集约经营雷竹林土壤碳过程研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
雷竹(Phyllostachys praecox f.prevelnalis),是优良的笋用竹种。由于其具有产量高、成林快、出笋早、笋味鲜等特点,被大范围引种栽培。科研人员对雷竹栽培技术进行不断探索,总结出了以冬季地表增温覆盖和施肥为核心的雷竹集约经营技术。由于采用了冬季地表增温覆盖和多量施肥,实现了竹笋高产和反季生产,产生了很高的经济效益。然而,雷竹集约经营技术已对土壤有机碳含量和形态产生了深刻影响。为了揭示集约经营措施对土壤有机碳过程的影响,在浙江省雷竹主产区布置了定位试验,动态研究了雷竹覆盖物分解过程及其对土壤有机碳含量及结构的影响;研究了竹林土壤呼吸变化规律及其与环境因子的关系。通过研究,得出如下结果:
     1)雷竹覆盖物动态分解过程研究表明:1a时间竹叶和稻草分别分解了79.30%和67.54%,竹叶和稻草的碳含量分别下降了14.80%和15.32%,氮含量上升了15.77%和173.26%,C/N下降了26.36%和67.50%。竹叶和稻草中的烷基碳含量增加,烷氧碳含量下降,降幅分别为11.21%和13.29%,芳香碳含量下降,羰基碳含量总体增加,A/O-A值显著增加,而芳香度显著降低。
     2)覆盖措施下林地土壤有机碳变化过程研究表明:覆盖物分解进入土壤,使得土壤有机碳含量增加了22.15%,土壤CO2排放速率增加了3.29-7.65 umol·m~(-2)s~(-1)。覆盖物分解过程中,土壤有机碳中烷氧C成分迅速增加,而其芳香度降低,表明土壤C的稳定性下降。覆盖后提高了土壤呼吸速率,而春季提早揭去覆盖物能显著降低土壤呼吸速率。
     3)集约经营雷竹林土壤呼吸动态变化规律及其与环境因子关系研究表明:雷竹林地土壤总呼吸速率(RS)、土壤生物异养呼吸速率(RH)及根系自养呼吸速率(RA)的年平均值分别为5.42、2.24和2.89μmolCO2·m~(-2)·s~(-1),土壤呼吸1a中在2月和7月出现了两个峰值,且变化幅度较大。雷竹林地土壤年释放CO2量为73.40 t·hm~(-2)·a~(-1),其中林地异养呼吸和自养呼吸分别占总呼吸的45.67%和54.32%。RS、RH和RA均与土壤温度呈明显的指数关系,以土壤5 cm处温度为依据得到的温度系数(Q10值)分别为1.70、1.86和1.48,土壤总呼吸与5cm处土温、08时气温、WSOC(水溶性有机碳)含量和TOC(土壤总有机碳)含量呈显著正相关(P < 0.01),而土壤含水量、08时大气相对湿度和WSON(水溶性有机碳)含量与土壤呼吸无显著相关性。
Phyllostachys praecox is one of the best bamboo species used for edible bamboo shoot production. Due to its advantages of high production, rapid growth, early shoot period, and delicious taste, Phyllostachys praecox has been widely planted in the south of China. In the past several years, a method centered on heavy fertilization and use of organic mulch in the winter has gained popularity as a core technique for producing bamboo shoots early and with increased productivity. Consequently, the above intensive management would make great influence on the soil organic carbon content and forms. An experiment was conducted in typical phyllostachys praecox stands located in Lin’an, Zhejiang Province to investigate the chemical behaviour of various mulching materials including bamboo leaves and rice straw, and the impact of mulching on soil carbon (C) dynamics using solid state 13C-nuclear magnetic resonance (NMR) and to study the dynamic change of soil respiration and the relationship between soil respiration and environmental factors during 2009. The results obtained were summarized as follows:
     1)A field study was conducted to investigate the decomposition of various mulching materials including bamboo leaves and rice straw during 2009. The results showed that the bamboo leaves and rice straws were decomposited by 79.30% and 67.54%, respectively. The carbon content of bamboo leaves and rice straws decreased by 14.80% and 15.32%, nitrogen content increased by 15.77% and 173.26%, C / N decreased by 26.36% and 67.50% respectively. Alkyl C content increased but O-alkyl C content decreased by 11.21% and 13.29%, respectively in the decomposing mulching materials. Additionally, the aromatic C content decreased; A/O-A ratio was significantly increased, while the aromaticity was significantly reduced.
