厌氧氨氧化工艺快速启动及菌群特性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
厌氧氨氧化(Anammox)是一种高效经济的新型生物脱氮工艺,该工艺由于具有脱氮效率高、无需外加有机碳源、无氧溶解氧、污泥产率低等特点受到研究界广泛的关注。厌氧氨氧化工艺适合处理高氨氮废水,尤其在处理低碳氮比废水方面具有独特的优势。随着厌氧氨氧化研究的深入,厌氧氨氧化组合工艺也发展起来,广泛应用于处理高氮废水。然而,厌氧氨氧化菌生长极其缓慢,其世代时间通常为11天,以至于厌氧氨氧化工艺的启动需要一个相当长的周期。厌氧氨氧化工艺漫长的启动过程已成为该工艺工业化应用的重要瓶颈之一。针对厌氧氨氧化工艺启动过长的问题,本研究探索和进一步完善厌氧氨氧化工艺的快速启动策略。主要研究成果包括:
     (1)筛选含有土著厌氧氨氧化菌的活性污泥作为接种污泥可以提高厌氧氨氧化工艺启动的有效性,同时可以缩短启动时间。在实验中,随机从三种不同的污水处理工艺采取接种污泥,接种至三个平行运行的反应器。其中,含有土著厌氧氨氧化菌的接种污泥成功启动厌氧氨氧化反应,启动过程仅为3个月,短于通常4个月或更长的启动周期。
     (2)MBR适合于厌氧氨氧化工艺快速启动。MBR因膜对生物量的完全截留作用和活性污泥良好的自身性质缩短了启动周期,2个月内成功从活性污泥中启动厌氧氨氧化工艺。其最大氨氮去除速率和亚硝酸盐去除速率分别为159.8mgNL-1d-1和185.4mgNL-1d-1,比厌氧氨氧化活性为0.35g(NH4+-N+NO2--N)/(gVSS·d)。膜生物反应器启动厌氧氨氧化过程污泥转换期的膜污染速率高于污泥适应期和活性提高期。
     对比研究MBR和SBR启动厌氧氨氧化工艺的性能表明,MBR的厌氧氨氧化启动周期比SBR的启动周期节省了41.6%的时间。谱系分析表明,同样的接种污泥启动成功后,MBR和SBR中厌氧氨氧化菌种组成显著不同,MBR中存在4种厌氧氨氧化菌,而SBR中仅含2种厌氧氨氧化菌。
     (3)无纺布环型填料固定床反应器适宜厌氧氨氧化工艺快速启动,并长期稳定运行。无纺布环型填料固定床反应器在第39天首次表现出厌氧氨氧化活性,通过逐步提高进水氮负荷,在367天,反应器达到最大脱氮性能,其总氮负荷和总氮去除率分别达到10.25kgNm-3d-1和90.19%。长期运行过程中由于反应器中亚硝酸盐积累和pH升高抑制了厌氧氨氧化活性,通过及时降低进水总氮负荷和调节pH,反应器性能逐步恢复稳定。
     (4)以长期适温储存厌氧氨氧化污泥作为接种污泥,可以快速启动厌氧氨氧化工艺。37℃低营养(NH4+-N和N02--N投加量分别为13.6g/(kgMLSS·d))储存厌氧氨氧化污泥6个月,其厌氧氨氧化活性降为储存前的29.2%;以6个月储存后污泥作为接种污泥,不会因污泥转换期污泥中大量非目标菌的死亡影响启动过程,并节省了污泥转换期所需的时间,在2个月内成功启动厌氧氨氧化工艺。
     (5)成功制备磁性包埋厌氧氨氧化小球,实现厌氧氨氧化菌与磁粉的协同包埋。研究表明,在磁性包埋厌氧氨氧化小球中,磁粉添加量在0.5-1.5g/(20ml Anammox sludge×20ml PVA-SA)的范围内可以增加小球的厌氧氨氧化活性,当磁粉添加量为0.5g/(20ml Anammox sludge×20ml PVA-SA),小球活性提高最大,NH4+-N和N02--N的氮去除速率分别提高56.05%和50.03%。适合参数的低频短时间的超声可以提高磁性包埋厌氧氨氧化小球的活性。将制备好的具有相同磁粉含量的磁性包埋厌氧氨氧化小球置于KQ5200DE型数控超声仪中(35℃,50w)超声,在超声时长为0-10min的范围内,小球的厌氧氨氧化活性有所升高,当超声时长为10min,活性提高幅度最大,达到95.45%。
Anaerobic ammonium oxidation (Anammox) is an efficient and cost-effective biological nitrogen removal process. Due to its high removal efficiency, low sludge production rate, no need of external organic carbon source and dissolved oxygen, it gains extensive attention. Anammox process can deal with high-ammonia wastewater, and it is especially suitable for treatment of wastewater with low carbon/total nitrogen. Recently, Anammox combined process has been developed and widely used in treating high-nitrogen wastewater. However, as the generation time of anammox bacteria needs two weeks, the cultivation of Anammox bacteria requires a very long period, which becomes the bottleneck of Anammox process and limits its intrudustrial applications. To solve such problems, this study explores and improves quick start-up strategy of Anammox. Main research achievements were as follows:
     (1) Selecting the activated sludge with aboriginal Anammox bacteria as seed sludge can improve the performance of Anammox process and shorten the start-up period. In the experiment, three kinds of seed sludges, randomly selected from different wastewater treatment processes, were inoculated in three parallel reactors. The results showed that only the seed sludge which contained aboriginal Anammox bacteria could successfully started up Anammox process, and it merely took3months to realize this process, which was shorter than the usual start-up period of4months or longer.
