生物滤池及人工湿地净化工厂化海水养殖废水效果研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
工厂化循环水养殖模式具有高效、可控、节水省地、对环境污染小等特点,正逐渐在世界各国水产养殖业中得到重视和应用,是未来水产养殖业可持续发展的主要方向之一。本论文以养殖污水处理单元生物滤池和人工湿地为研究核心,进行了封闭循环水养殖系统中生物滤池的挂膜研究及水处理效率分析,并运用PCR-DGGE技术分析了不同时期生物滤池中生物膜上的微生物群落结构变化;模拟养殖废水,构建室内复合垂直流人工湿地系统,探讨了人工湿地净化海水养殖废水的影响因素,在此基础上确定了人工湿地的最佳运行参数,研究了人工湿地净化养殖废水的效果并分析其净化机理,主要结论如下:
     1.在生物滤池中添加一定量的微生态制剂和营养盐,经过1个月的生物挂膜,生物载体表面形成了群落结构比较稳定的生物膜。进行封闭式循环水养殖半滑舌鳎生产性试验,系统运行稳定,生物滤池能有效降低水体中NH_4~+-N、NO_2~--N、CODMn和PO_4~(3-)-P的浓度,使养殖水体中污染物的浓度维持在合理的水平,半滑舌鳎生长良好。
     2.在生物膜形成过程及系统运行时期,经传统微生物培养的异养细菌,氨氧化细菌,硝化菌的数量都呈现出先增加后逐渐减少直至达到稳定的趋势。异养细菌的数量比氨氧化细菌和硝化菌高出1-2个数量级。各个时期生物载体上微生物群落的组成非常丰富,Shannon指数分别为1.53、1.44、1.57、1.08、1.27和1.30。不同时期生物载体上的微生物种类有一定的变化,存在一些各自特有的种属和共有的种属。除A4期与B1期Cs值偏低外,其余任何两个相邻时期的Cs值都很大,表明微生物群落的变化与演替是缓慢而有规律的,从而保证了生物滤池处理养殖废水效果的稳定性。
     3.生物滤池中微生物种群分布较为广泛,鉴定出的33条带分别属于变形菌门(Proteobacteria)的α-、β-、γ-变形菌纲(Proteobacteria) (17个OTUs),厚壁菌门(Firmicutes)的芽孢杆菌纲(Bacilli)(1个OTUs)和拟杆菌门(Bacteroidetes)的黄杆菌纲(Flavobacteria) (15个OTUs),主要优势种群以Proteobacteria和Flavobacteria为主,存在多类细菌共同作用于养殖水体污染物的去除,其中Nitrosomonas参与了系统的硝化过程,参与反硝化过程的主要是黄杆菌(Flavobacteriaceae bacterium)等兼性厌氧细菌。这些功能性细菌在整个系统的运行中起了非常重要的作用。
     4.随着盐度的升高,人工湿地对PO_4~(3-)-P的去除率显著下降,但对NH_4~+-N和COD_(Mn)的去除率并没有发生显著的变化,去除率稳定在65%~78%之间,芦苇作为人工湿地植物,经过驯化后有较强的耐盐性,在盐度20下生长良好;随着水力负荷的增加,人工湿地对COD_(Mn)、NH_4~+-N和PO_4~(3-)-P的去除率呈现出降低的趋势,变化显著(P <0.05);当污染负荷增加时,去除率呈现出先增加后降低的趋势,在污染负荷为COD_(Mn) 10 mg/L、NH_4~+-N 2 mg/L、PO_4~(3-)-P 0.5 mg/L时,水质处理效果最高,其平均去除率分别为75%,62%和49%;当DO浓度增加时,人工湿地对COD_(Mn)、NH_4~+-N和PO_4~(3-)-P的去除率无显著变化(P >0.05)。
     5.在优化工况下,人工湿地连续运行2个月,SS平均去除率在90%以上,NH_4~+-N和BOD_5平均去除率在70%以上,COD_(Mn)平均去除率在60%以上,NO_2~--N、NO_3~--N、TN、PO_4~(3-)-P、TP、和TOC平均去除率在30%-50%之间,出水水质良好,基本符合养殖用水回用标准。
     6.生物滤池和人工湿地在处理和净化海水养殖废水方面具有一定的实际应用价值和优势。
Recirculating aquaculture systems is getting attention and application in the world, and will become one of the main direction of aquaculture industry sustainable development. It has many characteristics, such as efficient, controllable, water-saving and land-saving, little environmental pullution. In this paper, as a core of bio-filter and constructed wetlands, the bio-film formation and efficiency of purifing water of bio-filter were studied; the changes of microbial community structure on bio-carrier of recirculating aquaculture systems during different periods were analysed by PCR-DEEG; simulated mariculture effluent and constructed indoor compound vertical flow constructed wetlands system, the influence factors of constructed wetlands purifying mariculture effluent were discussed, on this base, the optimal operating parameters of the systems were determined, and the systems were operated two months, the performance of treating water and preliminary mechanism were studyed. The main conclusions are as follows:
     1. Adding a certain amount of probiotics and nutrient in bio-filter, bio-carrier surface formed community structure relatively stable bio-film after a month of bio-film formation. Then devised productive experiment of breeding Cynoglossus semilaevis Günther using recirculating aquaculture systems. The system run stably, and the bio-filter could reduce the concentration of ammonia-nitrogen, nitrite-nitrogen, chemical oxygen demand and phosphate, which maintained the concentration of pollutants of systems in a reasonable level and Cynoglossus semilaevis Günther grew well.