     2)A field study was conducted to investigate the impact of the mulching on soil carbon (C) dynamics during 2009. The results showed that with the treatment of mulching soil organic carbon content increased by 22.15% and the soil respiration rate increased by 5.47μmol·m~(-2)·s~(-1). Alkyl C content increased but O-alkyl C content decreased in the decomposing mulching materials, whereas aromatic C content increased initially but decreased at later stage, indicating degradation of lignin. The residual materials had a significantly higher A/O-A ratio, but lower aromaticity than those in the original materials. Soil beneath the mulches rapidly built up organic C which was dominated by O-alkyl C with reduced aromaticity, indicating increased C lability. Mulching treatment enhanced soil respiration rate. An early removal of the mulching materials in spring significantly reduced soil respiration. It is recommended that mulching materials should be removed as early as practical to reduce CO2 emission associated with mulch treatment, which may help maintain soil organic matter stability for long term C sequestration.
     3)A experiment was conducted in typical phyllostachys praecox stands located in Lin’an, Zhejiang Province to study the dynamic change of soil respiration and the relationship between soil respiration and environmental factors. The results showed that the soil total respiration rate, heterotrophic respiration rate, and autotrophic respiration rate of phyllostachys praecox were 5.42, 2.24 and 2.89μmol·m~(-2)·s~(-1) respectively. The annual dynamic pattern was represented with a double-peak curve and changed greatly.The amount of CO2 released from phyllostachys praecox was 73.40 t·hm~(-2)·a~(-1), including 45.67% heterotrophic respiration and 54.32% autotrophic respiration. RS, RH and RA had strong exponential correlations with soil temperature, especially the temperature at 5 cm depth. The Q10 value at 5 cm depth was 1.70, 1.68 and 1.48 respectively. The relativity of soil temperature in 5 cm depth, atmospheric temperature at 8:00, WSOC, TOC and soil respiration is remarkable, while the relativity of soil water content, relative humidity at 8:00 , WSON and soil respiration is not remarkable.
引文
[1]杨芳,吴家森,姜培坤,徐秋芳.不同施肥雷竹林土壤水溶性有机碳动态变化[J].浙江林业科技,2006,26(3):34-37.
    [2]汪祖潭,方伟,何均潮.雷竹笋用林高产高效栽培技术[M].北京:中国林业出版社,1995,5-30.
    [3]方伟,何均潮,卢学可.雷竹早产高效栽培技术[J].浙江林学院学报,1994,11(2):121-128.
    [4]姜培坤,俞益武,张立钦.雷竹林地土壤酶活性研究[J].浙江林学院学报,2000,17(2):132-136.
    [5]金爱武,周国模,郑炳松.雷竹保护地栽培林地退化机制的初步研究[J].福建林学院学报,1999,19(1):94-96.
    [6]陈继红,王丽臻,吴建新,胡竹平,祝霞.雷竹退化林分改造技术黄美珍[J].林业实用技术,2007,11:12-13.
    [7]杨元龙.雷竹“孵笋”操作技术简介[J].农村经济导刊,2000,(7):36.
    [8]冯世祥,何月祥.雷竹提早出笋覆盖材料筛选试验初报[J].浙江林业科技,1994,14(2):18-21.
    [9]曹群根,冯世祥,何月祥.不同覆盖物对雷竹林笋生产的影响[J].林业科学研究,1995,8(1):39-43.
    [10]方伟,何钧潮,卢学可.雷竹早产高效栽培技术[J].浙江林学院学,1994,11(2):121-128.
