温度对污泥水单独处理及富集硝化菌效果的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
城市污水处理厂的污泥水包括污泥厌氧消化池排出的上清液、后续浓缩池的上清液和污泥脱水车间排出的脱水滤液,由于其NH_4~+-N浓度较高,因此,尽管水量仅占污水处理厂总水量的1%~2%,但NH_4~+-N负荷却占总负荷的15%~25%。通常污泥水被回流至进水口进行再处理,这就造成处理系统的实际NH_4~+-N负荷高于设计负荷,致使污水厂出水的NH_4~+-N浓度不能达到相关的排放标准。通过对污泥水单独处理,并富集硝化菌,投加到污水处理系统中,可大大强化污水处理厂的脱氮效率。本研究采用SBR反应器,探讨不同温度(30℃、25℃、20℃)条件下污泥水的硝化效果和硝化菌产率,并运用荧光原位杂交(FISH)技术对所富集的硝化菌的种类和数量进行检测,分析温度变化对其微生物群落结构的影响。主要研究结果如下:
     (1)污泥水中的COD较难降解,整个试验过程中TCOD和SCOD的平均去除率分别为63.0%和51.3%。系统的硝化性能良好,NH_4~+-N的平均去除率为99.3%,但是反硝化效率欠佳,TN的平均去除率仅为24.3%,同时获得了25.5%的PO_4~(3-)-p去除效率。反应器运行稳定后,活性污泥结构致密,原生动物活动活跃。污泥沉降性能好,SVI的平均值为70.0mL/g。
     (2)30℃、25℃和20℃下培养的活性污泥的最大氨氧化速率分别为25.7、40.7、33.4 mgNH_4~+-N/gVSS·h;最大亚硝酸盐氧化速率分别11.4、20.4、11.8mgNO_2~--N/gVSS·h,25℃时,硝化速率达最大值。随温度降低,硝化菌的内源呼吸速率逐渐减小,表观产率增大,20℃时达最大值0.138 mg nitrifiers/mgN。mobilis)和氨氧化螺旋菌属(Nitrosospira);25℃和20℃下,氨氧化球菌属分别占氨氧化菌总数量的63%和70%,为优势菌属;氨氧化螺旋菌属分别占19%和1%。检测到的亚硝酸盐氧化菌种类有硝酸杆菌属(Nitrobacter)、硝酸螺旋菌属(Nitrospira)、硝酸球菌属(Nitrococcus)与硝酸刺菌属(Nitrospina gracilis)。25℃和20℃下,硝酸杆菌属分别占亚硝酸盐氧化菌总数量的64%和65%,为优势菌属;硝酸螺旋菌属分别占35%和19%;硝酸球菌属分别占1%和6%;25℃下没有检测到硝酸刺菌属,而在20℃,数量占10%。随温度降低,氨氧化菌和亚硝酸盐氧化菌在总细菌数中所占份额均有所增加,25℃和20℃下污泥中氨氧化菌的含量分别占总细菌含量的15.7%和18.8%,亚硝酸氧化菌分别为12.9%和14.4%。
Reject water from municipal wastewater treatment plant(WWTP) is composed of supernatant discharged from the anaerobic digester,sludge thickener tank and sludge dewatering filtrate from sludge dewatering devices.Although the volume of reject water is small(olny 1%~2%of the flow rate),the nitrogen load is high(15%-25%of total load).WWTPs in China adopt the methond of recirculating reject water to the influent inlet,which causes the actual nitrogen load of the treatment system higher than the design load,so that there is an incomplete nitrification in WWTP.The reject water could be treated separately to produce a nitrifying biomass for bioaugmentation.nitrifiers would be treated separately in sequencing batch reactor(SBR),the nitrification performance and nitrifying biomass accumulation at different temperatures(20℃,25℃,30℃)were investigated respectively.Then the type and quantity of nitrifiers cultivated with reject water were investigated by fluorescent in situ hybridization(FISH),the effect of various temperatures on microbial community was analyzed.The results obtained showed that:
     (1) There was a low organic curbon removal rate,the everage removal efficiencies of TCOD,SCOD were 63.0%and 55.6%.The conventional activated sludg can achieve a excellent nitrification performance,the average remoal efficiencice of NH_4~+-N was 99.3%.However there was a bad anti-nitrification ability,the average removal efficiencice of TN was only 24.3%during the experiment. And there was a remove rate of 25.5%with PO_4~(3-)-P.When SBR operated steadily,the activated sludge had a compact structure,there were so many active protozoa that filamentous bacteria were not found.The settleability of sludge is very well and the average SVI was 70mg/L.
     (2) When temperature was cotrolled as 30℃,25℃and 20℃,The maximum ammonia utilized rate(AUR) of activated sludg were 25.7,40.7,33.4 mgNH_4~+-N/gVSS.h respectively,and the maximum nitrite utilized rate(NUR) were 11.4,20.4,11.8 mgNO_2~--N/gVSS-h respectively.The nitrification rate was 326.0 mgN/gnitrifiers.h.Observed yield coefficieny(Y_(obs)) of nitrifiers would increase with temperature drop,there was a maximum as 0.138mg nitrifiers/mgN at 20℃.
