密集波分复用光源关键技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
当代社会和经济发展中,信息容量日益剧增,为提高信息的传输速度和容量,光纤通信被广泛的应用于信息化的发展,成为继微电子技术之后信息领域中的重要技术。密集波分复用(Dense Wavelength Division Multiplexing, DWDM)技术是提高光纤通信系统容量的最主要技术。随着通信系统容量的增加,DWDM系统的信道数成倍增加,每个信道容量也逐步提升,这些都大大增加了对DWDM光源输出精度和稳定性的要求。
     本文在对DWDM光源设计的各项关键技术进行综述的基础上,结合目前实际情况,提出了从LD(Laser Diode, LD)的控制模型入手,研究DWDM光源混合式控制技术。
     首先从LD的温度特性入手,分析了分布反馈式LD(Distribute Feedback Laser diode, DFB-LD)的温度控制误差、温度控制对象。在温度特性的基础上,以LD的速率方程为基础,进一步分析了输出功率和输出波长特性。并以自主设计的LD参数测试仪为核心搭建测试系统,对模型进行实验验证。
     以LD的温度控制对象模型为基础,分析DWDM光源运行规律,设计DWDM光源的温度控制系统。该温度控制系统利用软硬件复合补偿的方法提高温度控制的精度,利用模糊参数可调的模拟PI控制器提高系统的稳态响应。为了解决温度启动过程中的时间滞后,改善系统的响应速度,采用单独的温度启动控制策略,启动阶段采用带预测的模糊-PI控制器,在保证系统的快速性的基础上尽量减少系统超调,同时对控制对象的时间滞后有抑制作用。
     在高精度、高稳定的温度控制基础上,利用LD的波长-温度关系,设计了LD的波长锁定模块。分析了引起波长漂移的因素,设计了LD的模拟老化实验,验证波长锁定模块的波长控制效果。依据国家标准对DWDM光源的输出波长的长期稳定度进行测试。以LD的功率输出特性模型为基础,依据DWDM光源系统的设计要求,设计了自动功率控制/自动电流控制(APC/ACC)的功率控制器,并依据相关国家标准进行了功率的稳定度输出测试,验证功率控制器的控制效果。分析了浪涌对LD的危害,设计了防静电、软启动、LD过流保护一系列的LD的浪涌保护措施,同时设计了半导体制冷器的过流保护装置,保证系统长期正常工作。
With the development of society and economy, the capability of the information system grows day by day. Optical fiber communication, which is extensive used in the development of informatization, becomes the most important technology after the microelectronic technique. DWDM (Dense Wavelength Division Multiplexing) is the most important technology which enhances the capability of the optical fiber communication system. With the development of communication system capability, the channels of the DWDM system are geminated and the capability of every channel grows gradually. All of these require the DWDM source output has high precision and stability.
     The key techniques of the DWDM source design are discussed. With these techniques and the practical situation, we select a scheme. This scheme based on control model of the LD (laser diode) module. And the study keystone is the hybrid control technique of DWDM source.
     Based on the rate equation and the temperature characteristic of the LD, the temperature control object model and the temperature control error of DFB-LD are analyzed. Then the power and wavelength output characteristic is farther analyzed. The test system, whose core is the LD parameter test instrument designed by ourselves, is established to validate the control model.
     Based on the temperature control object model of the LD module and the running characteristic of the DWDM source are analyzed, the temperature control system of the DWDM source is designed. In this system, the soft hardware complex-compensate technique is adopted to enhance the precision of temperature control, the analog PI controller, whose parameters are adjusted by analog fuzzy controller, is designed to enhance the stationary response. To restrain the time-delay of the startup phase of the temperature and improve the response speed, the fuzzy-PI controller with predictive control is adopted to the startup phase. This control mode can decrease the system overshoot and ensure the system rapidity. The predictive control can restrain the time-delay of the controlled object.