    [11]胡超宗,李天佑,金爱武.塑料大棚雷竹栽培技术[J].浙江林业科技,1994,14(5):42-55.
    [12]李天佑,金爱武,郦章顺.塑料大棚在雷竹笋早出栽培中的增温效应[J].浙江气象科技,1995,16(2):46-49.
    [13]何钧潮,梁建迎,方德才.雷竹四季出笋高效经营技术研究[J].竹子研究汇刊,1997,16(1):37-40.
    [14]何德汀,赵大明,沈国本.雷竹林覆盖栽培持续高产的研究[J].竹子研究汇刊,2001,20(1):50-52.
    [15]周国模,金爱武,何钧潮.覆盖保护地栽培措施对雷竹笋用林丰产性能的影响[J].中南林学院学报,1999,19(2):52-54.
    [16]周国模,金爱武,郑炳松.雷竹覆盖保护地栽培林分立竹结构的初步研究[J].浙江林学院学报,1998,15(2):111-115.
    [17]凌申坤,郑刚,方伟.雷竹双季丰产栽培技术[J].林业科技开发,2000,(6):24-36.
    [18]孙金培,杨士德.早竹笋用林丰产技术研究[J].浙江林业科技,1987,7(3):20-22,36.
    [19] WBGU. The accountlng of biological sinks and sources under the Kyoto Protoeol-astep forwards of backwords for Global Environmental Proteetion. Bremerhaven: WBGU, 1998: 46-50.
    [20]周国模,刘恩斌,佘光辉.森林土壤碳库研究方法进展[J].浙江林学院学报,2006,23(2):207-216.
    [21] SEDJO R A. The carbon cyele and global forest ecosystem. Water Air Soil Pollut. 1993, 70:295-307.
    [22] JENKINSON D S, ADAMS D E, WILD A .Mode lestimates of CO2 emissions from soil in response to global warming[J]. Nature, 1991, 351: 304-306.
    [23] RAICH J W, SCHLESINGER W H .The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate[J]. Tellus. 1992, 44(B): 81-99.
    [24]黄昌勇.土壤学[M].北京:中国农业出版社,2000.
    [25]肖复明,张群,范少辉.中国森林生态系统碳平衡研究[J].世界林业研究,2006,29(l):53-57.
    [26]周玉荣,于振良,赵士洞.我国主要森林生态系统碳贮量和碳平衡[J].植物生态学报,2000,24(5):518-522.
    [27]汪业勖,赵士洞,牛栋.陆地土壤碳循环的研究动态[J].生态学杂志,1999,18(5):29-35.
    [28]张宪洲,石培礼,刘允芬.青藏高原高寒草原生态系统土壤CO2排放及其碳平衡.中国科学(D辑),2004,34(增刊Ⅱ):193-199.
    [29]陈立奇,赵进平,卞林根.影响北极地区迅速变化的一些关键过程研究.极地研究,(2003b)15(4),283-300.
    [30] HOUGHTON J T, DING Y, GRIGGS D J. 2001.Climate Change 2001: The Scientific Basis. Contribution of Working Group 1 to the Third Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge, UK: Cambridge University Press.
    [31]李正才,傅懋毅,徐德应.竹林生态系统与大气二氧化碳减量[J].竹子研究汇刊,2003,22(4):1-6.
    [32] JENKINSON D S, ADAMS D E, WILD A. Model estimates of CO2 emissions from soil in response to globalwarming. Nature, 1991, 351: 304- 306.
    [33] WATSON R T, NOBLE IR, BOLIN B. IPCC special Report on LandUse. Land Use Change and Forestry, 2000, 20: 96-102.
    [34] RAICH J W, POTTER C S. Global patterns of carbon dioxide emissions from soils[J]. Global BiogeochemicalCycles, 1995, 9: 23-36.