     2. It presented a trend that the quantity of heterotrophic bacteria, ammonia oxidize bacteria and nitrite oxidize bacteria increased gradually to a top and then fallen slowly to a stable level. The number of heterotrophic bacteria was 1-2 orders of magnitude more then ammonium oxidation bacteria and nitrite oxidize. The composition of microbial community of the bio-carrier was very abundant in different periods, and Shannon index was 1.53, 1.44, 1.57, 1.08, 1.27 and 1.30, respectively. During different periods,there was a certain shift in the microbial community structure, which existed some unique species and common species. Beside A4 period and B1 period Cs value(similar index) was low, the Cs value in two adjacent periods was high,indicating the variation and succession of the microbial community was slow and regular, and ensured the stable effect of bio-film treating mariculture effluent.
     3. The microbial community distributed widely in bio-filter. The 33 DGGE bands belonged to theα-Proteobacteria,β-Proteobacteria andγ-Proteobacteria of Proteobacteria (seventeen operational taxonomic units), the bacillus of Firmicutes (one operational taxonomic units) and the Flavobacteria of Bacteroidetes (fifteen operational taxonomic units), respectively. Proteobacteria and Flavobacteria were main communities. Several bacteria had an effect on removal of pollutants for farming water and the effluent water quality could meet the requirements of high-density culture. The Nitrosomonas and some other facultative anaerobic bacteria(Flavobacteriaceae bacterium)were identified,which indicated that there may be coexisted pathways of nitrification and denitrification in bio-filter. These functional bacteria played a very important role in operating systems.
     4. With the increase of salinity, the removal rate of chemical oxygen demand and ammonia-nitrogen didn’t change significantly (P>0.05), the removal rate of phosphate was decreased gradually and changed significantly (P<0.05), but the reed showed a strong salt-tolerant ability, growing well under the condition when the salinity reached to 20. As the hydraulic load increasing, the removal rate of chemical oxygen demand, ammonia-nitrogen and phosphate also showed a fall tendency and changed greatly (P <0.05). While the pollution load increasing, the removal rate of chemical oxygen demand, ammonia-nitrogen and phosphate were showed a trend that increased first and then decreased gradually. When the pollution was chemical oxygen demand 10 mg﹒L~(-1), ammonia-nitrogen 2 mg﹒L~(-1), phosphate 0.5 mg﹒L~(-1), the efficiency of water treatment was highest, and the average removal rate was 75%, 62%, 49%, respectively. When the concentrations of dissolved oxygen increasing, the removal rate of chemical oxygen demand, ammonia-nitrogen and phosphate had no significant change (p>0.05).
