组合填料SBBR工艺处理污染河水研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文在序列间歇式反应器(SBR)中添加组合纤维填料(ZH组合填料),构成序批式生物膜法反应器(SBBR),以传统SBR工艺为对照,研究SBBR工艺对污染河水的净化效果,重点考察了不同运行条件对COD_(Cr)、硝态氮和总氮去除的影响。主要研究内容分为三部分,一是通过正交试验,确定反应器的最佳运行模式;二是反应器运行影响因素研究,研究不同进水硝态氮浓度、pH值、C/N比以及低温条件下,两反应器处理污染河水的效果及污染物去除特性;三是反应器污泥活性分析,研究反应器中成熟污泥的亚硝化活性、硝化活性和反硝化活性,初步探讨反应器的脱氮特性。通过研究得到如下结论:
     (1)正交试验得出的理论分析结合实际运行情况,选定两工艺的最佳运行模式为进水10 min,缺氧搅拌4 h,好氧曝气1 h,后缺氧搅拌2 h,沉淀排水50 min。在最佳运行模式下,SBR工艺和SBBR工艺对COD_(Cr)的去除率分别为97.28%和96.57%,硝态氮去除率分别为99.91%和99.74%,总氮去除率分别为99.51%和99.24%。
     (2)进水硝态氮浓度升高对两反应器COD_(Cr)的去除率影响很小,对硝态氮和总氮的去除率影响较大。在进水硝态氮浓度较高的情况下,SBBR工艺的处理效率和运行稳定性远高于SBR工艺。改变进水硝态氮浓度时,同一反应器各运行周期内氮转化和COD_(Cr)去除的总体趋势和规律相近。随进水硝态氮浓度升高,运行周期内亚硝态氮积累量增加,SBR中亚硝酸盐的积累量高于SBBR。由COD_(Cr)的初期快速吸附情况可以看出附着生物膜对COD_(Cr)的吸附活性低于悬浮污泥。
     (3)SBR和SBBR对COD_(Cr)去除率均在进水pH值为8.0时最高,6.0时最低。对硝态氮和总氮的去除率均在进水pH值为7.0时最高,9.0时最低。SBR工艺受进水pH值的影响较SBBR工艺稍为明显。
     进水pH值影响反硝化过程中亚硝态氮积累段的NO_3~--N还原速率、NO_2~--N积累速率和NO_2~--N还原速率。两个反应器在不同的进水pH值条件下,一个运行周期内混合液的pH值变化趋势相似,都是先升高,后略有降低,且变化范围较小,有利于保持较高的处理效率。
     (4)保持进水pH=7.0的条件下,C/N比的降低对两反应器COD_(Cr)去除率影响均不大;随着C/N比从5.4降至2.7,两反应器出水硝态氮和总氮浓度均呈大幅升高趋势;C/N比由5.4升高到8.4时,两反应器的氮去除率并未提高。总体来看,SBBR工艺比SBR工艺脱氮率高,在C/N比为2.7时,SBBR工艺去除硝态氮和总氮的优势更为明显。
     (5)在低温(10℃)条件下,SBBR工艺COD_(Cr)和氮去除率均未明显降低;SBR工艺COD_(Cr)去除率略有降低,出水亚硝态氮大量积累,硝态氮和总氮的去除率显著降低。
     (6)两反应器污泥的反硝化活性远大于硝化活性和亚硝化活性,可能是由于反应器处理硝态氮含量高的废水,长期保持缺氧为主的运行方式,反硝化细菌比硝化细菌得到了更有效的富集。运行过程中,SBR工艺对亚硝态氮的积累比SBBR工艺更明显,分析反硝化活性时,仅以硝态氮的降解量计算反硝化速率是不合适的,应以硝态氮和亚硝态氮总量的变化衡量反硝化活性。
In this study, combined fibrous packing (Model NO.ZH) was added into a Sequencing Batch Reactor (SBR) system. Compared with a conventional SBR, the laboratory-scale Sequencing Batch Biofilm Reactor (SBBR) fed with synthetic polluted river water was designed to investigate the performance of pollution removal. Specific objectives of the research were to investigate the effect of changing conditions on COD_(Cr) removal, nitrate removal and total nitrogen removal. This study is mainly divided into three parts. Firstly, the optimal operating cycle was defined through orthogonal test. Secondly, effect and removal characteristic of influent NO3--N concentration, pH, C/N, temperature on the pollution removal were studied based on the steady system. Thirdly, the sludge activity of SBR and SBBR including nitrosation activity, nitrification activity and denitrification activity were investigated in batch experimental apparatus. The conclusions of this study can be summaried as follows:
     (1)According to the orthogonal test (three factors and three levels) and operation condition, the optimal operation cycle was determined: 10 min filling, 4 h first anaerobic stirring, 1 h aeration, 2 h second anaerobic stirring, 50 min settling and drawing for SBR and SBBR. On the optimal operation cycle of the long and steady run, the COD_(Cr), NO3--N and total nitrogen removal efficiency of SBR and SBBR were 97.28% and 96.57%, 99.91% and 99.74%, 99.51% and 99.24% respectively.