     (3) Ammonia oxidizing bacteria(AOB) includes Nitrosococcus mobilis and Nitrosospira in activated sludge,At 25℃,the percentage of Nitrosococcus mobilis and Nitrosospira in AOB were 63%and 19%,while 70%and 1%at 20℃.Nitrite oxidizing bacteria(NOB) includes Nitrobacter,Nitrospira,Nitrococcus and Nitrospina gracilis. At 25℃,the percentage of Nitrobacter,Nitrospira and Nitrococcus in NOB were 64%,35%and1%while Nitrospina gracilis were not found.Then the percentage of Nitrobacter,Nitrospira,Nitrococcus and Nitrospina gracilis in NOB were 65%,19%,6%and 10%respectively.The percentage of AOB and NOB in total bacteria would increase when the temperature decreases,,at 25℃and 20℃,the percentage of ammonia oxidizing bacteria(AOB/DAPI) in activated sludge were 15.7%and 18.8% respectively,then the percentage of nitrite oxidizing bacteria(NOB/DAPI) were 12.9%and 14.4%respectively.
引文
[1]张自杰,林荣忱等.排水工程(下册)[M].北京:中国建筑工业出版社,2000.
    [2]Metcalf & Eddy.Wastewater engineering treatment and reuse(Fourth Edition)废水工程处理与回用[M].北京:清华大学出版社,2003:1505-1510,1465.1467.
    [3]Berends D,Salem S,van der Roest H,et al.Boosting nitrification with the BABE technology[J].Wat.Sci.Tech.,2005,52(4):63-70.
    [4]Gil K.,Choi E.Nitrogen removal by recycle water nitritation as an attractive alternative for retrofit technologies in municipal wastewater treatment plants[J].Wat.Sci.Tech.,2004,49(5-6):39-46.
    [5]Head M,Melanie A,Oleszkiewicz J.Nitrifying bacteria addition into reactors operating near washout conditions for nitrification[J].J.Environ.Eng.Sci.,2005,4(4):257-264.
    [6]Fux C,Boehler M,Huber P et al.Biological treatment of ammonium-rich wastewater by partial nitritation and subsequent anaerobic ammonium oxidation (anammox) in a pilot plant[J].J Biotechnol,2002,99(3):295-306.
    [7]Johansson P,Nyberg A,Beier M.Cost efficient sludge liquor treatment[C].Proceedings of a Polish-Swedish seminar,Nowy Targ,October 1-2,1998.
    [8]Statey J T,Bryant M P,Pfenning N et al.Bergey's Manual of Systematic Bacteriology(Vol.3)[M].Williams & Wilkins,1989.1807-1835.
    [9]Holt J G,Krieg N R and Sneath P H A et al.Bergey's Manual of Systematic Bacteriology(9~(th)edition)[M].Williams & Wilkins,1984.427-455.
    [10]Janus H,van der Roest H.Don't reject the idea of treating reject water[J].Wat Sci Tech,1997,35(10):27-34.
    [11]郭劲松,罗本福等.生物脱氮研究的新进展-全程自养脱氮工艺.[J]环境科学与技术.2005,28(6):102-105.
    [12]Hellinga C,Schellen A,Mulder J W,et al.The Sharon process:an innovative method for nitrogen removal from ammoniumrich waste water[J].Water Science and Technology,1998,37(9):135-142.
    [13]Van Kempen R,Mulder J W,Uijterlinde C A,et al.Overview:full scale experience of the SHARON process for treatment of rejection water of digested sludge dewatering[J].Water Science and Technology,2001,44(1):145-152.
    [14]Kempen Van R,Uljterlinde C A Muler JW,Loosdrecht Van C M Mark. Overview:full scale experience of the SHARONoRprocess for treatment of rejection water of digested sludge dewatering[J].Wat.Sc.i Tech.,2001,44(1):145-152.
    [15]Verstraete W,Philips S.Nitrification-denitrification processes and technologies in new contexts[J].Environmental Pollution,1998,102:717-726.
    [16]Van de Graaf,A A Mulder,et al.Anoxic ammonium oxidation[R].Proceedings of the 5thEuropean Congress onBiotechnology,Volume I,Copenhagen,Danmark:1990,7:8-13.
    [17]Mulder A,van de Graaf AA,Robertson LA,Kuenen JG.Anaerobic ammonium oxidation discovered in a denitrifyingfluidized bed reactor.FEMSMicrobiol Ecol 1995;16:177-84
    [18]Schmidt I,Bock E.Anaerobic ammonia oxidationwith nitrogen dioxide by Nitrosomonas eutropha.Arch Microbiol 199 7;167:106-11
    [19]张华,张善峰等.污水生物脱氮技术研究新进展.[J]辽宁化工.2006,9(35):257-530.