     5. In the optimized conditions, the constructed wetlands operated two months. The average removal rate of total suspended solid was more than 90%, the average removal rate of ammonia-nitrogen and biochemical oxygen demand was more than 70%, the average removal rate of chemical oxygen demand was more than 60%, and the average removal rate of nitrite-nitrogen, nitrate-nitrogen, total nitrogen, phosphate, total phosphorous and total organic carbon was between 30% and 50%. The quality of effluent was well, which met the standard of water reuse.
     6. Bio-filter and constructed wetlands had a certain practical application value and advantage in purifying mariculture effluent.
引文
[1]北京市水产研究所.工厂化中国农村创新的探索与实践.北京:科技出版社,1999,120~131
    [2]罗国芝,朱泽闻.我国循环水养殖模式发展的前景分析.中国水产,2008,275~77
    [3]彭树锋,王云新,叶富良,等.国内外工厂化养殖简述.渔业现代化,2007,2:12~13
    [4]刘應,曲克明.封闭循环水养殖-新理念新技术新方法.北京现代教育出版社,2009,23
    [5]李勇,王华,夏苏东等.水产养殖动物的生态营养调控与环保.饲料科技创新与品牌,2009,7,32~37
    [6] Robertson A I, Phillips M J, Mangroves as filters of shrimp pond effluent: predictions and biogeochemical research needs. Hydrobiologia, 1995, (295): 311~321
    [7]罗国芝,朱泽闻,包存宽.中国水产养殖规划现状分析与对策.环境污染与防,2009,31(2):87~89
    [8]曲克明,杜守恩.海水工厂化高效养殖体系构建工程技术.北京:海洋出版社,2010,104~122
    [9]杨军,黄少斌,蒋然等.生物滤塔中好氧反硝化去除NOX的研究.化学与生物工程,2009,26(2):28~31
    [10]姜应和,张超,田中凯.温度对生物滤塔处理H2S的影响研究.中国给水排水,2009,31:68~70
    [11]殷峻许,文峰,丁颖.生物滤塔处理含三甲胺气体的研究.中国给水排水,2009,9:60~62
    [12] Helmer C. Simultaneous nitrification and denification in an aerebie biofilm system.Wat Sci Tech, 1998, 37(4-5): 183~187
    [13]刘载文,苏震,王小艺,等.生物流化床污水处理技术进展与展望.化工自动化及仪表,2010,2:1~6
    [14] Robert A, Khaled A S, Gedaliah S, et al. Microbial degradation of aromatic and polyaromatic toxic compounds adsorbed on powdered activated carbon. 1996, 51(3): 265~272
    [15] Hoyland G.. Aerobic treatment in“Oxitron”biological fluidized bed plant at coleshill. Water Pollution Control, 1983, 82(4): 479~493
    [16] Copper P F. Complete treatment of sewage in a two-stage fluidized bed system Part 1. WaterPollution Control, 1982, 81(4): 447~464
    [17]鲍依文,王世和,马金霞.复合-膜生物流化床的污染物去除特性研究.水处理技术,2009,35(7):83~87
    [18]吴柏春,熊元林.微生物学.武汉:华中师范大学出版社,2006,12
    [19] Liu WT, Marsh TL, Cheng H. Characterization of microbial diversity by determining terminal restriction fragment length polymorphisms of genes encoding 16S rRNA. Applied and Environmental Microbiology, 1997, 63: 4516~4522
    [20] Stach J M, Bathe S, Clapp J P. PCR-SSCP comparison of 16S rRNA sequence diversity in soil DNA obtained using different isolation and purification methods. FEMS Microbiology Ecology, 2001, 36(213): 139~151
    [21]肖勇,杨朝晖,曾光明等. PCR-DGGE研究处理垃圾渗滤液序批式生物膜反应器中的细菌多样性.环境科学,2007,28(5):1095~1011
    [22]苏俊峰,马放,王弘宇等.利用PCR-DGGE技术分析生物陶粒硝化反应器中微生物群落动态.环境科学学报,2007,27(3):386~390
    [23] Liu S, Yang F, Gong Z, et aI.Application of anaerobic ammonium oxidizing consortium to achieve completely autotrophic ammonium and sulfate removal. Bioresource Techno1ogy, 2008, 99(15): 6817~6825
    [24]连晋.水产养殖水体好氧同时硝化-反硝化脱氮的研究.山西大学学报,2005,28(3):328~333
    [25]王淑莹,曾薇董,文艺等. SBR法短程硝化及过程控制研究.中国给水排水,2002,18(10):1~5