     (2)Both in SBR and SBBR, with the increase of influent NO_3~--N concentration, COD_(Cr) removal efficiency were slightly affected while NO_3~--N and total nitrogen removal efficiency decreased significantly. SBBR showed higher removal rates of NO_3~--N, TN, and more stable operation with higher influent NO3--N concentration.
     Typical profiles of NH_4+~-N,NO_2~--N, NO_3~--N and COD_(Cr) concentration in a cycle of SBR and SBBR were hardly affected by the change of influent NO_3~--N concentration. However, there existed discrepancy between SBR and SBBR. Easier nitrite accumulation and higher adsorption of COD_(Cr) in SBR were observed.
     (3)The COD_(Cr) removal efficiency of SBR and SBBR both achieved highest at pH value of 7.0, lowest at 6.0. While NO3--N and total nitrogen removal efficiency achieved highest at 7.0, lowest at 9.0. The effect of influent pH on the performance of pollution removal is a little more remarkable in SBR than that in SBBR.
     Rates of NO3--N reduction, NO2--N accumulation and NO2--N reduction during NO2--N accumulation phase of denitrification were affected by influent pH. With the changing influent pH, variation of pH in a cycle stayed relatively stable both in SBR and SBBR, with the initial little increase and latter slight decrease, through which a good performance may be achieved.
     (4)The variety of influent C/N hardly affected the COD_(Cr) removal efficiency, while the effluent concentration of NO_3~--N and TN increased drastically with the decrease of influent C/N from 5.4 to 2.7. The nitrogen removal efficiency showed no advantage when influent increased from 5.4 to 8.4. Totally, SBBR made a better performance than SBR, especially at C/N of 2.7.
     (5)With low operation temperation, the pollution removal efficiency hardly decreased in SBBR. Although COD_(Cr) removal efficiency decreased slightly, a large amount of accumulation of NO_2~--N in effluent was observed in SBR.
     (6)Due to the high influent NO3--N concentration and long-term anaeration operation conditon, the denitrification activity is higher than the nitrisation activity and the nitrification activity both in SBR and SBBR. The use of nitrate concentration as the sole parameter of the denitrification rate is not accurate, for nitrite accumulates more obviously in SBR than in SBBR.