     (2) MBR is suitable for quick start-up of Anammox. It successfully started up Anammox process from the activated sludge in2months since it could realize complete biomass retention and keep the activated sludge with good settling property stay in the reactor. The maximum removal rates of ammonia and nitrite were159.8mgNL-1d-1and185.4mgNL/-d-1, and the specific anammox activity was0.35g (NH4+-N+NO2--N)(gVSS·d)-1. During the Anammox start-up process, membrane fouling rate of sludge conversion stage was higher than that of sludge adaption stage and activity improving stage.
     Compared to SBR, MBR could save as much as41.6%on time usage of Anammox start-up process. Phylogenetic analysis showed that, after the successful start-up with the same seed sludge, Anammox bacteria species in MBR and SBR were significantly different. MBR had4species while SBR had only2species.
     (3) Non-woven ring carrier fixed bed reactor can accelerate the start-up process of Anammox and realize long-term operation. In the fixed bed reactor, Anammox activity occurred on39d. The nitrogen removal efficiency was increased by gradually increasing the influent nitrogen loading. The reactor gained a maximum nitrogen removal efficiency on367d, whose total nitrogen loading and removal efficency were10.25kgNm-3d-1and90.19%. During the long-term operation, Anammox activity was inhibited due to nitrite accumulation or pH increase, however, the performance of the reactor could be restored when total nitrogen loading rate and pH were timely adjusted.
     (4) Anammox sludge stored for long-term period at its optimal temperature can quickly start up Anammox process. Although Anammox activity decreased to29.2%of that before the storage after6-month storage with low nutrition (addition of NH4+-N and NCV-N was both13.6g/(kg MLSS-d)) at37℃, Anammox process successfully started up within2months by inoculating such sludge. One possibility was that the influence of dead non-target bacteria on the start-up process was avoided by adopting this strategy, and consequently, the period of sludge conversion stage was curtailed.
     (5) Preparation of magnetic entrapped Anammox balls could realize joint embedding of Anammox bacteria and magnetic particles. Keeping the powder to a certain level (0.5-1.5g/(20ml Anammox sludge X20ml PVA-SA)) can increased the Anammox activity. When the amount was0.5g/(20ml Anammox sludge X20ml PVA-SA), the maximum of the balls activity was gained, and nitrogen removal rates of NH4+/-N and NO2--N increased by56.05%and50.03%. Low-frequency ultrasound with appropriate parameters can also improve the activity of the magnetic entrapped Anammox balls. Then the balls with the same content of magnetic powder were placed in KQ5200DE numerical control ultrasonic instrument (35℃,50w). The Anammox activity was enhanced when the ultrasound duration was kept at the range of0-10min, and increased the most by95.45%when the ultrasonic duration was10min.
引文
[1]国家环境保护部.中国环境公报[M].北京:国家环境保护部,2007.
    [2]郑平,徐向阳,胡宝兰.新型生物脱氮理论与技术北京[M]:科学出版社,2004.
    [3]高廷耀,顾国维.水污染控制工程(下册)[M].北京:高等教育出版社,1999.