    [35] DESROCHERS A, LANDHUSSER S M, LIEFFERS V J. Coarse and fine root respiration in aspen(Populus tremuloides) [J]. Tree Physiology, 2002, 22, 725-732.
    [36]崔晓勇,陈佐忠,陈四清.草地土壤呼吸研究进展[J].生态学报,2001,21(2):315-325.
    [37]刘绍辉,方精云.土壤呼吸的影响因素及全球尺度的影响[J].生态学报,1997,17(5):469-476.
    [38]麦克拉伦,波得森.土壤生物化学[M].北京农业出版社,1984:490-491.
    [39]李玉宁,王关玉,李伟.土壤呼吸作用和全球碳循环闭[J].地学前缘,2002.9(2):351-356.
    [40]黄耀著.地气系统碳氮交换一从实验到模型[M].北京:气象出版社,2003.
    [41]周存宇.鼎湖山针阔叶混交林土壤呼吸的研究[J].北京林业大学学报,2005,27(4):23-27.
    [42] KEITH H, JACOBSEN K L, RAISON R J. Effect of phosphorus availability, temperature and moisture on soil respiration in Eucalytus pauciflora forest[J]. Plant and Soil. 1997, 190: 127-141.
    [43]王跃思,王明星,胡玉琼.半干旱草原温室气体排放/吸收与环境因子的关系研究[J].气候与环境研究,2002,7( 3 ):295-310.
    [44] FANG .C., J B Moncrieff .The dependence of soil CO2 efflux on temperature[J]. Soil Biological & biochemistry, 2001, 33: 135-165.
    [45] WINKLER, J. P, R.S. CHERRY & W.H. SCHLESINGER. The Q10 relationship of microbial respiration temperate forest soil [J]. Soil Biology and Biochemistry. 1996, 28: 1067-1072.
    [46] RAICH J W and SCHELESINGER W H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate [J] .Te11us. 1992, 44B, 81-99.
    [47]刘绍辉,方精云.土壤呼吸的影响因素及全球尺度的影响[J].生态学报,1997,17(5):469-476.
    [48]方精云主编.全球生态学[M].北京:高等教育出版社,2000.
    [49] WANG Y S, HU Y Q, JIB M. An investigation on the relationship between emission uptake of greenhouse gases and entironment factors in semiarid grassland [J]. Advances in, Atmospheric science, 2003, 20(1): 119-127.
    [50] DAVID RISK. Exploring the environmental sensitivity of natural soil carbon dioxide emissions, Do roots and soil microbes respond to different climatic cues[J]. Global Change Biology, 2006.
    [51] DAVISON E A, Trumbore SE, Amundson R.Soil warming and organic carbon content[J]. Nature, 2000, 408. 789-790.
    [52] DAVISON E A, Trumbore S E, Amundson R. Soil warming and organic carbon content[J]. Nature, 2000, 408: 789-790.
    [53] MIELNICK P C, WILLIAN A D .Soil flux in a tallgrass prairie[J]. Soil biology and Biochemistry, 2003, 32: 221-228.
    [54] LIU X Z, WAN S Q, Su B. Response of soil CO2 efflux to water manipulation in a tallgrass prairie ecosystem [J]. Plant and Soil, 2002, 240: 213-223.
    [55]陈述悦,李俊,陆佩玲,王迎红,于强.华北平原麦田土壤呼吸特征[J].应用生态学报15(9):2004,152-156.
    [56]黄耀,孙文娟.近加年来中国大陆农田表土有机碳含量的变化趋势[J].科学通报,2006,51(7):750-763.
    [57]孟凡乔,关桂红,张庆忠.华北高产农田长期不同耕作方式下土壤呼吸及其季节变化规律[J].环境科学学报,2006,26(6):992-999.
    [58]张庆忠,吴文良,王明新.秸秆还田和施氮对农田土壤呼吸的影响[J].生态学报,2005,25(11):288,2887.
    [59]王立刚,邱建军,李维炯.黄淮海平原地区夏玉米农田土壤呼吸的动态研究[J].土壤肥料,2002,6:13-17.