     On the high precision and stability temperature control system and the
引文
1 Pedro. Ferreira. Optical networks and the future of broadband services. Technological Forecasting and Social Change. 2002,69(7):741~758
    2 Wilson, Delavaux. Long-haul DWDM/SCM Transmission of 64- and 256-QAM Using Electroabsorption Modulated Laser Transmitters. Photonics Technology Letters. 2002, (8):1184~1186
    3 Peter Laborczi. Dynamic Routing and Wavelength Assignment in Survivable WDM Networks. Photonic Network Communications. 2003,4(3):357~376
    4 W. Fischler, H. Bock, P. Leisching. The Berlin City Ring—a Testbed for Future Metropolitan Networks. Photonic Network Communications. 2001,3(3):256~267
    5 李志霄. 最新光纤技术及其发展趋势. 现代电信科技. 2001,(1):13~19
    6 G. I. Papadimitriou, M. S. Obaidat. Advances in optical networking. International Journal of Communication Systems. 2002,15(2):101~113
    7 P.E Green. Fiber Optical networks. Prentice-Hall, Inc, 2003,(4):109-114
    8 K. Grobe, M. Wiegand, J. McCal. Optical metropolitan DWDM networks an overview. BT Technology Journal. 2002,20(4):27~44
    9 Daniel Y. Al-Salameh, Mohammad T. Fatehi, William J. Gartner, Stan Lumish, Bruce L. Nelson, Kamal K. Raychaudhuri. Optical networking. Bell Labs Technical Journal. 2001,3(1):39~61
    10 高启祥. 密集波分复用技术导论. 人民邮电出版社, 2001:58~95
    11 Hayashi, Tanaka. OTDM Transmitter Using WDM-TDM Conversion with an Electroabsorption Wavelength Converter. Lightwave Technology. 2002, (2): 236~242
    12 Ibsen, Shaif-ul, Alam. 8- and 16-channel All-fiber DFB Laser WDM Transmitters with Integrated Pump Redundancy. IEEE Photonics Technology Letters. 1999, (9):1114~1116
    13 迈恩贝弗. 光纤通信技术. 科学出版社, 2002:313~364
    14 H.El-Ghandoor. Theoretical Model for the Transverse Interference Pattern ofGRIN Optical Fiber Using a Laser Sheet of Light. 2000:664~665
    15 陈桂芬. 波分复用技术在光纤网中的应用. 长春光学精密机械学院学报. 2001, (2):13~16
    16 张颖, 张新亮, 孙军强, 刘德明. 基于 SOA 的高稳定度 DWDM 多波长光源. 华中科技大学学报. 2001, (8):14~17
    17 陈必成, 冉学礼. 我国光网络的发展现状与预测. 激光与光电子学进展. 2000.(10): 5-3
    18 严 实 浪 , 黄 永 宁 . 光 通 信 技 术 、 产 业 、 市 场 展 望 . 光 通 信 技 术 . 2003,(1):5-8
    19 张均华,肖国春,徐峰,王兆安. 直流脉宽数字调速系统中电磁干扰的解决方法. 安全与电磁兼容.2005.(1):46~50
    20 Nigim KA, Heydt GT. Power quality improvement using intergral-PWM control in an AC/AC voltage onverter. Electric Power System Research.2002,63(1):65~71
    21 孙立飞,田小建,刘鹏,单向东. 基于半导体制冷器的 PWM 功率驱动器. 光电子·激光.2004.15(9):1026~1030
    22 曾华林,江鹏飞,谢福增. 半导体激光器温度控制研究. 激光与红外.2004.34(5):339~346
    23 鲍健,孙力,樊宏,高晓明,张为俊. 高精度二极管激光温度控制器设计. 光电子·激光.2005.16(6):659~661
    24 郭振西,缪玲娟,沈军,吴阳,张宇河. 带预测模糊-PI 算法在惯导温控系统中的应用. 北京理工大学学报.2003.23(1):66~70
    25 Chang YJ, Chen YM, Lee CA, Wang YH, Chen YC, Wang CH. Improving temperature control of laser module using fuzzy logic theory. 20th IEEE SEMI-THERM Symposium.2004:198~204
    26 刘明芹,张晓光. 温度控制系统中应用模糊 PID 控制器设计. 洛阳工业高等专科学校学报.2005.15(3):1~2
    27 姚爱琴,马忠亮,孙运强. 热敏电阻测量法比较研究. 华北工学院测试技术学报.2002.16(1):59~61
    28 王艳菊,康岳屹,焦仁普. 一种 NTC 热敏电阻最佳线性化借口电路参数设计. 中国仪器仪表.2004.(11):20~22
    29 Anwar A.Khan, Monhammed A.Al-Turaigi, Abdul Rahm M.Alamoud.Linearized thermistor thermometer using an analog multiplier. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT. 1988.37(2):322~323