    [4]孙锦宜.含氮废水处理技术与应用[M].北京:化学工业出版社,2003.
    [5]陈坚.环境生物技术[M].北京:中国轻工业出版社,1999.
    [6]沈耀良,王宝贞.废水生物处理新技术—理论与应用[M].北京:中国环境科学出版社,1999.
    [7]郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998.
    [8]李建政.环境工程微生物学[M].北京:化学工业出版社,2004.
    [9]胡宝兰,郑平,冯孝善.新型生物脱氮技术的工艺研究[J].应用与环境生物学报,1999,5(Suppl):68-73.
    [10]高廷耀,夏四清,周增炎.城市污水生物脱氮除磷机理研究进展[J].上海环境科学,1999,1(1):16-18.
    [11]程晓如,杨开.设计A/O生物脱氮工艺应注意的几个问题[J].环境与开发,1996,11(4):14
    [12]Hao X D, Doddema H J, vanGroenestijn J W. Conditions and mechanisms affecting simultaneous nitrification and denitrification in a Pasveer oxidation ditch [J].Bioresource Technology,1997, 59(2-3):207-215.
    [13]乔海兵,王淑莹,李桂荣,等.连续流间歇曝气氧化沟处理生活污水脱氮除磷研究[J].环境污染治理技术与设备,2006,7(7):11-14.
    [14]乔海兵,王淑莹,姚学同,等.污泥回流和前置区THR对氧化沟N、P去除的影响[J].北京工业大学学报,2007,33(4):408-412.
    [15]郭劲松,罗本,福方芳.生物脱氮研究的新进展—全程自养脱氮工艺[J].环境科学与技术,2005,28(6):102-105.
    [16]汪慧贞,吴俊奇,高志明.半硝化-厌氧氨氧化脱氮新工艺[J].环境工程,2001,19(5):7-9.
    [17]吴永华,王劲,崔力明.硝化-厌氧氨氧化组合反应器的运行和评价[J].工业用水与废水,2004,35(2):10-13.
    [18]Hellinga C, Schellen A A J C, Mulder J W, et al. The SHARON process:An innovative method for nitrogen removal from ammonium-rich waste water [J].Water Science and Technology,1998,37 (9):135-142.
    [19]Mosquera-Corral A, Gonzalez F, Campos J L, et al. Partial nitrification in a SHARON reactor in the presence of salts and organic carbon compounds [JJ.Process Biochemistry,2005,40(9):3109-3118.
    [20]Collivignarelli C, Bertanza G. Simultaneous nitrification-denitrification processes in activated sludge plants:Performance and applicability [J].Water Science and Technology,1999,40(4-5):187-194.
    [21]Kshirsagar M, Gupta A B, Gupta S K. Aerobic Denitrification Studies on Activated-Sludge Mixed with Thiosphaera-Pantotropha [J].Environmental Technology,1995,16(1):35-43.
    [22]Munch E V, Lant P, Keller J. Simultaneous nitrification and denitrification in bench-scale sequencing batch reactors [J].Water Research,1996,30(2):277-284.
    [23]曹国民,赵庆祥,张彤.单级生物脱氮技术的进展[J].中国给水排水,2000,16(2):20-24.
    [24]杨麒,李小明,曾光明,等.同步硝化反硝化机理的研究进展[J].微生物学通报,2003,30(4):88-91.
    [25]胡林林,王建龙,文湘华,等.低溶解氧条件下生物脱氮研究中的新现象[J].应用与环境生物学报,2003,8(4):444-447.
    [26]袁林江,彭党聪,王志盈.短程硝化一反硝化生物脱氮[J].中国给水排水,2000,16(2):29-31.
    [27]涂保华,张洁,张雁秋.影响短程硝化反硝化的因素[J].工业安全与环保,2004,30(1):12-14.
    [28]Abeling U, Seyfried C F. Anaerobic-Aerobic Treatment of High-Strength Ammonium Wastewater-Nitrogen Removal Via Nitrite [J].Water Science and Technology,1992,26(5-6):1007-1015.
    [29]张忠智,鲁莽,魏小芳,等.脱氮硫杆菌的生态特性及其应用[J].化学与生物工程,2005,22(2):52-54.
    [30]贺莉,陈子爱,王超,等.同步脱氮脱硫技术的研究进展[J].可再生能源,2011,29(2):55-58.
