复合自保温混凝土砌块砌体的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着我国建筑节能和墙体材料改革工作的开展,混凝土空心砌块由于其具有节土节能的特点,成为替代实心黏土砖的墙体材料在我国得到了大力推广。但是,近年来的一些研究表明,混凝土空心砌块的保温隔热性能并不能完全满足国家相关节能标准规定的要求,需要对其进行改进。本文所研究的复合自保温砌块即是通过在混凝土小型空心砌块的空腔内注入低密度的泡沫混凝土,使两者复合构成一种新型墙体自保温砌块,使其具有良好的保温隔热性能,满足我国建筑节能对墙体材料的要求。
     在调查分析相关研究成果和文献的基础上,本文通过对泡沫混凝土自身的组成和性能的研究,获得了三种不同密度和强度的泡沫混凝土,并将其填充在混凝土空心砌块中,构成复合自保温砌块,进一步地通过对其力学和热工试验的研究,并与未填充泡沫混凝土的砌块砌体性能进行比较和分析,得出以下几点结论:
     (1)发泡剂稀释比例和发泡机的搅拌转速对所制得的泡沫的质量和品质的影响较为显著,发泡剂用量、水灰比及减水剂掺量对泡沫混凝土的抗压强度、干密度和吸水率会产生重要的影响。
     (2)内注低密度的泡沫混凝土对复合自保温砌块的抗折强度和砌体的抗剪强度的提高显著。所填泡沫混凝土的干密度越大,其抗折能力和抗剪能力越强。
     (3)本文所研制的复合自保温砌块的实测热工性能指标均能达到规范所规定的指标要求。双排孔砌块砌体的保温隔热性能好于单排孔砌块砌体。所填泡沫混凝土的干密度越低,复合自保温砌块的保温隔热性能越好。
     (4)现有规范规定的有关混凝土小型砌块砌体的抗压强度的计算公式基本适用于本文研究的内填低密度泡沫混凝土的复合砌块砌体的抗压强度的计算,但是,其抗剪强度依据现有规范规定的强度公式计算时,双排孔复合自保温砌块的实测值处于不安全一侧,建议规范所规定的计算公式中与块体类别有关的系数k5要作修正,本文建议k5取0.055。
Along with the work of energy efficiency in buildings and innovation in wall materials carrying out in our country, concrete hollow block has been vigorously promoted in China as an alternative solid clay brick in the wall material, because of its energy-saving and land-saving features. However, in recent years, some studies have shown that the thermal insulation effect of concrete hollow blocks can’t meet the national requirements related to energy efficiency standards fully, and the concrete hollow block need to be modified. The composite self-insulation block in this article was injected the low-density foaming concrete into the concrete hollow block’s cavity, and makes them become a new wall self-insulation block, so that it has good insulation properties, and can meet the energy-efficient building requirements of the wall materials.
     Based on the investigation and analysis of related research and literature, through the research on foaming concrete composition and properties, three kinds foaming concrete of different density and strength were obtained, filled them into the concrete hollow block, constitute the composite self-insulation concrete blocks, further, through the research of its mechanical and thermal experiments, we compare and analyze it with the performance of blocks unfilled with low-density foaming concrete and obtain the following conclusions :
     (1)Dilution ratio of foaming agent and stirring speed of foaming machine affect the quality of foam significantly, the dosages of foaming agent, the water-cement ratio of concrete and the dosages of water-reducing agent have an important impact on compressive strength, dry density and water absorption of foaming concrete.
     (2)Filling with low-density foaming concrete could increase flexural strength of the composite block and shear strength of masonry significantly. The greater dry density of foam concrete filled in the composite insulation blocks is, the stronger its flexural performance and shear performance are.
     (3)The measured thermal performance indicators of composite self-insulation block which was developed in this experiment can meet the national requirements related to energy efficiency standards. The thermal insulation performance of double hole blocks was better than the single row of holes masonry’s. The lower dry density of foam concrete filled in the composite insulation blocks was,the better thermal insulation properties of the composite self-insulation blocks were.
     (4)The calculation formula about compressive strength of concrete small blocks, under the existing guidelines, was suitable to calculate compressive strength of the composite block filled with low-density foaming concrete in this study, however, when its shear strength was calculated according to strength formula under the existing guidelines, measured data of double hole composite self-insulation blocks situates in the unsafe side, we suggest the coefficient k5 about block types in the calculation formula under the existing guidelines should be modified , this article suggested that the coefficient k5 equal to 0.055.