    [26]雷衍之.养殖水环境化学.北京:中国农业出版社,2004
    [27] Mirzoyan N, Parnes S, Singer, et al. Quality of brackish aquaculture sludge and its suitability for anaerobic digestion and methane production in an upflow anaerobic sludge blanket (UASB) reactor. Aquacuhure.2008, 279(1-4): 35~41
    [28] Gebauer R, Ejkebrokk B. Mesophilic anaerobic treatment of sludge from salmon smolt hatching. Bioresource Technology, 2006, 97: 2389~2401
    [29] Liu Y. Adhesion kinetics of nitrifying bacteria on various thermoplastic supports. Bioresource Technology, 1995, (5): 213~219
    [30] Rittmann B E, McCarty P L. Substrate flux into biofilms of any thickness.Environ Eng. ASCE, 1981, 107: 831~850
    [31] Capdeville B, Nguyen K M. Kinetics and modeling of aerobic and anaerobic film growth. Water science and technology, 1990, 22: 149~170
    [32]马悦欣,邵华,刘长发等.牙鲆海水循环养殖系统生物膜上3种细菌的数量与代谢活性.中国水产科学,2009,16(1):97~103
    [33] Itoi S, Niki A, Sugita H. Changes in microbial communities associated with the conditioning of filter material in Recirculating aquaculture systems of the pufferfish Takifugu rubripes. Aquaculture, 2006, 256: 287~295
    [34]周群英,高廷耀.环境工程微生物学.北京:高等教育出版社,2000
    [35]李辉华,朱学宝,谭洪新等.闭合循环系统中固定化活性污泥降解氨氮的研究.环境科学与技术,2005,28(1):16~18
    [36]傅雪军,马绍赛,曲克明等.循环水养殖系统生物挂膜的消氨效果及影响因素分析.海洋水产研究,2010,31(1):95~99
    [37]曲克明,许保玖,龙腾锐.当代给水与废水处理原理(第二版).北京:高等教育出版社,2000,78~111
    [38]刘飞,胡光安,韩舞鹰.水力停留时间、水温与氨氮浓度对浸没式生物滤池氨氮去除速率的效应.淡水渔业,2004,34(1):3~5
    [39]马悦欣,刘长发,邵华等.两种载体生物膜中异养细菌数量动态及氨化作用.大连水产学院学报,2004,19(2):138~141
    [40]唐传祥.新型生物膜法废水处理中生物载体填料的研讨.化工给排水设计,1993,3:24~28
    [41]郑元景.生物膜法处理污水.北京:中国建筑工业出版社,1988,89~92
    [42]山形阳一,梅志平.循环过滤装置的维护和管理.水产科技情报,I991,18(2):58~60
    [43]刘艳红,罗国芝,朱学宝.海水闭合循环系统生物滤器微生物特性研究.农业环境科学学报,2004,23(3):540~544
    [44] Nijhof M, Bovendeur J. Fixed film nitrification characteristics in sea-water recirculation fish culture systems. Aquaculture, 1990, 87(2): 133~143
    [45] Andrew W. Constructed wetlands in water pollution control: fundamentals to their understanding. Water Science Technology, 1995, 32:21~29
    [46]夏永云.复合人工湿地脱氮优化运行工艺. [学位论文],上海,东华大学,2007
    [47] Seidel A G, Kichuth D F. Use of constructed wetlands in water pollution control. In: Proceedings of International Conference, Water Quality International, Budapest, IAWQ, London, 1994, 245~255
    [48]蔡树美,王娟娟,蔡玉琪等.波式潜流人工湿地对生活污水中磷的去除效果研究.农业环境科学学报,2009,28(7):1484~1487
    [49]于少鹏,王海霞,万忠娟等.人工湿地污水处理技术及其在我国发展的现状与前景明.地理科学进展,2004,23(1):22~29
    [50] Ye Fen-xia, Li Ying. Enhancement of nitrogen removal in towery hybrid constructed wetlandto treat domestic wastewater for small rural communities. Ecological Engineering, 2009, 35(7): 1043~1050
    [51]岳春雷,常杰,葛滢等.复合垂直流人工湿地对低浓度养殖废水循环净化功能研究.科技通报,2004,20(1):15~17
    [52]吴振斌,李谷,付贵萍等.基于人工湿地的循环水养殖系统工艺设计及净化效能.农业工程学报,2006,22(1):129~133
    [53]王华胜,卢毅军,高波等.复合垂直流人工湿地循环净化观赏鱼池水的季节性效果分析.贵州环保科技,2006,12(4):35~40
    [54]陈家长,保尧平,孟顺龙等.表面流人工湿地在池塘养殖循环经济模式中的净化效能研究.农业环境科学学报,2007,26(5):1898~1904
    [55]刘文生,肖建光,林齐鹏等.人工湿地对胡子鲇养殖水体循环交货的研究.水生生物学报,2008,32(1):33~37
    [56]丁廷华.污水芦苇湿地处理系统示范工程的研究.环境科学,1992,13(2):8~13