    [31]Broda E. Two kinds of lithotrophs missing in nature [J].Zeischrift fur Allgemeine Mikrobiolgie, 1977,17(6):491-493.
    [32]Mulder A, Vandegraaf A A, Robertson L A, et al. Anaerobic Ammonium Oxidation Discovered in a Denitrifying Fluidized-Bed Reactor [J].FEMS Microbiology Ecology,1995,16(3):177-183.
    [33]Van de Graaf A A, De Bruijn P, Robertson L A, et al. Metabolic pathway of anaerobic ammonium oxidation on the basis of 15N studies in a fluidized bed reactor [J].Microbiology,1997,143(7): 2415-2421.
    [34]Strous M, Kuenen J G, Jetten M S M. Key physiology of anaerobic ammonium oxidation [J].Applied and Environmental Microbiology,1999,65:3248-3250.
    [35]Strous M, Pelletier E, Mangenot S, et al. Deciphering the evolution and metabolism of an anammox bacterium from a community genome [J].Nature,2006,440(7085):790-794.
    [36]van Niftrik L, Geerts W J C, van Donselaar E G, et al. Combined structural and chemical analysis of the anammoxosome:A membrane-bounded intracytoplasmic compartment in anammox bacteria [J] Journal of Structural Biology,2008,161(3):401-410.
    [37]van Niftrik L, van Helden M, Kirchen S, et al. Intracellular localization of membrane-bound ATPases in the compartmentalized anammox bacterium 'Candidatus Kuenenia stuttgartiensis'[J].Molecular Microbiology,2010,77(3):701-715.
    [38]Strous M, Heijnen J J, Kuenen J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms [J].Applied Microbiology and Biotechnology,1998,50:589-596.
    [39]Strous M, Fuerst J A, Kramer E H M, et al. Missing lithotroph identified as new planctomycete [J]. Nature,1999,400:446-449.
    [40]Kuenen J G. Anammox bacteria:from discovery to application [J].Nature Reviews Microbiology, 2008,6(4):320-326.
    [41]Schalk J, de Vries S, Kuenen J G, et al. Involvement of a novel hydroxylamine oxidoreductase in anaerobic ammonium oxidation [J].Biochemistry,2000,39(18):5405-5412.
    [42]Shimamura M, Nishiyama T, Shigetomo H, et al. Isolation of a multiheme protein with features of a hydrazine-oxidizing enzyme from an anaerobic ammonium-oxidizing enrichment culture [J].Applied and Environmental Microbiology,2007,73(4):1065-1072.
    [43]Boumann H A, Hopmans E C, van de Leemput I, et al. Ladderane phospholipids in anammox bacteria comprise phosphocholine and phosphoethanolamine headgroups [J].FEMS Microbiology Letters, 2006,258(2):297-304.
    [44]Damste J S S, Strous M, Rijpstra W I C, et al. Linearly concatenated cyclobutane lipids form a dense bacterial membrane [J].Nature,2002,419(6908):708-712.
    [45]Damste J S S, Rijpstra W I C, Geenevasen J A J, et al. Structural identification of ladderane and other membrane lipids of planctomycetes capable of anaerobic ammonium oxidation (anammox) [J].FEBS Journal,2005,272(16):4270-4283.
    [46]Schmid M, Walsh K, Webb R, et al. Candidatus "Scalindua brodae", sp nov., Candidatus "Scalindua wagneri", sp nov., two new species of anaerobic ammonium oxidizing bacteria [J].Systematic and Applied Microbiology,2003,26(4):529-538.
    [47]Egli K, Fanger U, Alvarez P J J, et al. Enrichment and characterization of an Anammox bacterium from a rotating biological contactor treating ammonium-rich leachate [J].Archievs of Microbiology, 2001,175(198-207.
    [48]van de Vossenberg J, Rattray J E, Geerts W, et al. Enrichment and characterization of marine anammox bacteria associated with global nitrogen gas production [J].Environmental Microbiology, 2008,10(11):3120-3129.
    [49]Rysgaard S, Glud R N, Risgaard-Petersen N, et al. Denitrification and anammox activity in Arctic marine sediments [J].Limnology and Oceanography,2004,49(5):1493-1502.
    [50]Jetten M S M, Strous M, Pas-Schoonen K T, et al. The anaerobic oxidation of ammonium [J].FEMS Microbiology Review,1999,22:421-437.