    30 全 红 娟 . 热 敏 电 阻 温 度 传 感 器 的 非 线 性 误 差 分 析 . 中 国 西 部 科技.2005.(10):21~23
    31 于丽丽,王剑华,殳伟群. NTC 热敏电阻器在高精度温度测量中的应用. 传感器技术.2004.23(12):75~77
    32 S.Kaliyugavaradan, P.Sankaran, V.G.K.Murti. A new compensation scheme for thermistors and its implementation for response linearization over a wide temperature range. IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT.1993.42(5):952~957
    33 D.Ghoshi, D.patranabis. Software based linearization of thermistor type nonlinearity. IEE PROCEDINGS-G.1992.139(3):339~342
    34 G.Zatorre-Navarro, N.Medrano-Marques, J.Matrtin-Martinez, S.Celma-Pueyo. Improving sensor output characteristics using small adaptive circuits. Electron Devices, 2005 Spanish Conference on.2005:557~560
    35 M.Attari, F.Boudjema, M.Heniche. Linearizing a thermistor characteristic in the range of zero to 100 degree C with two layers artificial neural networks. Instrumentation and Measurement Technology Conference.1995:119~122
    36 M.H.HU, Xingsheng V.Liu, Hong Ky Nguyen, Chung-en Zah. Dual-thermistor temperature control for semiconductor lasers. Electronics letters.2003.39(6):522~523
    37 M.H.HU, Xingsheng V.Liu and Chung-en Zah. Transient and static thermal behavior of high power single-mode semiconductor Laser. SPIE APOC. 2002:32~36
    38 A Sikka, K.K. Advanced thermal tester for accurate measurement of internal thermal resistance of high power electronic modules. Components and Packaging Technologies.2001.24(2):226~232
    39 Gong, J.M, MacAlpine J.M.K, Chan C.C, Jin W, Zhang M, Liao Y.B. A novel wavelength detection technique for fiber Bragg grating sensors. IEEE Photonics Technology Letters.2002.14(5):678~680
    40 梁明,钱景仁,孙箭. 一种新的光纤布拉格光栅波长位移检测技术. 中国激光. 2004.31(7):865~869
    41 Jin W, Ho H, Liao Y.B, Zhang M, Wang L.W, Peng B.J. Development of a wavelength detection system for fiber grating sensors. SPIE Advanced Sensor Systems and Applications II 2005:68-76
    42 Gong J.M, Chan C.C, Jin W, MacAlpine J.M.K, Zhang M, Liao Y.B. Enhancement of wavelength detection accuracy in fiber Bragg grating sensors by using a spectrum correlation technique. Optics Communications. 2002.212(1-3):29-33
    43 Hongo Akihito, Fukuchi Keisuke, Kojima Seiji, Takeda Nobuo. Embedded small-diameter fiber Bragg grating sensors and high speed wavelength detection. SPIE The International Society for Optical Engineering. 2003:144~151
    44 Youngil Park, Seung-Tak Lee, Chang-Joon chae. A novel wavelength Stabilization scheme using a fiber grating for WDM transmission. IEEE Photonics Letters.1998.10(10):1446~1448
    45 Smit.M K. New focusing and dispersive planar component based on an optical phased array. Electronics Letters.1998.24(7):385~386
    46 陈巧红,黄旭光,徐文成. 波导阵列光栅器件及应用. 激光与光电子学进展.2005.42(4):20~25
    47 Sano Y, Yoshino T. Fast optical wavelength interrogator employing arrayed waveguide grating for distributed fiber Bragg grating sensors. Lightwave Technology Journal.2003.21(1):132~139
    48 Koga M, Teshima M. Wavelength standards and stabilization for WDM networks. OFC/IOOC '99.1999:151a~151b