    [60]韩广轩,朱波,张中杰.水早轮作土壤一小麦系统CO2排放及其影响因素[J].生态环境,2004,13(2):182-185.
    [61]孟磊,丁维新,蔡祖聪.长期定量施肥对土壤有机碳储量和土壤呼吸影响[J].地球科学进展,2005,20(6):687-692.
    [62]诸葛玉平,张旭东,刘启.长期施肥对黑土呼吸过程的影响[J].土壤通报,2005,36(3):391-394.
    [63]戴万宏,王益权,黄耀.农田生态系统土壤CO2释放研究.西北农林科技大学学报,2002,32(1):1-7.
    [64] GALLARDO A, and SCHLESINGER W H. Factors limiting microbial biomass in the mineral soil and forest floor of a warm temperate forest[J]. Soil Biological Biochemistry, 1994, 26: 1409-1415.
    [65] SCHLESINGE, W. H, and ANDREWS J A. soil respiration and the global carbon cycle .Biogeochemistry, 2000, 48: 7-20.
    [66] BADIA D V.AND LCANIZ J M. Basal and specific microbial respiration in semiarid agricultural soils: Organic amendment and irrigation management effects[J]. Geomicrobiology Jouranal, 1993, 11(3): 261-274.
    [67]梁巍,岳进.微生物生物量C、土壤呼吸的季节性变化与黑土稻田甲烷排放[J].应用生态学报,2003,14(12):2278-2280.
    [68]徐秋芳,徐建明,姜培坤.集约经营毛竹林土壤活性有机碳库研究[J].水土保持学报,2003,17(4):15-21.
    [69]徐昌棠.雷竹园覆盖增温增产技术[J].新农村,2006,9.
    [70]余全胜.雷竹覆盖促成早出笋栽培技术[J].安徽农业,2004,11:9.
    [71]姜培坤,徐秋芳,杨芳.雷竹土壤水溶性有机碳及其与重金属的关系[J].浙江林学院学报,2003b,20(1);8-11.
    [72]姜培坤,徐秋芳.施肥对雷竹林土壤活性有机碳的影响[J].应用生态学报,2005b,16(2):253-256.
    [73]鲁如坤.土壤农业化学分析方法[M].北京:中国农业科技出版社,2000,106-226.
    [74] BOND-LAMBERTY B, WANG C K, GOWER S T. The contribution of root respiration to soil surface CO2 flux in a boreal black spruce chronosequence. Tree Physiology, 2004, 22 : 993-1001.
    [75]中国土壤学会.土壤农业化学分析方法.北京:中国农业出版社,1999,146-226.
    [76] TANG, Q.Y., FENG, M.G.. Practical Statistics and DPS Data Processing System. China Agricultural Press, Beijing, 2003, 407.
    [77]谢宝东,方升佐,綦山丁,李华勇.四种生物覆盖植物的自然分解及养分释放动态[J].南京林业大学学报:自然科学版,2009,33(5):12-15.
    [78] LUO Y, WAN S, HUI D . Acclimatizion of soil respiration to warming in a tall grass prairie. Nature , 2001, 413: 622– 625.
    [79]董林根,姜小娟,方茂盛.雷竹覆盖栽培林地土壤微生物的初步研究[J].浙江林学院学报,1998,15(3):236~239.
    [80]郭剑芬,杨玉盛,陈光水.森林凋落物分解研究进展[J].林业科学,2006,42(4):93-100.
    [81]王其兵,李凌浩,白永飞.模拟气候变化对3种草原植物群落混合凋落物分解的影响[J].植物生态学报,2000,24(6):674-679.
    [82]陈永亮,李淑兰.胡桃楸、落叶松纯林及其混交林下叶凋落物分解与养分归还的比较研究[J].林业科技,2004,29(5):9-12.
    [83]刘颖,韩士杰,林鹿.长白山4种森林凋落物分解过程中养分动态变化[J].东北林业大学学报,2009,37(8):28-30.
