    20. E.Tabo, S.L.Jinks, et al. Behavioral manifestions of neuropathic pain and mechanical allodynia, and changes in spinal dorsal horn neurons, follwing L4-L6dorsal root constriction in rats.
    21. Kawakami M, Weinstein JN, Chatani KI, et al. Experimental lumbar radiculopathy. Behavioral and histologic changes in a model of radicular pain after spinal nerve root irritation with chromic gut ligatures in the rat. Spine. 1994;19:1795-1802
    Cornevfjord M, Sato K, Olmarker K, et al. A model for chronic nerve root
    
    22. compression studies. Presentation of a porcine model for controlled, slow-onset compression with analyses of anatomic aspects, compression onset rate, and morphologic and nerrophysiologic effects. Spine. 1997; 22:946-957
    23. Yoshizawa H, Kobayashi S, Morita T. Chronic nerve root compression. Pathophysiologic mechanism of nerve root dysfunction. Spine. 1995; 20:397-407
    24. Hu S J. Xing J L. An experimental model for chronic compression of dorsal root ganglion produced by intervertebral foramen stenosis in the rat. Pain 1998;77:15-23
    25. McCarron RF, Wimpee MW, Hudkins PG, Laros GS. The inflammatory effect of nucleus pulposus. A possible element in the pathogenesis of low-back pain. Spine. 1987 Oct;12(8):760-764
    26. 谢益宽,慢性痛的发生机理。科学通报,1999;44(22):2353-2362
    27. Devor,M. Nerve pathophysilogy and mechanisms of pain in causagia. J Auto Nerv Syst. 1983 7:371-384
    28. McCarron RF, Wimpee MW, Hudkins PG, Laros GS. The inflammatory effect of nucleus pulposus. A possible element in the pathogenesis of low-back pain. Spine 1987 Oct; 12(8):760-764
    29. kahashi H, Suguro T, Okazima Y, et al. Inflammatory cytokines in tlle herniated dics of the lumbar spine. Spine 1996;21 :218-224
    30. Olmarker K,Larsson K. Tumor necrosis factor alpha and nucleus- pulpolus-induced nerve root injury. Spine 1998 23:2538-44.
    31. Surace A, Zambarbieri E. Organo-specific autoimmunological properties of the nucleus pulposus and recurrent lumbar sciatica. Experimental studies. Chir Organi Mov 1980 Mar-Apr; 66(2):181-90
    Kawaguchi S, Yamashita T, Yokogushi K, et al. Immynophenotypic analysis of theinflamatory infiltrates In herniated intervert:ebral discs.
    
    32. Spine. 2001 26(Il) : 1209-14
    33. Kawakami M, Tamaki T, Hayashi N, et al. Possible mechanism of painful radiculopathy in lumbar disc herniation. Clin Orthop 1998 Jun; (351):241-251
    34. Olmarker K. Back pain. Experimental studies are successful. Nord Med 1998 Sep;113(7):235-236
    35. Igarashi T, Kikuchi S, Shubayev V, Myers RR. 2000 Volvo Award winner in basic science studies: Exogenous tumor necrosis factor-alpha mimics nucleus pulposus-induced neuropathology. Molecular, histologic, and behavioral comparisons in rats. Spine. 2000 Dec 1;25(23):2975-2980
    36. Brisby H, Byrod G, Olmarker K, et al. Nitric oxide as a mediator of nucleus pulposus-induced effects on spinal nerve roots. J Orthop Res 2000 Sep; 18(5):815-820
    37. Yabuki S, Igarashi T, Kikuchi S. Application of nucleus pulposus to the nerve root simultaneously reduces blood flow in dorsal root ganglion and corresponding hindpaw in the rat. Spine 2000 Jun 15;25(12):1471-1476
    38. 武忠弼主编, 超微病理学基础, 1990年9月第1版, 20-50
    39. Kajander KC, Wakisaka S, Bennett GJ. Spontaneous discharge originates in the dorsal root ganglion at the onset of a painful peripheral neuropathy in the rat. Neurosci Lett, 1992,138:225-228
    40. Xie YK, Zhang JM, Petersen M, et al. Functional change in dorsal root ganglion cell after chronic nerve constriction in the rat. J Neurophysiol, 1995,73:1811-1820
    41. Zhang JM, Donnelly DF, Song XJ, et al. Axotomy increases the excitability of dorsal root ganglion cells with unmyelinated axons. J Neurophysiol, 1997,78:2790-2794
    42. 谢益宽,肖文华。外周神经损伤引起痛觉过敏的神经生理学机制。中国科学,1988(8):843-851
    43. 韩济生,神经科学原理,第二版,北京,北京医科大学出版社,1999:710
    