    49 Junqryul Lee, Kwangbok Kim, Sangho Ahn, Jinseob Eom. Multi-channel frequency stabilization using wavelength crossover properties of arrayed waveguide grating. LEOS’97 10th.1997:30~31
    50 B. Villeneuve, M. Cyr, and H. B. Kim. High-stability wavelength-controlled DFB laser sources for dense WDM application. Optical Fiber Communication Conf.1998:381~382
    51 K. Tatsuno, M. Shirai, H. Furuichi, K. Kuroguchi, N. Baba, H. Kuwano, Y. Iwafuji, A. Murata. 50 GHz spacing, multi-wavelength tunable locker integrated in a transmitter module with monolithic-modulator and a DFB-laser. Optical Fiber Communication Conf. 2001:1~4
    52 H. Nasu, T. Takagi, M. Oike, T. Nomura, and A. Kasukawa. Ultrahigh wavelength stability through thermal compensation in wavelength-monitor integrated laser modules. IEEE Photon. Technol. Lett.2003.15(3):380~382
    53 H. Nasu, T. Mukaihara, T. Nomura, A. Kasukawa, M. Oike, H. Matsuura,T. Shiba, and T. Ninomiya. 25 GHz-spacing wavelength monitor integrated DFB laser module using standard 14-pin butterfly package. Optical Fiber Communication Conf.2002:209~211
    54 San-Liang Lee. Wavelength measurement and tracking using semiconductor laser amplifiers for applications in photonic networks. IEEE PHONICS TECHNOLOGY LETTERS.1998.10(3):439~441
    55 San-Liang Lee. Analytical formula of wavelength-dependent transparent current and its implications for designing wavelength sensors and WDM lasers. Selected Topics in Quantum Electronics.2001.7(2):201~209
    56 San-Liang Lee, Ching-Tang Pien, Yu-Yi Hsu. Wavelength monitoring in DWDM networks using low cost semiconductor laser diode/amplifiers. Optical Fiber Communication conference, 2000:168~170
    57 San-Liang Lee, Yu-Yi Hsu, Ching-Tang Pien. High-Resolution wavelength monitoring using differential/ratio detection of junction voltage across a diode laser. IEEE PHONICS TECHNOLOGY LETTERS.1998.10(3): 439~441
    58 Coroy.T, Measures.R.M, Wood.T.H, Burrus.C.A. Active wavelength measurement system using an InGaAs-InP quantumwell electroabsorption fitering detector. IEEE Photonics Technol.Lett.1996.8(12):1686~1688
    59 Wood.T.H, Burrus.C.A, Wisenfeld.J.M. Wavelength-selective voltage-tunable photodector made from multiple quantum wells. Appl Phys.Lett.1985.47(3):190~192
    60 C.S.Park, W.Sco, B.H.Yoon. Simple channel monitoring method for fail detection of multiple WDM channels using a wavelength selective detector. Electronics Letters.1998.34(17):1667~1668
    61 Lorenzo Colace, Gianlorenzo Masini, Gaetano Assanto. Wavelength Stabilizer for telecommunication lasers: design and optimization. Journal of Lightwave Technology.2003.21(8):1749~1757
    62 杰戈迪什·拉贝罗. 光网络中可调谐激光器的前景. 世界电子元器件.2002.(11):12~13
    63 徐 庆 扬 , 陈 少 武 . 可 调 谐 半 导 体 激 光 器 研 究 及 进 展 . 物 理 .2004. 33(7):508~514
    64 齐丽云,石家纬,高鼎三. 波长(频率)可调谐半导体激光器. 半导体光电.1999.20(5):320~325
    65 Ing-Fa Jang, San-Liang Lee, Chi-Yu Wang, Tien-Tsorng Shih, Yu-Heng Jan. Novel techniques for realizing SGDBR DWDM sources without coarse tuning; IEEE Semiconductor Laser Conference. 2000:79~80
    66 Ing-Fa Jang, San-Liang Lee, Chi-Yu Wang, Lih-Wen Lai, Wen-Jeng Ho, Yu-Heng Jan. Realization and performance of as-fabricated SGDBR multiwavelength laser arrays. Photonics Technology Letters. 2001.13(9):933~935