    [84]郑兆飞.木荷叶凋落物的分解及养分动态分析[J].浙江林学院学报,2009,26(1):22-26.
    [85]郭伟,张健,黄玉梅,刘旭,王伟,薛林.森林凋落物影响因子研究进展[J] .安徽农业科学,2009,37(4):1544-1546.
    [86]廖利平,马越强,汪思龙.杉木与主要阔叶造林树种叶凋落物的混合分解[J].植物生态学报,2000,24(1):27-33.
    [87] MATHERS NJ, MAO XA, XU ZH, SAFFIGNA PG, BERNERS-PRICE S J, PERERA MCS. Recent advances in the application of 13C and 15N NMR spectroscopy to soil organic matter studies. Australian Journal of Soil Research, 2000, 38, 769-787.
    [88] PICCOLO A, CONTE P.Comments on“modern analytical studies of humic substances”by Hatcher et al. Soil Science, 2003, 168: 73-74.
    [89] CONTE P, SPACCINI R, PICCOLO A.State of the art of CPMAS 13C-NMR spectroscopy applied to natural organic matter. Progress in Nuclear Magnetic Resonance Spectroscopy, 2004, 44: 215-223.
    [90] DOU S, ZHANG J J, LI K. Effect of organic matter applications on 13C-NMR spectra of humic acids of soil. European Journal of Soil Science, 2008, 59: 532-539.
    [91] USSIRI D A N, JOHNSON C E. Characterization of organic matter in a northern hardwood forest soil by 13C NMR spectroscopy and chemical methods. Geoderma, 2003, 111: 123-149.
    [92] BAUMANN, K., MARSCHNER, P, SMERNIK, R.J, BALDOCK, J.A, Residue chemistry and microbial community structure during decomposition of eucalypt, wheat and vetch residues. Soil Biol. Biochem. 2009, 41, 1966-1975.
    [93] GHIDEY, F., GREGORY, J.M., MCCARTY, T.R., ALBERTS, E.E. Residue decay evaluation and prediction. T. ASAE 1985, 28, 102-105.
    [94] COUTEAUX, M.-M, BOTTNER, P, BERG, B. Litter decomposition, climate and litter quality. Trends Ecol. Evol. 1995, 10, 63-66.
    [95] SENEVIRATNE, G., VAN HOLM, L.H.J, KULASOORIYA, S.A. Quality of different mulch materials and their decomposition and N release under low moisture regimes. Biol. Fert. Soils. 1998, 26, 136-140.
    [96] VALENZUELA-SOLANO, C., CROHN, D.M., Are decomposition and N release from organic mulches determined mainly by their chemical composition? Soil Biol. Biochem. 2006, 38, 377-384.
    [97] YADAV, R.S., YADAV, B.L., CHHIPA, B.R., Litter dynamics and soil properties under different tree species in a semi-arid region of Rajasthan, India. Agroforest. Syst. 2008, 73, 1-12.
    [98] PAUL, E.A., CLARK, F.E,. Ammonification and nitrification. In: Soil Microbiology and Biochemistry, second ed. Academic Press, San Diego, CA, 1996, 181-197.
    [99] HAYNES, R.J., The decomposition process: mineralization, immobilization, humus formation, and degradation. In: Haynes, R.J. (Ed.), Mineral Nitrogen in the Plant-Soil System. Academic Press, Orlando. 1986.
    [100] FISHER, R.F., BINKLEY, D., Ecology and Management of Forest Soils. John Wiley & Sons, New York, 2000, 489.
    [101] YOUKHANA, A., IDOL, T., Tree pruning mulch increases soil C and N in a shaded coffee agroecosystem in Hawaii. Soil Biol. Biochem. 2009, 41, 2527-2534.
    [102] BALDOCK, J.A., OADES, J.M., NELSON, P.N., SKENE, T.M., GOLCHIR, A., CLARKE, P., Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy. Aust. J. Soil Res. 1997, 35, 1061-1083.