    [57] Vymazal J. Removal of nutrients in various types of constructed wetlands. Science of the total environment, 2007, 380: 48~65
    [58] Reddy K R, Dangelo E M. Biogeochemical indicators to evaluate pollution removal efficiency in constructed wetlands. Water Sci Technol, 1997, 35(5): 1~10
    [59] Tanner C C, Kadlec R H, Gibbs M M, et al. Nitrogen processing gradients in subsurface-flow treatment wetlands. Ecol Eng, 2002, 18:499~520
    [60] Sun G Z, Austin D. Completely autotrophic nitrogen-removal over nitrite in lab-scale constructed wetlands: Evidence from a mass balance study. Chemosphere, 2007, 68: 1120~ 1128
    [61] Kadlec R H, Knight R L. Treatment wetlands. Boca Raton, FL: Lewis CRC Press,1996
    [62] Bachand P M, Horone A J. Denitrification in constructed free-water surface wetlands. Ecological Engineering, 2000,14: 17~32
    [63] Kuschk P, Wie X A, Kappelmeyer U, et al. Annual cycle of nitrogen removal by a pilot-scale subsurface horizontal flow in a constructed wetland under moderate climate. Water Research, 2003, 37: 4236~4242
    [64] Torbjorn E, Davidson, Mattias. The influence of organic carbon on nitrogen transformations in five wetland soils. Soil science society of American journal, 2004, 64(3): 1129~1136
    [65] Paul E A, Clark F E. Soil microbiology and biochemisty. San Diego, California, Academic Press, 1996: 340
    [66]王娟,王世和.人工湿地的运行调控及氮转移规律研究.环境科学,2003,12 (1):99~109
    [67]袁东海,高士祥,任全进等.几种挺水植物净化生活污水总氮和总磷效果的研究.水土保持学报,2004,18(4):77~80
    [68]李旭东,周棋等.三种人工湿地脱氮除磷效果比较研究.地学前沿,2005,12:73~76
    [69] Zhang L, Scholz M, Mustafa A, et al. Assessment of the nutrient removal performance in integrated constructed wetlands with the self-organizing map. Water research, 2008, 42: 3519~3527
    [70]Schonborn A, Zust B, Underwood E. Long term performance of the sand-plant-filter schattweid(Switzerland). Water Science and Technology. 1997, 35(5): 307~314
    [71] Ran N, Agami M, Oron G. A pilot study of constructed wetlands using duckweed (Lemna gibba L)for treatment of domestic primary effluent in Israel. Water Research, 2004, 38(9): 2241~2248
    [72] Nash D M, Halliwell D J. Tracing phosphorous transferred from grazing land to water. Water Research, 2000,34(7): 1975~1985
    [73]赵海洋,王国平,刘景双等.三江平原湿地土壤磷的吸附与解吸研究.生态环境,2006,15(5):930~935
    [74]何成达,王惠民,钱小青等.波式潜流人工湿地基质与污水磷素去除.农业环境科学学报,2004(4):175~178
    [75] Vymazal J. The use of sub-surface constructed wetlands for wasterwater treatment in the Czech Republic:10 years experience. Ecological Engineering, 2002, 18: 633~644
    [76] De-Bashan L E, Bashan Y. Recent advances in removing phosphorus from waterwater and its future use as fertilizer(1997-2003). Water Research, 2004, 38: 4222~4246
    [77] Xu D F, Xu J M, Wu J J, et al. Studies on the phosphorus sorption capacity of substrates used in constructed wetland systems. Chemosphere, 2006, 63: 344~352
    [78] Reddy K R. Fate of nitrogen and phosphorus in a wastewater retention reservoir containing aquatic macrophytes. Environ Qual, 1983, 12(1): 137~141