引文
[1]张丽.中国终端能耗与建筑节能[M].北京:中国建筑工业出版社,2007.1~10
    [2]张德信.建筑保温隔热材料[M].北京:化学工业出版社,2006.5~29
    [3]徐占发.建筑节能常用数据速查手册[M].北京:中国建材工业出版社,2006.19~25
    [4]江亿等.住宅节能[M].北京:中国建筑工业出版社,2006.3~60
    [5]杨善勤.民用建筑节能设计手册[M].北京:中国建筑工业出版社,1997.3~4
    [6]杨鼎宜,赵玲.复合混凝土空心砌块与建筑节能[J].工业建筑,1999.29(12):11~14
    [7]夏热冬冷地区居住建筑节能设计标准(JGJ134-2001)[M].北京:中国建筑工业出版社,2001.3~4
    [8]公共建筑节能设计标准(GB50189-2005)[M].北京:中国建筑工业出版社,2005.5~10
    [9]孙玉珍.建筑外墙外保温技术导则(RISN-TG001-2005)[M].北京:中国建筑工业出版社,2006.9~29
    [10]杜文丽.国外新型墙体材料的发展现状和趋势[J].国外建材科技,2002.01:100~103
    [11]杨伟军,高连玉,梁建国.砌体结构理论与新型墙材应用[M].北京:中国城市出版社,2007.3~97
    [12]闻质红,陈彬.膨胀珍珠岩绝热保温制品的性能分析[J].中原工学院学报,2005.08:23~26
    [13]范桂细.泡沫混凝土的生产与应用技术[J].广东建材,2005.09:21~23
    [14]杜文英.装饰保温承重“三合一”混凝土空心砌块[J].墙材革新与建筑节能,1998.05:21~23
    [15]李瑞岸.多功能N式空心建筑砌块[J].建筑砌块与砌块建筑,2000.01(109):28~32
    [16]陈治平,陈立,郭安萍.多功能连锁砌块的结构特点及其应用[J].建筑砌块与砌块建筑,2001.01(109):37~40
    [17]杜文英.建议研究和采用多功能砌块[J].建筑砌块,1998.03:13~15
    [18] Specification for Masonry Structures[M], ACI 530.1-05/ASCE 6-05/TMS 602-05.2~34
    [19] Building Code Requirements for Masonry Structures[M], ACI530-05/ASCE 5-05/TMS4.2-05.16~78
    [20]张云杰,唐岱新.砌块砌体应力–应变全曲线试验研究[J].低温建筑技术,2002.02:56~59
    [21]叶燕华,李利群,孙伟民,顾忠,成金高.内注泡沫混凝土空心砌块墙体抗震性能的试验研究[J].地震工程与工程振动,2004.10.24(5):154~158
    [22]刘琳,叶燕华,孙伟民,张怀金.复合混凝土空心砌块砌体抗压承载力试验研究[J].建筑砌块与砌块建筑,2006.03:14~17
    [23]杨伟军,施楚贤.混凝土砌块砌体与配筋砌体剪力墙研究[M].北京:中国科学技术出版社,2002.3~99
    [24] Curtin W G, Shaw G, Beck J K.Design of rein forced and prestressed masonry[J] . London ,1988:44~60
    [25] Schneider R R and Dickey W L.Rein forced masonry design[M] . Prentice Hall .Inc.Englewood Cliffs ,1980.4~12
    [26]杨莉萍,张双喜,王延东.新型复合保温砌块的热工性能分析[J].保温材料与建筑节能,2002.10:85~87
    [27]张源,何嘉鹏,高寿云,孙伟民,周挺,陈震.内插保温层混凝土空心砌块的热工性能与经济性分析[J].建筑科学,2008.01.24(01):35~39
    [28]张纪黎,安毅亭,章茂木.科新保温砌块的研究及应用[J].新型墙材,2008.09:30~32
    [29]闫振甲,何艳君.泡沫混凝土实用生产技术[M].北京:化学工业出版社,2006.6~41
    [30]张磊,杨鼎宜.轻质泡沫混凝土的研究及应用现状[J].混凝土,2005.08(109):44~48
    [31]蒋冬青.泡沫混凝土应用新进展[J].中国水泥,2003.03:23~27
    [32] Alaettin K,Cengiz D A.High-strength lightweight concrete made with scoresaggregate containing mineral admixtures[J].Cement and Concrete Research,2003.33:12~13
    [33] EP Kearsley , PJ Wainwright . Porosity and permeability of foamed concrete[J].Cement and Concrete Research,2001.31:4~6
    [34]潘志华等.新型高性能泡沫混凝土制备技术研究[J].新型建筑材料,2002.05:1~5
    [35]泡沫混凝土砌块(JC/T1062-2007)[M].北京:中国建材工业出版社,2008.03.1~9
    [36]混凝土小型空心砌块试验方法(GB/T411-1997)[M].北京:中国标准出版社,1997.2~4
    [37]砌筑砂浆配合比设计规程(JGJ98-2000)[M].北京:中国建筑工业出版社,2001.12.6~9
    [38]建筑砂浆基本性能试验方法标准(JGJ/T70-2009)[M].北京:中国建筑工业出版社,2009.01.11~13
    [39]砌体基本力学性能试验方法标准(GBJ129-90)[M].北京:中国建筑工业出版社,1990.3~6
    [40] L Cox,S V Dijk.Foam concrete:a different kind of mix[J].Concrete, 2002.36(2):13~78
    [41]王国建,魏敬亮.混凝土高效减水剂及其作用机理研究进展[J].建筑材料学报,2004.6.(02):188~193
    [42]覃维祖.高效减水剂的作用与发展[J].混凝土,1994.12(5):5~11
    [43]覃维祖.聚羧酸系高效减水剂的发展与应用[J].施工技术,2007.04.36(4):9~11
    [44]砌体结构设计规范(GB5003-2001) [M].北京:中国建筑工业出版社,2001.16~22
    [45]施楚贤.砌体结构[M].北京:中国建筑工业出版社,2008.18~35
    [46]刘桂秋,施楚贤.对砌体剪-压破坏准则的研究[J] .湖南大学学报(自然科学版),2007.04.34(4):19~23
    [47]苏小卒.砌体结构[M].上海:同济大学出版社,2002.22~30
    [48]刑双军.建筑物理[M].杭州:浙江大学出版社,2008.01.189~222
    [49]刘加平.建筑物理[M].北京:中国建筑工业出版社,2009.08.2~34
    [50]田斌守.建筑节能检测技术[M].北京:中国建筑工业出版社,2009.01.15~67
    [51]浙江大学建筑设计研究院等.浙江省居住建筑节能设计标准(DB33/1015-2009)[M].北京:中国建筑工业出版社,2009.02.10~15
    [52]杭州市建设委员会.夏热冬冷地区居住建筑节能设计标准杭州地区实施细则(CJS03-2002)[M].北京:中国建筑工业出版社,2002.03.9~12
    [53]民用建筑热工设计规范(GB50176-93)[M].北京:中国建筑工业出版社,1993.7~41

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700