    [51]Gut L, Plaza E, Trela J, et al. Combined partial nitritation/Anammox system for treatment of digester supernatant [J].Water Science and Technology,2006,53(12):149-159.
    [52]Toh S K, Ashbolt N J. Adaptation of anaerobic ammonium-oxidising consortium to synthetic coke-ovens wastewater [J].Applied Microbiology and Biotechnology,2002,59(2-3):344-352.
    [53]Date Y, Isaka K, Ikuta H, et al. Microbial diversity of anammox bacteria enriched from different types of seed sludge in an anaerobic continuous-feeding cultivation reactor [J].Journal of Bioscience and Bioengineering,2009,107(3):281-286.
    [54]Hamersley M R, Lavik G, Woebken D, et al. Anaerobic ammonium oxidation in the Peruvian oxygen minimum zone [J].Limnology and Oceanography,2007,52(3):923-933.
    [55]Rich J J, Dale O R, Song B, et al. Anaerobic ammonium oxidation (Anammox) in Chesapeake Bay sediments [J].Microbial Ecology,2008,55(2):311-320.
    [56]Kuenen J G, Jetten M S M. Extraordinary anaerobic ammonium-oxidizing bacteria [J].ASM News, 2001,67(9):456-463.
    [57]Van de Graaf A A, de Bruijn P, Robertson L A, et al. Autotrophic growth of anaerobic ammonium-oxidizing microorganisms in a fluidized bed reactor [J].Microbiology,1996,142(8): 2187-2196.
    [58]Jetten M, Schmid M, van de Pas-Schoonen K, et al. Anammox organisms:Enrichment, cultivation, and environmental analysis [J].Methods in Enzymology,2005,397:34-57.
    [59]Nutchanat C, Suwanchai, N. Anammox enrichment from different conventional sludges [J].Chemosphere,2007,66:2225-2232.
    [60]Strous M, Kuenen J G, Fuerst J A, et al. The anammox case-A new experimental manifesto for microbiological eco-physiology [J].Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology,2002,81(1-4):693-702.
    [61]Kartal B, van Niftrik L, Rattray J, et al. Candidatus'Brocadia fulgida':an autofluorescent anaerobic ammonium oxidizing bacterium [J].FEMS Microbiology Ecology,2008,63(1):46-55.
    [62]Tsushima I, Ogasawara Y, Kindaichi T, et al. Development of high-rate anaerobic ammonium-oxidizing (anammox) biofilm reactors [J],Water Research,2007,41(8):1623-1634.
    [63]Park Y H, Quan Z X, Rhee S K, et al. Diversity of ammonium-oxidizing bacteria in a granular sludge anaerobic ammonium-oxidizing (anammox) reactor [J].Environmental Microbiology,2008,10(11): 3130-3139.
    [64]Strous M, Kartal B, Rattray J, et al. Candidatus "Anammoxoglobus propionicus" a new propionate oxidizing species of anaerobic ammonium oxidizing bacteria [J].Systematic and Applied Microbiology,2007,30(1):39-49.
    [65]Jetten M S M, Sliekers O, Kuypers M, et al. Anaerobic ammonium oxidation by marine and freshwater planctomycete-like bacteria [J].Applied Microbiology and Biotechnology,2003,63(2):107-114.
    [66]Liu S T, Yang F L, Gong Z, et al. Application of anaerobic ammonium-oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal [J].Bioresource Technology, 2008,99(15):6817-6825.
    [67]Tage D, Bo T, Donald E C. Anaerobic ammonium oxidation (anammox) in the marine environment [J].Research on Microbiology,2005,156:457-464.
    [68]Van de graaf A A, Mulder A, Debruijn P, et al. Anaerobic Oxidation of Ammonium Is a Biologically Mediated Process [J].Applied and Environmental Microbiology,1995,61(4):1246-1251.
    [69]Galan A, Molina V, Thamdrup B, et al. Anammox bacteria and the anaerobic oxidation of ammonium in the oxygen minimum zone off northern Chile [J].Deep Sea Research Part II:Topical Studies in Oceanography,2009,56(16):1125-1135.
    [70]Kuypers M M K, Sliekers A O, Lavik G et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea [J].Nature,2003,422(10):608-610.
    [71]Dalsgaard T, Canfield D E, Petersen J, et al. N2 production by the anammox reaction in the anoxic water column of Golfo Dulce, Costa Rica [J].Nature,2003,422(6932):606-608.