引文
[1] EPA. Nitrogen control. Washington (DC): US EPA, 1993
    [2]王建龙.生物脱氮新工艺及其技术原理.中国给水排水,2000,16(2):25~28
    [3]张自杰,林荣忱,金儒霖.排水工程「第四版」.北京:中国建筑工业出版社,2000. 309~310
    [4]王建龙.生物固定化技术与水污染控制.科技出版社,2002. 208~217
    [5]赵丹,任南琪,沈耀良,等.生物脱氮微生物学及研究进展.哈尔滨建筑大学学报,2002,35(5):60~65
    [6]胡绍伟,杨凤林,刘思彤.膜曝气生物膜反应器同步硝化反硝化研究.环境科学, 2009,30(2):416~420
    [7] Laanbroek H J, Gerards S. Competition for limiting amounts of oxygen between nitrosomanas europaea and nitrobacteria winogradskyi grown in mixed continuous cultures: Arch. Microbiology, 1993(159): 453~459
    [8] Hunik J H. Engineering aspects of nitrification with immobilized cells: [PhD thesis].Wageningen Agricultural University, 1993
    [9] Turk O, Mavinic D S. Maintaining nitrite build-up in a system acclimated to free ammonia: Wat. Res., 1989, 23 (11): 1383~1388
    [10] Abeling U, Seyfried C F. Anaerobic-aerobic treatment of high strength ammonium wastewater-nitrogen removal via nitrite: Wat. Sci. Technol., 1992, 26 (5-6):1007~1015
    [11] Balmelle B, Nguyen M, CaPdeville B, et al. Study of factors controlling nitrite build-up in biological process of water nitrification: Zon. Wat. Sci. Technol., 1992, 26(5-6):1017~1025
    [12]于德爽,彭永臻,宋学起,等.含海水污水的短程硝化反硝化.环境科学,2003,24(3):50~55
    [13] Hellinga C, Schellen A A J C, Mulder J W. The Sharon-process: An Innovative method for nitrogen removal from ammonium rich wastewater: Wat. Sci. Technol., 1998, 37 (9):135~142
    [14]侯文佳,尹连庆.短程硝化-反硝化生物脱氮工艺的研究进展.环境技术,2005(5):38~40
    [15]江清华,王荣昌,杨殿海.污水低氧脱氮机制及其应用研究进展.环境污染与防治,2009,31 (11):68~74
    [16] Pollice A, Tandoi V, Lestingi C. Influence of aeration and sludge retention time on ammonium oxidation to nitrite and nitrate: Wat. Res., 2002, 36 (10): 2541~2546
    [17]陈辅强,李亚新.同步硝化与反硝化研究进展.科技情报开发与经济,2005,15(18):173~175
    [18]张鹏,苏宏.生物膜系统同时硝化和反硝化的实验研究.环境科学与技术,2005,28(3):16~17
    [19] Robertsno L A, Van Neil E W J, Torremans R A M, et al. Simultaneous nitrification and denitrification in aerobic chemostat cultures of thiosphaera pantotropha: Appl. Environ. Microb., 1988, 54 (1): 2812~2818
    [20] Van Neil E W J. Nitrification by heterotrophic denitrifiers and its relationship to autotrophic nitrification: [PhD thesis], Delft University of Technology, Delft, 1991
    [21] Munch E. V, Lant P, Keller J. Simultaneous nitrification and denitrification in bench-scale sequence batch reactor: Wat. Res., 1996, 30 (2):277~284
    [22] Strous M, Van Gerven E, Zheng P. Ammonium removal from concentrated waste streams with the anaerobic ammonium oxidation (Anammox) process in different reactor configurations: Wat. Res., 1997, 31: 1955~1962
    [23]李发站,吕锡武,窦月芹.生物法脱氮新技术及研究进展.安全与环境工程,2005,12(2):53~56