    [79] Sakadevan K, Bavor H J. Phosphate adsorption characteristics of soils, slag and zeolite to be used as substance in constructed wetland systems. Wat Res, 1998, 32(2): 393~399
    [80] Gottschall N, Boutin C, Crolla A, et al. The role of plants in the removal of nutrients at a constructed wetland treating agricultural wastewater, Ontario, Canada. Ecological Engineering, 2007, 29: 154~163
    [81]张鸿,陈光荣,吴振斌等.两种人工湿地中氮磷净化率与细菌分布关系的初步研究.华中师范大学学报,1999,33(12):575~578
    [82]成水平,夏宜峥.香蒲、灯芯草人工湿地的研究:净化污水的机理.湖泊科学,1998,10(2):66~71
    [83]王晖文,韩会玲.人工湿地污水净化处理研究.安徽农业科学,2010,38(1):163~164
    [84]雷俊山,叶闽,余秋梅等.垂直-水平流人工湿地系统除污效果研究.安徽农业科学,2008,39(23):77~79
    [85]田卫.表面流人工湿地净化污水的应用研究,[学位论文],长春:吉林大学,2000
    [86] Tilley D R, Badrinarayanan H, Rosati R, et al. Constructed wetlands as recirculation filters in large-scale shrimp aquaculture. Aquacultural Engineering, 2002, 26: 81~109
    [87] Caeslles-Osorio A, Garcia J. Impact of different feeding strategies and plant presence on the performance of shallow horizontal subsurface-flow constructed wetlands. Science of the total environment, 2007, 378: 253~262
    [88]孙文杰,佘宗莲,关艳艳等.垂直流人工湿地净化污水的研究进展.安全与环境工程, 2011. 18(1): 25~28
    [89] Edwards K R, Cizkova H, Zemanova K, et al. Plant growth and microbial processes in a constructed wetland planted with Phalaris arundinacea. Ecological Engineering, 2006, 27: 153~165
    [90] Akratos C S, Tsihrintzis V A. Effect of temperature, HRT, vegetation and porous media on removal efficiency of pilot-scale horizontal subsurface flow constructed wetlands. Ecological Engineering, 2007, 29: 173~191
    [91] Lin Y F, Jing S R, Lee D Y, et al. Nutrient removal from aquaculture wastewater using a constructed wetlands system. Aquaculture, 2002, 209(1-4): 169~184
    [92]温东辉.天然废水吸附一生物再生技术及其在滇池流域暴雨径流污染控制中的试验与机理研究.北京:中国环境出版社,2003,45~49
    [93] Kadlec R H. Chemical, physical and biological cycles in treatment wetlands. Water Science and Technology, 1999, 40(3): 37~44
    [94] Ayaz S C, Akca L. Treatment of watewater by natural systems. Environment International, 2001, 26: 189~195
    [95] Nicolella C, Loosdrecht M C, Heijnen J J. Wastewater treatment with particulate biofilm reactors. Journal of Biotechnology, 2000, 80(1): 1~33
    [96]曹蓉,邢海,金文标.生物膜处理城市河道污染水体的挂膜试验研究.环境工程学报,2008,2(3):374~377
    [97] Tseng K F, Wu K L. The ammonia removal cycle for a submerged biofilter used in a recirculating eel culture system. Aquacultural engineering, 2004, 31:17~30
    [98] Westerman P W, Losordo T M, Widhaber M L. Evaluation of various biofilters in an intensive recirculating fish production facility. Trans.Am-Soc.Agric.Eng.,1996, 39:723~727
    [99] Sandu S I, Boardman G D, Watten B J, et al. Factors influencing the nitrification efficiency of fluidized bed filter with a plastic bead medium. Aquacultural Engineering, 2002, 26: 41~59
    [100]徐勇,张修峰,曲克明等.不同溶氧条件下亚硝酸盐和氨氮对半滑舌鳎的急性毒性效应.海洋水产研究,2006,27(5),28~33
    [101] Laanbroek H J, Gerards S. Competition for limiting amounts of oxygen between Nitrosomanas europaea and Nitrobacteria winogradskyi grown in mixed continuous cultures. Arch Microbiology, 1993, 159: 453~459