    [103] MATHERS, N.J, JALOTA, R.K., DALAL, R.C., BOYD, S.E.,. 13C-NMR analysis of decomposing litter and fine roots in the semi-arid Mulga Lands of southern Queensland. Soil Biol. Biochem. 2007, 39, 993-1006.
    [104] BALDOCK, J.A., OADES, J.M., NELSON, P.N., SKENE, T.M., GOLCHIR, A., CLARKE, P., Assessing the extent of decomposition of natural organic materials using solid-state 13C NMR spectroscopy. Aust. J. Soil Res. 1997, 35, 1061-1083.
    [105] USSIRI DAN, JOHNSON C E. Characterization of organic matter in a northern hardwood forest soil by 13C NMR spectroscopy and chemical methods. Geoderma. 2003, 111:123-149.
    [106] DOU, S., ZHANG, J.J., LI, K., Effect of organic matter applications on C-13-NMR spectra of humic acids of soil. Eur. J. Soil Sci. 2008, 59, 532-539.
    [107] BAUMANN, K., MARSCHNER, P., SMERNIK, R.J., BALDOCK, J.A., Residue chemistry and microbial community structure during decomposition of eucalypt, wheat and vetch residues. Soil Biol. Biochem. 2009, 41, 1966-1975.
    [108]卓苏能,文启孝.核磁共振技术在土壤有机质研究中应用的新进展[J].土壤学进展,1994,22(5):46-52.
    [109] MATHERS, N.J., XU, Z.H., Solid-state 13C NMR spectroscopy, characterization of soil organic matter under two contrasting residue management regimes in a 2-year-old pine plantation of subtropical Australia. Geoderma 2003, 114, 19-31.
    [110] CHEN C R, XU Z H, ZHANG S L. Soluble organic nitrogen pools in forest soils of subtropical Australia [J]. Plant and Soil, 2005, 277: 285-297.
    [111]王小国,朱波.森林土壤呼吸研究进展[J].西南农业学报,2004,17:121-126.
    [112]黄承才,葛滢,常杰,等.中亚热带东部三种主要木本群落土壤呼吸的研究[J].生态学报,1999,19(3):324-328.
    [113] JANDL, R., LINDNER, M., VESTERDAL, L., BAUWENS, B., BARITZ, R., HAGEDORN, F., JOHNSON, D.W., MINKKINEN, K., BYRNE, K.A.,. How strongly can forest management influence soil carbon sequestration? Geoderma 2007, 137, 253-268.
    [114] KUZYAKOV, Y., HILL, P.W., JONES, D.L.,. Root exudate components change litter decomposition in a simulated rhizosphere depending on temperature. Plant Soil 2007, 290, 293-305.
    [115] LI, Y.F., JIANG, P.K., CHANG, S.X., WU, J.S., LIN, L., Organic mulch and fertilization affect soil carbon pools and forms under intensively managed bamboo (Phyllostachys praecox) forests in southeast China. J. Soils Sed. 2010, 10, 739-747.
    [116] JIANG, P.K., WANG, H.L., WU, J.S., XU, Q.F., ZHOU, G.M., Winter mulch increases soil CO2 efflux under Phyllostachys praecox stands. J. Soils Sed. 2009, 9, 511-514.
    [117] JIANG, P.K., XU, Q.F., XU, Z.H., CAO, Z.H., Seasonal changes in soil labile organic carbon pools within a Phyllostachys praecox stand under high rate fertilization and winter mulch in subtropical China. For. Ecol. Manage. 2006, 236, 30-36.
    [118] HUANG, Z., XU, Z., CHEN, C., Effect of mulching on labile soil organic matter pools, microbial community functional diversity and nitrogen transformations in two hardwood plantations of subtropical Australia. Appl. Soil Ecol. 2008, 40, 229-239.
    [119]周玉荣,于振良,赵士洞.我国主要森林生态系统碳库和碳平衡[J].植物生态学报,2000,24 (5):518-522.