    [72]Lam P, Lavik G, Jensen M M, et al. Revising the nitrogen cycle in the Peruvian oxygen minimum zone [J].Proceedings of the National Academy of Sciences of the United States of America,2009, 106(12):4752-4757.
    [73]Jetten M S M. The microbial nitrogen cycle [J].Environmental Microbiology,2008,10(11):2903-2909.
    [74]Meyer R L, Risgaard-Petersen N, Allen D E. Correlation between anammox activity and microscale distribution of nitrite in a subtropical mangrove sediment [J].Applied and Environmental Microbiology,2005,71 (10):6142-6149.
    [75]Mulder J W, van Loosdrecht M C M, Hellinga C, et al. Full-scale application of the SHARON process for treatment of rejection water of digested sludge dewatering [J].Water Science and Technology, 2001,43(11):127-134.
    [76]Sliekers A O, Derwort N, Gomez J L C, et al. Completely autotrophic nitrogen removal over nitrite in one single reactor [J].Water Research,2002,36(10):2475-2482.
    [77]Sliekers A O, Third K A, Abma W, et al. CANON and Anammox in a gas-lift reactor [J].FEMS Microbiology Letters,2003,218:339-344.
    [78]Windey K, De Bo I, Verstraete W. Oxygen-limited autotrophic nitrification-denitrification (OLAND) in a rotating biological contactor treating high-salinity wastewater [J].Water Research,2005,39(18): 4512-4520.
    [79]Kuai L P, Verstraete W. Ammonium removal by the oxygen-limited autotrophic nitrification-denitrification system [J].Applied and Environmental Microbiology,1998,64(11): 4500-4506.
    [80]Isaka K, Date Y, Sumino T, et al. Growth characteristic of anaerobic ammonium-oxidizing bacteria in an anaerobic biological filtrated reactor [J].Applied Microbiology and Biotechnology,2006,70(1): 47-52.
    [81]Strous M, Van Gerven E, Zheng P, et al. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (anammox) process in different reactor configurations [J].Water Research,1997,31(8):1955-1962.
    [82]Engstrom P, Penton C R, Devol A H. Anaerobic ammonium oxidation in deep-sea sediments off the Washington margin [J].Limnology and Oceanography,2009,54(5):1643-1652.
    [83]Toh S K, Webb R I, Ashbolt N J. Enrichment of Autotrophic Anaerobic Ammonium-Oxidizing Consortia from Various Wastewaters [J].Microbial Ecology,2002,43:154-167.
    [84]Dapena-Mora A, Van Hulle S W H, Luis C J, et al. Enrichment of Anammox biomass from municipal activated sludge:experimental and modelling results [J]. Journal of Chemical Technology and Biotechnology,2004,79:1421-1428.
    [85]Third K A, Paxman J, Schmid M, et al. Enrichment of Anammox from Activated Sludge and Its Application in the CANON Process [J].Microbial Ecology,2005,49:236-244.
    [86]Nakajima J, Sakka M, Kimura T, et al. Enrichment of anammox bacteria from marine environment for the construction of a bioremediation reactor [J].Environmental Biotechnology,2008,77:1159-1166.
    [87]Van Dongen U, Jetten M S M, Van Loosdrecht M C M. The SHARON-Anammox process for treatment of ammonium rich wastewater [J].Water Science and Technology,2001,44:153-160.
    [88]Kieling D D, Reginatto V, Schmidell W, et al. Sludge wash-out as strategy for Anammox process start-up [J].Process Biochemistry,2007,42(12):1579-1585.
    [89]Fujii T, Sugino H, Rouse J D, et al. Characterization of the microbial community in an anaerobic ammonium-oxidizing biofilm cultured on a nonwoven biomass carrier [J].Journal of Bioscience and Bioengineering,2002,94(5):412-418.
    [90]van der Star W R L, Miclea A I, van Dongen U G J M, et al. The membrane bioreactor:A novel tool to grow anammox bacteria as free cells [J].Biotechnology and Bioengineering,2008,101(2):286-294.
    [91]Ng H Y, Tan T W, Ong S L. Membrane fouling of submerged membrane bioreactors:impact of mean cell residence time and the contributing factors [J]. Environmental Science and Technology, 2006,40:2706-2713.