    67 Mason B, San-Liang Lee, Heimbuch M.E, Coldren L.A. Directly modulated sampled grating DBR lasers for long-haul WDM communication systems. Photonics Technology Letter.1997.9(3):377~379
    68 Byoung-Sung Kim, Younchul Chung, Sen-Ho Kim. Dynamic analysis of mode-locked sampled-grating distributed Bragg reflector laser diodes. Quantum Electronics.1999.35(11):1623~1629
    69 Suhyun Kim, Youngchul Chung, Su Hwan Oh, Moon-Ho Park. Design and analysis of widely tunable sampled grating DFB laser diode integrated with sampled grating distributed Bragg reflector. Photonics Technology Letters.2004.16(1):15~17
    70 Heanue J, Vail E, Sherback M, Pezeshki B. Widely tunable laser module using DFB array and MEMS selection with internal wavelength locker. Optical Fiber Communications Conference, 2003. OFC 2003:82~83
    71 Ton D, Yoffe G.W, Heanue J.F, Emanuel M.A, Zou S.Y, Kubicky J, Pezeshki B, Vail E.C. 2.5-Gb/s modulated widely tunable laser using an electroabsorption modulated DFB array and MEMS selection. Photonics Technology Letters.2004.16(6):1573~1575
    72 舒华德,漆启年.密集波分复用系统中波长控制技术研究.光通信研究,1999,(3):1~6
    73 Kudo K, Yashiki K, Sasaki T, Yokoyama Y, Hamamoto K, Morimoto T, Yamaguchi M. 1.55-μm wavelength-selectable microarray DFB-LD's withmonolithically integrated MMI combiner, SOA, and EA-modulator. Photonics Technology Letters, IEEE. 2000.12(3):242~244
    74 Young M.G., Koren U, Miller B.I, Chien M, Koch T.L, Tennant D.M, Feder K, Dreyer K, Raybon G. Six wavelength laser array with integrated amplifier and modulator. Electronics Letters.1995.31(21):1835~1836
    75 Pezeshki Bc, Vail E, Kubicky J, Yoffe G, Zou S, Heanue J, Epp P, Rishton S, Ton D, Faraji B, Emanuel M, Hong X, Sherback M, Agrawal V, Chipman C, Razazan T. 20-mW widely tunable laser module using DFB array and MEMS selection. Photonics Technology Letters. 2002.14(10):1457~ 1459
    76 徐洪梅,王尤翠,马晓红,戴居丰. 数字光纤通信系统的建模. 天津通信技术.1998.(3):1~5
    77 J.katz, S.Margalit, C.Harder, D.Wilt, A.Yariv. The intrinsic electrical equivalent circuit of a laser diode. IEEE Journal of Quantum Eletronics.1981.17(1):4~7
    78 R.S Tucker, Peter D.Bradley. Computer-aided error correction of large-signal load-pull measurements. IEEE Transactions on Microwave Theory and Techniques.1984.32(3):296~300
    79 R.S Tucker, Ivanp Kaminow. High-frequency characteristics of directly modulated InGaAsP ridge waveguide and buried heterostructure lasers. IEEE Journal of Lightwave Technol.1984.LT-2:385~393
    80 任新根,徐国萍,董天临. 半导体激光器大信号等效电路的参数提取.电子学报.1994.22(2):27~34
    81 R.S Tucker, David J.Pope. Microwave circuit models of semiconductor injection laser. IEEE Transactions on Microwave Theory and Techniques.1983.31(3):289~294
    82 M.K Haldar, J Wang, F.V.C Mendis. Equivalent circuit of semiconductor laser with weak coherent optical feedback. Electornics Letters.1995.31(5):366~367
    83 M.F Lu, J.S Deng, Juang M.J, B.J Lee. Equivalent circuit model of quantum-well lasers. IEEE Journal of Quantum Electronics.1995.31(8):1418~1422