    
    44. Cao YQ, et al. Primary afferent tachykinins are required to experience moderate to intense pain. Nature. 1998;392:390-394
    45. Felipe CD et al. Altered nociception, analgesia and aggression in mice lacking the receptor for substance P. Nature 1998; 392: 394-397
    46. Mantyh PW et al. Inhibition of hyperalgesia by ablation of lamina Ⅰ spinal neurons expressing the substance P receptor. Science 1997; 278: 275-279
    47. Malmberg AB et al. Diminished inflammation and nociceptive pain with preservation of neuropathic pain in mice with a targeted mutation of the type Ⅰ regulatory subunit of cAMP-dependent protein kinase. J Neurosci. 1998; 17(19): 7462-7470
    48. 周明华, 陈思颖, 吴玺印. 胶质细胞株源性神经营养因子研究的新进展. 神经解剖学杂志, 1998,14:85~87
    49. Lin LF, et al. GDNF: a glial cell line-derived neurotrophic factor for midbrain dopaminergic neurons. Science, 1993, 260(5111):1130~1132
    50. Pochon NA, Menoud A, Tseng JL, et al. Neuronal GDNF expression in the adult rat nervous system identified by in situ hybridization. Eur J Neurosci, 1997, 9:463~471
    51. Nosrat CA, Tomac A, Lindqvist E, et al. Cell ular expression of GDNFmRNA suggests multiplefunctions in side and out side the nervous system. Cell Tissue Res, 1996, 286:191~207
    52. Choi-Lundberg DL, Bohn MC. Onto geny and distribution of glial cell line-derived neurotrophic factor(GDNF)mRNA in rat. Brain Res Dev Brain Res, 1995, 85:80~88
    53. Trupp M, Ryden M, Jornvall H, et al. Peripheral expression and biological activities of GDNF, a new neurotrophic factor for a vian and mammalian peripheral neurons. J Cell Biol, 1995, 130:137~148
    Springer JE, Mu X, Bergmann LW, et al. Expression of GDNFmRNA in rat
    
    54. and human nervous tissue. Exp Neurol, 1994, 127:167~170
    55. Bennett DL, Michael GJ, Ramachandran N, et al. A distinct subgroup of small DRG cells express GDNF receptor components and GDNF is protective for the seneurons after nerve in jury. J Neurosci, 1998, 18:3059~3072
    56. Suvanto P, Wartiovaara K,Lindahl M, et al. Cloning, mRNA distribution and chromosomal localization of the gene for glial cell line-derived neurotrophic factor receptor beta, a homologue to GDNFR-alpha. Hum Mol Genet, 1997, 6:1267~1273
    57. Wang CY, Ni J, Jiang H, et al. Cloning and characterization of glial cell line-derived neurotrophic factor receptor-β: a novel receptor for members of glial cell line-derived neurotrophic factor family of neurotrophic factors. Neuroscience, 1998, 83: 7~14
    58. Widenfalk J, Nosrat C, Tomac A, et al. Neurturin and glial cell ine-derived neurotrophic factor receptor-beta(GDNFR-beta), novel proteins related to GDNF and GDNF-alpha with specific cell ularpatterns of expression suggesting roles in the developing and adult nervous system and in peripheral organs. J Neurosci, 1997, 17:8506~8519
    59. Trupp M, Ryden M, Jornvall H, et al. Peripheral expression and biological activities of GDNF, a new neurotrophic factor for avian and mammalian peripheral neurons. J Cell Biol, 1995, 130:137~148
    60. Naveilhan P, Elshamy WM, Ernfors P. Differential regulation of mRNAs for GDNF and its receptors Ret and GDNFRalpha after sciatic nerve lesion in the mouse. Eur J Neurosci, 1997, 9:1450~1460
    61. Yamamoto M, Sobue G, Yamamoto K, et al. Expression of glial cell line-derived neurotrophic factor mRNA in the spinal cord and muscle in amyotrophic lateral sclerosis. NeuroscLett, 1996, 204:117~120
    Bennett DL,Michael GJ,Ramachandran N, et al. Adistinct subgroup of small
    