    [24] Van KemPen R, Mulder J W, Uijterllnde C A, et al. Overview: full scale experience of the SHARON process for treatment of rejection water of digested sludge dewatering : Wat. Sci. Tech., 2001, 44 (1):145~152
    [25]王耀龙,魏云霞,李晓丽,等.废水脱氮技术研究进展,环境工程.2010(28)增:119-123,38
    [26] Irvine R L, Wilderer P A, Flemming H C. Controlled unsteady state processes and technologies an overview: Wat. Sci. & Technol., 1997, 35 (1): 1~10
    [27] Wilderer P A, Irvine R L, Goronszy M C, et al. Sequencing Batch Reactor Technology: London, UK: IWA publishing, 2001, 1~3
    [28]汪大翚,雷乐成.水处理新技术及工程设计.北京:化学工业出版社,2001
    [29] Woolard C R. The Advantages of Periodically Operated Biofilm Reactors for the Treatment of Highly Variable Wastewater: Wat. Sci. Technol., 1997, 35(l): 199~206
    [30]黄俊,邵林广. SBBR与SBR氧传质特性比较研究.工业用水与废水,2003,34(5):4~6
    [31] Takashima M, Yamamoto-Ikemoto R. Filamentous Bulking Control by Sponge Media in Lab-scale SBR Process: Environ. Technol., 2003, 24 (l): 17~22
    [32]胡龙兴. SBBR技术特性和动力学机制及其在废水处理中的应用:[博士学位论文].上海:上海大学环境工程专业,2003
    [33]孙塞武,杨朝辉,曾光明,等.进水模式对SBBR性能及氮形态转化的影响.环境科学,2009,30(1):120~126
    [34]金云霄,冯传平,丁大虎,等.悬浮填料SBBR处理生活污水的运行工况优化研究. 2010,26(3):34~38
    [35]王亚宜,李探微,韦甦.序批式生物膜技术(SBBR)的应用及其发展.浙江工业大学学报,2006,34(2):213~219
    [36]张俊,丁武泉.序批式生物膜反应器( SBBR)研究现状与前景分析.世界科技研究与发展,2008,30(6):718~722
    [37] White D M, Sehnabel W. Treatment of cyanide waste in a sequencing batch biofilm Reactor: Wat. Res., 1998, 32(l): 254~257
    [38] González O, Esplugas M, Sans C. Performance of a Sequencing Batch Biofilm Reactor forthe treatment of pre-oxidized Sulfamethoxazole solutions: Wat. Res., 2009(43): 2149~2158
    [39]Cho B C, Chang C N, Liaw S L, et al. The Feasible Sequential Control Strategy of Treating High Strength Organic Nitrogen wastewater with Sequeneing Bateh Biofilm Reactor: Wat.Sci. Technol., 2001, 43(3): 115~122
    [40]许谦.序批式生物膜法处理油田采油废水.油气田环境保护,2003,13(3):23~25
    [41]杨朝晖,李晨,曾光明,等.前置MAP-SBBR工艺处理早期及晚期垃圾渗滤液试验.环境工程,2006,24(l):14~17
    [42]李伟光,赵庆良,马放,等.序批式生物膜反应器处理屠宰废水.中国给水排水,2000,16(10):59~60
    [43] Wilderer P A. Technology of Membrane Biofilm Reactors Operated under Periodically Changing Process Conditions: Wat.Sci. Technol., 1995, 31(l): 173~153
    [44]王亚宜,李探微,彭永臻,等.工业用水与废水.序批式生物膜(SBBR)法和SBR法的对比研究.工业用水与废水,2002,33(6):4~6
    [45] Fang H H P, Yeong C L Y, Book K M, et al. Removal of COD and Nitrogen in Wastewater Using Sequencing Batch Reactor with Fibrous Packing: Wat.Sci. Technol., 1993, 28 (7): 125~131
    [46] Gonzales-Martinez S, Wildere P A. Phosphate Removal in a Biofilm Reactor: Wat.Sci. Technol., 1990, 23: 1405~1418
    [47]尹儿琴,肖昕,张家华.BSBR工艺处理生活污水的试验研究.能源环境保护,2004, 18(1):31~33
    [48]荣宏伟,张朝升,张可方.(AO) 2 - SBBR反硝化除磷工艺处理低碳城市污水.中国给水排水,2006,22(15):29~32
    [49]许木启,黄玉瑶.受损水域生态系统恢复与重建的研究.生态学报,1998,18(5):547~558
    [50]何淑英,李继香,徐亚同.污染河流的治理技术研究进展.河南师范大学学报(自然科学版),2008,36(2):75~78