    [20]van de Graaf AA,Mulder A,de Bruijn P,Jetten MSM,Rbertson LA,Kuenen JG.Anaerobic oxidation of ammoni-um is a biologically mediated process.ApplEnviron Micro-biol 1995;61:1246-51
    [21]杨麒,李小明,曾光明等.同步硝化反硝化机理的研究进展,[J].微生物学通报,2003,30(4):88-91.
    [22]YooH,AhnK.H.et al.Nitrogen removal from synthetic wastewater by simultaneous nitrification and dennitrification(SND) via nitrate in an intermittently-aerated reactor.Water Res,1999:33(1):145-154
    [23]Kos P.Short SRT(solids retention time) nitrification process/flowsheet[J].Wat Sci Tech,1998,38(1):23-29.
    [24]Plaza E,Trela J,Hultman B.Impact of seeding with nitrifying bacteria on nitrification process efficiency[J].Wat Sci Tech,2001,43(1):155-164.
    [25]Berends D,Salem S,van der Roest H et al.Boosting nitrification with the BABE technology[J].Wat Sci Tech,2005,52(4):63-70.
    [26]Salem S,Berends D,Heijnen J.Model-based evaluation of a new upgrading concept for N-removal[J].Wat Sci Tech,2002,45(6):169-176.
    [27]Salem S,Berends D,van der Roest H.Full-scale application of the BABE technology[J].Wat Sci Tech,2004,50(7):87-96.
    [28]Salem S,Berends D,Heijnen J.Bio-augmentation by nitrification with return sludge[J].Wat Res,2003,37(8):1794-1804.
    [29]赵义,郝晓地,朱景义等.测流富集/主流强化硝化(BABE)升级工艺[J].中国给水排水.2006.(22)2:5-8..
    [30]Rosen S,Huijbregsen C.The ScanDeNi process could turn an existing under-performing activated sludge plant into an asset[J].Wat Sci Tech,2003,47(11):31-36.
    [31]杭世珺,陈吉宁,郑兴灿等.污泥处理处置的认识误区与控制对策[J].中国环保产业,2005,(3):11-14.
    [32]国家环境保护总局《水和废水监测分析方法》编委会.水和废水监测分析方法[M].第4版.北京:中国环境科学出版社,2002.
    [33]姜亚敏,邢磊等.城市污水处理厂改良氧化沟工艺除磷效果影响因素分析[J].水处理技术,2007,33(7):53-56.
    [34]周群英,高廷耀.环境工程微生物学[M].北京:高等教育出版社,2004.
    [35]张希衡.水污染控制工程[M].北京:冶金工业出版社,2004.
    [36]于莉芳,刘小英等.SBR工艺处理城市污水厂污泥水的研究[J].中国给水排水,2007,23(17):6-10.
    [37]郑兴灿等.污水除磷脱氮技术[M].中国建筑工业出版社,1998.
    [38]于莉芳,王圣伟,郭天赐等.污泥水富集硝化菌和强化城市污水低污泥龄硝化[J].环境科学,2008,29(2):61-66.
    [39]马莉贞.荧光原位杂交技术及其应用[J].青海大学学报,2001,19(1):18-21.
    [40]林汝仙.荧光原位杂交技术及其应用[J].国外医学临床生物化学与检验学分册,1994,15(3):122-124.
    [41]Mobarry B.K.,Wagner M.Phylogenetic probes for analyzing abundance and spatial organization of nitrifying bacteria[J].Appl.Environ.Microbiol.,1996,62(6):2156-2162.
    [42]Pommerening R.A.,Rath G.and Koops H.P.Phylogenetic diversity within the genus Nitrosomonas[J].Syst.Appl.Microbiol.,1996,19(3),344-351.
    [43]Daims H.,Nielsen J.L.,Nielsen P.H.et al.In situ characterization of Nitrospira-like nitrite oxidizing bacteria active in wastewater treatment plants[J].Appl.Environ.Microbiol.,2001,67(11),5273-5284.
    [44]Wagner M.,Rath G.,Koops H.P.,et al.In situ analysis of nitrifying bacteria in sewage treatment plants[J].Wat.Sci.Yech.,1996,34(1):237-244.
    [45]Juretschko,S.2000.Ph.D.thesis.Technische Universitat M(u|¨)nchen.
    [46]Abeysinghe D,De Silva D,Stahl D.The effectiveness of bioaugmentation in nitrifying systems stressed by a washout condition and cold temperature[J].Wat Environ Res,2002,74(2):187-199
    [47]Blackburnea R.,Vel M.Vadivelu,Zhiguo Yuan,et al.Kinetic characterisation of an enriched Nitrospira culture with comparison to Nitrobacter[J].Wat.Res.2007,41(14):3033-3042.
    [48]Kim D,Kim S.Effect of nitrite concentration on the distribution and competition of nitrite-oxidizing bacteria in nitratation reactor systems and their kinetic characteristics[J].Wat.Res.,2006,40(3):887-894.
    [49]Schramm A.,De Beer D.,Gieseke A.et al.Microenvironments and distribution of nitrifying bacteria in a membrane-bound biofilm[J].Environ.Microbiol.2000,2(6):680-686.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700