    62. DRG cells express GDNF receptor components and GDNF is protective for the seneurons after nerve injury. J Neurosci, 1998, 18:3059~3072
    63. Molliver DC,Wright DE,Leitner ML, et al. IB4-binding DRG neurons switch from NGF to GDNF dependence in early post natal life. Neuron, 1997, 19:849~861
    64. HammarbergH,PiehlF,CullheimS,etal.GDNFmRNA in Schwanncells and DRG satellite cells after chronic sciatic nerve injury. Neuroreport, 1996,7:857~860
    65. Oppenheim RW,HouenouL J,Johnsno JE,et al. Developing motorneurons rescued from programmed and axotomy-induced cell death by GDNF. Nature, 1995,373:344~346
    66. Li L,Wu W,Lin LF,et al.Rescue of adult mouse motoneurons from injury-induced cell death by glial cellline-derived neurotrophic factor. Proc Natl Acad Sci USA, 1995, 92:9771~9775
    67. Junger H,Varon S.Neurotrophin-4(NT-4)and glial cellline-derived neurotrophic factor(GDNF) promote the survival of corticospinal motorneurons of neonatal rat sin vitro.BrainRes, 1997,762:56~60
    68. Munson JB,Mcmahon SB. Effects of GDNF on axotomized sensory and motorneurons in adult rats. Eur J Neurosci, 1997, 9:1126~1129
    69. Gouin A,Bloch Gallego E,Tanaka H, et al. Transforming growth factor-beta3, glial cell line-derived neurotrophic factor, and fibroblast growth factor-2, act in different manners to promot emotoneuron survival in vitro. J Neurosci Res, 1996, 43:454~464
    70. Henderson CE, Phillips HS,PollockRA, et al. GDNF: apotent survival factor for motoneurons present in peripheral nerve and muscle. Science, 1994, 266(5187):1026~1064
    Matheson CR, Carnahan J, Urich JL, et al. Glial cell line-derived neurotrophic factor(GDNF) is aneurotrophifactor for sensory neurons:
    
    71. comparison with the effects of the neurotrophins. J Neurobiol, 1997, 32:22~32
    72. Vulchanova L, et al. P2X3 is expressed by DRG neurons that terminate in inner lamina Ⅱ. Euro J Neurosci 1998;10:3470-3478
    73. Bradbury EJ, Burnstock G, McMahon SB. The Expression of P2X3 Purinoreceptors in Sensory Neurons: Effects of Axotomy and Glial-Derived Neurotrophic Factor. Mol Cell Neurosci 1998 Nov; 12(4/5):256-268
    74. Tominaga M et al. The cloned capsaicin receptor integrates multiple pain-producing stimuli, Neuron 1998:21:531-543
    75. Vulchanova L et al. P2X3 is expressed by DRG neurons that terminate in inner lamina Ⅱ. Emo J Neurosci L998: 1O: 3470-3478
    76. Belyanseva IA et al. Stability and plasticity of primary afferent projections following nerve regeneration and central degeneration. Euro J Neurosci 1999; 11 :457-68

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700