    [92]van der Star W R L, Abma W R, Blommers D, et al. Startup of reactors for anoxic ammonium oxidation:Experiences from the first full-scale anammox reactor in Rotterdam [J].Water Research, 2007,41(18):4149-4163.
    [93]Trigo C, Campos J L, Garrido J M, et al. Start-up of the Anammox process in a membrane bioreactor [J].Journal of Biotechnology,2006,126(4):475-487.
    [94]Suneethi S, Joseph K. ANAMMOX process start up and stabilization with an anaerobic seed in Anaerobic Membrane Bioreactor (AnMBR) [J].Bioresource Technology,2011,102:8860-8867.
    [95]Tao Y, Gao D W, Fu Y, et al. Impact of reactor configuration on anammox process start-up:MBR versus SBR [J].Bioresource Technology,2012,104:73-80.
    [96]Liu S T, Yang F L, Meng F A, et al. Enhanced anammox consortium activity for nitrogen removal: Impacts of static magnetic field [J].Journal of Biotechnology,2008,138(3-4):96-102.
    [97]APHA. Standard Methods for the Examination of Water and Wastewater [M].20th ed. USA:United Book Press,1998.
    [98]Manz W, Amann R I, Ludwig W, et al. Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria:problems and solutions [J].Systematic and Applied Microbiology,1992, 15:593-600.
    [99]Jetten M S M, Wagner M, Fuerst J, et al. Microbiology and application of the anaerobic ammonium oxidation (Anammox) process [J].Current Opinion Biotechnology,2001,12:283-288.
    [100]Chen J W, Zheng P, Yu Y, et al. Promoting sludge quantity and activity results in high loading rates in Anammox UBF [J].Bioresource Technology,2010,101(8):2700-2705.
    [101]Helmer C, Tromm C, Hippen A,et al. Single stage biological nitrogen removal by nitritation and anaerobic ammonium oxidation in biofilm systems [J].Water Science and Technology,2001,43: 311-320.
    [102]Third K A, Sliekers A O, Kuenen G J, et al. The CANON system (Completely Autotrophic Nitrogen-Removal Over Nitrite) under ammonium limitation:interaction and competition between three groups of bacteria [J].Systematic and Applied Microbiology,2001,24:588-596.
    [103]Amann R I, Binder B J, Olson R J, et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations [J].Applied and Environmental Microbiology,1990,56:1919-1925.
    [104]Marcel M M K, Kuypers A, Olav S, et al. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea [J].Nature,2003,422(10):608-610.
    [105]Wang T, Zhang H M, Yang F L, et al. Start-up of the Anammox process from the conventional activated sludge in a membrane bioreactor [J].Bioresource Technology,2009,100(9):2501-2506.
    [106]Rothrock M J, Vanotti M B, Szogi A A, et al. Long-term preservation of anammox bacteria [JJ.Applied Microbiology and Biotechnology,2011,92(1):147-157.
    [107]Amann R I. In Situ Identification of Micro-organisms by Whole Cell Hybridization with rRNA-targeted Nucleic Acid Probes [M]. Netherlands:Molecular Microbial Ecology Manual, Kluwer Academic Publishers,1995.
    [108]吕荣湖,郭召海,孙阳昭,等.包埋固定化微生物法处理含油废水研究[J].环境污染治理技术与设备,2006,7(1):89-93.
    [109]王平,张洪林,蒋林时.固定化细胞技术在废水处理中的应用[J].工业用水与废水,2003,34(2):8-11.
    [110]朱刚利,胡勇有.不同材料包埋固定化厌氧氨氧化混培物[J].环境科学学报,2008,28(9):1861-1866.
    [111]Yavuz H, Celebi S S. Effects of magnetic field on activity of activated sludge in wastewater treatment [J].Enzyme and Microbial Technology,2000,26(1):22-27.
    [112]Wu R C, Qu J H,Chen Y S. Magnetic powder MnO-Fe2O3 composite-a novel material for the removal of azo-dye from water [J].Water Research,2005,39(4):630-638.
    [113]刘晓艳,丘泰球,刘石生,等.超声对细胞膜通透性的影响及应用[J].应用声学,2002,21(2):25-29.
    [114]Schlafer O, Onyeche T, Bormann H, et al. Ultrasound stimulation of micro-organisms for enhanced biodegradation [J].Ultrasonics,2002,40(1-8):25-29.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700