    [102] Mulder A, Graaf A A, Robertson L A,et al. Anaerobic ammonium oxidation discovered in a denitrifying fluidized bed reactor[J]. FEMS Microbiol Ecol, 1995, 16: 177~184
    [103] Tong Z, Sikora F J. Ammonium and nitrate removal in vegetated and unvegetated gravel bed microcosm wetlands. Wat Sci Tech,1995, 32: 219~228
    [104] Lin Y F, Jing S R, Lee D Y. The potential use of constructed wetlands in a recalculating aquaculture system for shrimp culture. Environmental Poulltion, 2003, 11(23): 107~113
    [105]刘欣.国外反硝化聚磷菌除磷影响因素的研究.山西建筑,2010,36(18):178~179
    [106] Simonel I S, Gregory D B, Barnaby J W, et al. Factors influencing the nitrification efficiency of fluidized bed filter with a plastic bead medium. Aquacultural Engineering, 2002, 26(1): 41~ 59
    [107] Liu W S, Xiao J G, Lin Q P, et al. Using planted construction wetlands to treat wastewaters from circulating aquaculture of clarias fuscus .Acta Hydrobiological Sinica, 2008, 32(1): 33~37
    [108]李阜棣,喻子牛,何绍江.农业微生物实验技术.北京:中国农业出版社, 1996. 305~308
    [109] Meynell G G, Meynell E. Theory and practice of experimental bacteriology. Cambridge: Cambridge University Press. 1965. 204~209
    [110] Zhou J, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition. Applied and Environmental Microbiology, 1996, 62(2): 316~322
    [111] Muyzer G, Waal E C, Uitterlinden A G. Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Applied and Environmental Microbiology, 1993, 59(3): 695~700
    [112] Juck D, Driscoll B T, Charles T C. Effect of experimental contamination with the explosive hexahydro-1,3,5-trinitro-1,3,5-triazine on soil bacterial communities. FEMS Microbiology Ecology, 2003, 43(2): 255~262
    [113] Erik J, Van H, Gabriel z, et al. Changes in Bacterial and Eukaryotic community structure after mass lysis of filamentous cyanobacteria associated with viruses. Applied and Environmental Microbiology, 1999, 65(2): 795~801
    [114] Shannon C E, Weaver W. The mathematical theory of communication. Urbana: Universityof Illinois Press. 1964. 365~368
    [115] Magurran A E. Ecological diversity and its measurement. New Jersey: Princeton University Press. 1988. 265~266
    [116] Okabe S, Oozawa Y, Hirata K, et al. Relationship between population dynamics of nitrifiers in biofilms and reactor performance at various C:N ratios. Water Research, 1996, 30(7): 1563~ 1572
    [117] Leonard N, Blancheton J P, Guiraud J P. Populations of heterotrophic bacteria in an experimental recirculating aquaculture system. Aquacultural Engineering, 2000, 22(1-2): 109~120
    [118] Leonard N, Guiraud J P, Gasset E, et al. Bacteria and nutrients-nitrogen and carbon-in a recirculating system for sea bass production. Aquacultural Engineering, 2002, 26(2): 111~127
    [119] Zhou J Z, Bruns M A, Tiedje J M. DNA recovery from soils of diverse composition. Appl Environ Microbiol, 1996, 62: 316~322
    [120]张斌,孙宝盛,季民等. MBR中微生物群落结构的演变与分析.环境科学学报,2008,28(11):2192~2199
    [121] Wobus A, Bleul C, Maassen S, et al. Microbial diversity and functional characterization of sediments from reservoirs of different trophic state. FEMS Microbiology Ecology, 2003, 46(3): 331~347