    [51]田伟君,翟金波,王超.城市缓流水体的生物强化净化技术.环境污染治理技术与设备,2003,4(9):58~62
    [52]田伟君,翟金波.生物膜技术在污染河道治理中的应用.环境保护,2003,8:19~21
    [53]姚磊,叶正芳,倪晋仁,等.固定化曝气生物滤池处理污染河水的中试研究.中国给水排水,2007,23(13):20~23
    [54]周勇,操家顺,杨婷婷.生物填料在重污染河道治理中的应用研究.环境污染与防治,2007,29(4):289~292
    [55]陈书玉,李镭,孔伟.生物接触氧化工艺技术在河道水质治理中的应用.上海水务,2008,24(3):31-33,59
    [56]王荣昌,文湘华,钱易,等.悬浮载体生物膜反应器修复受污染河水试验研究.环境科学,2006,25:67~69
    [57]贾永志,张建华,吴义锋.生物滤池处理污染河水的中试研究.中国给水排水,2009,25(19):27~30
    [58]王学江,夏四清,张全兴.悬浮填料移动床处理苏州河支流河水试验研究.环境污染治理技术与设备,2002,3(1):27~29
    [59]俞汉青,顾国维.生物膜反应器挂膜方法的实验研究.中国给水排水,1992,8(3):13~17
    [60] Woolard C R. The Advantages of Periodically operated Biofilm Reactors for the Treatment of Highly Variable Wastewate: Wat. Sci. Technol., 1997, 35(l): 199~206
    [61]金仁村,胡宝兰,郑平,等.厌氧氨氧化反应器性能稳定性及其判据.化工学报,2006,57(5):1167~1170
    [62]王淑莹,陈滢,付强,等.A/O脱氮工艺中污泥上浮的原因与控制.给水排水,2003,29(7):13~15
    [63] Loukidou M X, Zoboulis A I. Comparison of two biological treatment processes using attached-growth biomass for sanitary landfill leachate treatment: Environ. Pollut., 2001, 111: 273~281
    [64]孙洪伟,王淑莹,王希明.低温SBR反硝化过程亚硝态氮积累试验研究.环境科学,2009,30(12):3619~3623
    [65]胡婷,黄少斌,邓康.碳源类型和温度对BAF脱氮性能影响研究.工业用水与废水,2009,40(6):22~27
    [66]张云霞,周集体,袁守志.高效亚硝酸型反硝化菌生长特性及脱氮研究.大连理工大学学报,2009,49(2):180~186
    [67] Dong-Seog K, No-Sung J, Young-Seek P. Characteristics of nitrogen and phosphorus removal in SBR and SBBR with different ammonium loading rates: Korean J. Chem. Eng., 2008, 25(4): 793~800
    [68]熊振湖,汪艳宁,王秀朵.溶解氧和pH值对CAST工艺脱氮效果的影响.环境工程,2003,12(21):14~16
    [69]张景来,王剑波,常冠钦,等.环境生物技术及应用.北京:化学工业出版社,2002.394~396
    [70]徐乐中.pH值碱度对脱氮除磷效果的影响及其控制方法.给水排水,1996,22(1):10~13
    [71]张雯,邓风,何超群.CSTR反应器好氧颗粒污泥脱氮影响因素研究.水处理技术,2011,37(1):116~120
    [72]徐亚同.pH值、温度对反硝化的影响.中国环境科学,1994,14(4):308~313
    [73]马娟,彭永臻,王丽,等.温度对反硝化过程的影响以及pH值变化规律.中国环境科学,2008,28(11):1004~1008
    [74]杨国红.SBBR单级自养脱氮工艺性能与氮转化途经研究:[博士学位论文].重庆:重庆大学市政工程专业,2009
    [75]欧阳科,刘俊新.不排泥运行条件下膜生物反应器污泥活性的研究.给水排水,2008,34(7):46~51
    [76]Lee L Y, Ong S L, Ng W J. Biofilm morphology and nitrification activities: recovery of nitrifying biofilm particles covered with heterotrophic outgrowth: Bioresource Technol., 2004, 95: 209~214
    [77]张小玲,王志盈,彭党聪,等.低溶解氧下活性污泥法的短程硝化研究.中国给水排水,2003,19(7):1~4
    [78]周海红,赵璇,王建龙.利用可生物降解聚合物去除饮用水源水中硝酸盐.清华大学学报-自然科学版,2006,46(3):434~436
    [79] Lee N M, Welander T. The effect of different carbon sources on respiratory denitrification in biological wastewater treatment: J. Ferment. Bioeng., 1996, 82(3): 277~285
    [80] Kesseri P, Kiss I, Bihari Z, et al. Investigation of the denitrification activity of immobilized Pseudomonas butanovora cells in the presence of different organic substrates: Wat. Res., 2002, 36: 1565~1571
    [81]顾夏声.废水生物处理数学模式(第二版).北京:清华大学出版社,1997.192~209

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700