    [120]褚金翔,等.川西亚高山林区三种土地利用方式下土壤呼吸动态及组分区分.生态学报,2006,26(6):1693-1700.
    [121]范少辉,肖复明,汪思龙,等..湖南会同林区毛竹林地的土壤呼吸[J].生态学报,2009,29(11):5971-5977.
    [122] LI Y F, LUO A C, WEI X H, YAO X G..Changes in phosphorus fractions, pH, and phosphatase activity in rihizosphere of two rice genotypes. Pedosphere, 2008, 18(6): 785-794.
    [123] EPRON D, FARQUEL, LUCOTE. Soil CO2efflux in a beech fores,t the contribution of root respiration. Annais ofForestScience, 1999, 56: 289-295.
    [124] HOGBERG P, NORDGREN A, BUCHMANNN.. Large-scale forestgirdling shows that currentphotosynthesis drives soil respiration. Nature, 2001, 411: 789-792.
    [125] KELTING D L, BURGER JA, EDWARDSG S.. Estimating root respiration, microbial respiration in the rhizosphere, and root-free soil respiration in forest soils. SoilBiology and Biochemistry, 1998, 30: 961-968.
    [126] ANAREY.. Annual variation in soil respiration and its components in a coppice oak forest in Central Italy. Global Change Biology, 2002, 8: 851-866.
    [127] HELAL H M, SAUERBECK D.. Short term determination of the actual respiration rate of intact plant roots. Plant Roots and Their Environment , 1991, 22 : 88-92.
    [128] THIERRON V , LAUDELOUT H.. Contribution of root respiration to total CO2efflux from the soil of a deciduous forest . Canadian Journal of Forest Research , 1996,26 : 1142-1148.
    [129]方晰,田大伦,项文化,等.杉木人工林林地土壤CO2释放量及其影响因子的研究[J].林业科学,2005,41(2):1-7.
    [130]彭少麟,李跃林,任海,等.全球变化条件下的土壤呼吸效应.地球科学进展,2002,17 (5):705–713.
    [131] LUO Y, WAN S, HUI D.. Acclimatizion of soil respiration to warming in a tall grass prairie. Nature , 2001, 413 : 622– 625.
    [132]周海霞,张彦东,孙海龙,吴世义.东北温带次生林与落叶松人工林的土壤呼吸,2007,18(12):2668-2674.
    [133]杨金艳,王传宽.东北东部森林生态系统土壤呼吸组分的分离量化[J].植物生态学报,2006,30 (2):286- 294.
    [134] DAVISON E A,TRUMBORE S E,AMUNDSON R.. Soil warming and organic carbon content.Nature, 2000, 408: 789-790.
    [135] KANG S Y, DOH S Y, LEE D S ..Topographic and climatic controls on soil respiration in six temperate mixed-hardwood forest slopes,Korea.Global Change Biology, 2003, 9:1427-1437.
    [136] LIU J J, WANG D X, LEI R D, WU X Q. Turnover processes and energy change of fine roots of Pinus tablaeformis and Quercusaliena var.acuteserrata natural forests in Qin ling Mountains.Scientia Silvae Sinicae , 2002, 38(4), 1-6.
    [137]张慧东,周梅,赵鹏武,等.寒温带兴安岭落叶松土林壤呼吸特征[J].林业科学,2008,44(9):142-145.
    [138] MATHES K, SCHRIEFER T.. Soil respiration during secondary succession influences of temperature and moisture.Soil Biol.Biochem, 1985, 17(2): 205-211.
    [139]刘绍辉,方精云.土壤呼吸的影响因素及全球尺度下温度的影响[J].生态学报,1997,17(5):469-476.
    [140]杜丽君,金涛,阮雷雷,等.鄂南4种典型土地利用方式红壤CO2排放及其影响因素[J].环境科学,2007,28(7):1607-1613.
    [141]褚金翔,等.川西亚高山林区三种土地利用方式下土壤呼吸动态及组分区分[J].生态学报,2006,26(6):1693-1700.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700