    [122] Williams M M, Domingo J W S, Meckes M C, et al. Phylogenetic diversity of drinking water bacteria in a distribution system simulator . Journal of Applied Microbiology, 2004, 96(5): 954 ~964
    [123]钦颖英,李道棠,杨虹.给水生物预处理反应器的细菌种群多样性和群落结构.应用与环境生物学报,2007,13(1):104~107
    [124] Kapley A , Prasad S , Purohit H J. Changes in microbial diversity in fed-batch reactor operation with wastewater containing nitroaromatic residues. Bioresource Technology, 2007, 98(13): 2479~2484
    [125] Ballinger S J, Head I M, Curtis T P, et al. Molecular microbial ecology of nitrification in an activated sludge process treating refinery wastewater . Water Science and Technology, 1998, 37(4-5): 105~108
    [126] Naganuma T, Fukai I, Murakami Y, et al. Effect of ultraviolet radiation on the bioavailability of marine diatom-derived low-molecular-weight dissolved organic matter . Aquatic Ecosystem Health ? Management, 2000, 3(1): 163~166
    [127] Pinhassi J, Hagstrom A. Seasonal succession in marine bacterioplankton .Aquatic MicrobialEcology, 2000, 21(3): 245~256
    [128]池振明.微生物生态学.济南:山东大学出版社,1999,91~93
    [129] Stamper D M, Walch M, Jacobs R N. Bacterial population changes in a membrane bioreactor for graywater treatment monitored by denaturing gradient gel electrophoretic analysis of 16S rRNA gene fragments. Applied and Environmental Microbiology, 2003, 69 (2): 852~862
    [130]周巧红,王亚芬,吴振斌.人工湿地系统中微生物的研究进展.环境科学与技术,2008, 31(7):58~59
    [131]何起利,梁威,贺锋等.复合垂直流人工湿地基质生化活性研究.环境科学与技术,2008,31(10):29~30
    [132] Winthrop C A, Paul B H, Joel A B, et a1. Temperature and wetland plant species effects on wastewater treatment and root zone oxidation . Journal of Environmental Quality, 2002, 31(3): 1010~1016
    [133] Vymazla J. Removal of nutrients in various types of constructed wetlands . Science Total Environ, 2007, 380(1-3): 48~65
    [134]李甲亮,王琳,任加国等.污水人工湿地处理对滨海生态系统修复研究进展.地质灾害与环境保护,2005,16(3):290~294
    [135] Brix H. Use of constructed wetlands in Water Pollution Control. Water science and techology, 1994, 30(8):209~233
    [136] Savin M C, Amador L A.Biodegradation of norflurazon in a bog soil. Soil Biology&Biochemistry. 1998, 30: 275~284
    [137]杨虹,李道棠,朱章玉.全程自养脱氮新技术处理污泥脱水液的研究.环境科学,2001,22(5):105~107
    [138]毛达如.植物营养研究方法.北京:中国农业大学出版社,2005,102~103
    [139]王鹏,董仁杰,吴树彪等.水力负荷对潜流湿地净化效果和氧环境的影响水处理技术. 2009,35(12):48~52
    [140] Reddy G B, Hunt P G, Phillips R, et al. Treatment of swine wastewater in marsh-pond-marsh constructed wetlands. Water science technology, 2001, 44(11-12): 545~550
    [141] Newman J M, Clausen J C, Neafsey J A. Seasonal performance of a wetland constructed to process dairy milkhouse wastewater in Connecticut . Ecological Engineering, 2000, 14(1-2): 181~198
    [142]张翔凌.不同基质对垂直流人工湿地处理效果及堵塞影响研究.北京:中国科学院研究生院,1997
    [143] Dunne E J, Culleton N, Donovan G O, et al. An integrated constructed wetland to treatcontaminants and nutrients from dairy farmyard dirty water. Ecological Engineering, 2005, 24(3): 219~232

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700