    84 H. Uenohara, R. Takahashi, Y. Kawamura, H. Iwamura. Static and dynamic response of multiple quantum well voltage controlled bistable laser diodes. IEEE Quantum Electron.1996.32(5):873~883
    85 I.P. Kaminow R.S. Tucker. Frequency characteristics of directly modulated InGaAsP ridge wave guide and buried hetrostructure lasers. Lightwave Technol.1984.LT-2:385~393
    86 C. Juang, M. F. Lu, J. S.C Lee. Equivalent circuit model for quantum well lasers. Lasers and Electro-Optics Society Annual Meeting-LEOS. 1995:101~102
    87 R. Nagarajan. Carrier transport effects in quantum well lasers: An overview. Optical and Quantum Electronics.1994.26(7):, S647~S666
    88 C.Harder, J.Katz, S.Margalit, J.Shacham, Amnon Yariv. Noise equivalent circuit of a semiconductor laser diode. IEEE Journal of Quantum Electronics. 1982.18(3):333~337
    89 任新根,徐国萍,董天临. 半导体激光器噪声特性的电路模拟. 半导体学报.1994.15(5):346~353
    90 张建平,杨祥林. 分布反馈半导体激光器频率调制特性的速率方程分析.光学学报.1992.12(4):303~307
    91 Alausi M.R, Darling R.B. Effects of nonlinear gain on mode-hopping in semiconductor laser diodes. Quantum Electronics.1995.31(7):1181~1192
    92 Tien-pei Lee, Burrus C, Pao-lo Liu, Wessa W, Logan R. An investigation of the frequency stability and temperature characteristics of 1.5μm coupled-cavity injection lasers.1984.20(4):374~384
    93 Czylwik A. A theoretical analysis of the transient intensity noise of semiconductor lasers. Quantum Electronics.1989.25(1):39~46
    94 Xun Li, Wei-ping Huang. Simulation of DFB Semiconductor Lasers Incorporating Thermal Effects. IEEE J. Quantum Electron.1995. 31(10):1948-1855
    95 倪美琴, 陈兴华, 庄斌舵. 关注半导体制冷研究与发展. 制冷与空调. 2001.(1):42~44
    96 Ronggui Yang, Gang Chen, G. Jeffrey, Fluriel Jean-Pierre. Geometric effects on the transient cooling of thermoelectric coolers. Materials Research Society Symposium-Proceedings.2002:281~286
    97 V. G. Okhrem. Some Models of Stationary Thermoelectric Refrigerators. Journal of Engineering Physics and Thermophysics.2001:74(5):1226~1231
    98 Lee Jong Jin, Kang Hyun Seo, Koh Jai Sang. Prediction of TEC powerconsumption for cooled laser diode module. Lasers and Electro-Optics Society Annual Meeting-LEOS.2004:657~658
    99 黄德修,刘雪峰. 半导体激光器及其应用. 国防工业出版社.1999:67~71
    100 王卓然,于晋龙,张爱旭,朱德鹏,杨恩泽. 对 10GHz DFB 激光器参数的数值模拟及实验. 光电子·激光.2003,14(12):1299~1302
    101 C. W. Tao, J. S. Taur. Robust fuzzy control for a plant with fuzzy linear model. IEEE Transactions on Fuzzy Systems. 2005,13(1):30~41
    102 吴闯,刘万军, 何雨虹. 模糊控制在空调器中的应用. 辽宁工程大学学报. 2003,22(3):373~374
    103 李士勇. 模糊控制、神经控制和智能控制论. 哈尔滨工业大学出版社.1996:250~291
    104 王树青. 先进控制技术及应用. 化学工业出版社.2001:133~157
    105 A. Kirecci, I. Eker, L. C. Dulger. Self-tuning control as conventional method. Electrical Engineering. 2003,85(2):101~107
    106 Michiyo Suzuki, Toru Yamamoto, Kazuo Kawada, Hiroyuki Sogo. A Design of Neural-Net Based Self-Tuning PID Controllers. Lecture Notes in Computer Science. 2001,21:914
    107 YD/T 1067-2000, 稳定光源技术条件
    108 谢云,章云,刘冰茹,易波. 一种硬感知器的结构设计与 FPGA 实现. 广东工业大学学报.2003.20(3):46~49
    109 邓云祥,孟劲松,苏燕辰. Verilog HDL 数字电路的设计. 中国测试技术. 2005.31(3):103~104

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700