提高生物法烟气同时脱硫脱氮效率的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
SO_2和NO_x气体是造成大气污染的主要污染物,不仅对人体健康造成危害,同时它们也是形成酸雨、光化学烟雾的主要原因。生物法废气净化技术净化效果好,操作稳定,能耗小,投资少,运行费用低,但做为一种新型的废气处理方式,生物法净化烟气中SO_2和NO_x的技术目前还处于实验室研究阶段,与实际工业应用还有一定差距。对于生物反应器及工艺流程作特殊的设计及研究,满足不同菌种的生物反应条件及营养需求,并达到高效同步脱硫脱氮效果,将为生物法的工程应用奠定基础,具有重要的参考价值和学术意义。
     本课题以燃煤烟气中的SO_2和NO_x为研究对象,采用生物膜填料塔作为主体净化设备,对提高目标污染物的净化性能的方法进行了系统的实验研究。研究中分别考察了净化过程中SO_2和NO_x的关系、添加营养液的影响等方法对生物法净化烟气中SO_2和NO_x的净化性能影响,并针对生物膜填料塔同时净化烟气中的SO_2和NO_x时系统对NO_x净化效果不理想的现象,采用脱硫塔+脱氮塔组合形成串联式双塔流程净化处理烟气中的SO_2和NO_x,同时还对双塔流程的净化效果和系统反应产物及优势菌种进行了考察。主要研究成果如下:
     在使用生物膜填料塔同时脱硫脱氮过程中,随SO_2进口浓度的增加,NO_x的净化效率降低;随NO_x进口浓度的增加,SO_2的净化效率由86.4%升高至100%,NO_x有利于微生物的生长增殖和提高微生物的活性。自养菌营养液的添加对生物膜脱氮效率的促进极为显著,使脱氮率由23.3%提高到67.9%。
     在相同的实验条件下处理相同浓度范围的SO_2和NO_x气体,串联式双塔脱硫脱氮系统的净化效果明显优于单一生物膜填料塔同时脱硫脱氮的净化效果,其对SO_2的净化效率为100%,对NO_x的净化效率最高可达90%以上。
     对于串联式双塔脱硫脱氮系统,脱硫塔反应物与产物基本平衡;脱氮塔循环液中NO3-浓度测定结果与计算结果差距远高于塔内微生物的自身消耗量,反应物与产物不平衡。脱硫塔循环液能有效浸出氧化铜矿的铜。
     从脱硫塔内分离出了6个代表性优势菌种,少动鞘氨醇单胞菌(Sphingomonas paucimobilis)、嗜酸性氧化硫硫杆菌(Acidithiobacillus thiooxidans)、丛生丝孢酵母(Trichosporon pullulans)、硝化杆菌科细菌(Nitrobacter)、食酸戴尔福特菌(Delftia acidovorans)、链二孢属极端嗜酸真菌(Bispora sp.)。从脱氮塔内鉴定出脱氮塔优势菌群组成为:硝化细菌硝化杆菌(Nitrobacter vulgaris)和反硝化细菌热单胞菌(Thermomonas brevis)、不动杆菌(Acinetobacter venetianus )。
Nitrogen oxides (NO_x) and sulfur dioxide (SO_2) are most important classes of air pollutants, causing acid rain, being harmful to human health, resulting in the photochemistry smoke and environment and climate change. Biological purification technology became one of hot topics of the world's industrial waste gas purification for its good purifying effect, operation stability, small energy consumption, low investment and low operating costs, no secondary pollution, etc. But as a new type of flue gas treatment, the technology of purifies SO_2 and NO_x from flue gas by biological method is still in the stage of laboratory research. Optimization of purification methods and devices, as well as the study of biological characteristics of microbial degradation of the biochemical reactions and the nutritional needs of microbe, enhancing capability of desulfurization and denitrification, will lay the foundation for the application; it has an important engineering value and academic significance.
     The methods of enhancing capability of purifying SO_2 and NO_x from flue gas by biological method are studies in this paper. Test studies on the relationship between SO_2 and NO_x in the process of simultaneous desulfurization and denitrification by biological methods and the effect of addition of nutrient solution for purification efficiency of purifying SO_2 and NO_x. And the test using series-wound desulfurizing and denitrifying system which assembled by a biotrickling filter which used to desulfurization link with a biotrickling filter which used to denitrification to purifying SO_2 and NO_x from flue gas to solve the low purification efficiency of denitrification when purifying SO_2 and NO_x from flue gas by biological method. The test also studies on the capability of purifying SO_2 and NO_x from flue gas by using series-wound desulfurizing and denitrifying system, recycle the outgrowth, isolated and identificated special microorganisms. The major results are:
     In the process of desulfurization and denitrification by using biotrickling filter, the purification efficiency of NO_x will decrease when the concentration of SO_2 enhances; the purification efficiency of SO_2 was increased from 86.4% to 100% when the concentration of NO_x enhances; NO_x are propitious to microbial reproduction and increased microbial activity. The addition of autotroph nutrient solution significantly increased the purification efficiency of denitrification, was increased 45%.
     In the same experimental conditions dealing with the same concentration of SO_2 and NO_x gases, the capability of purifying SO_2 and NO_x from flue gas by using series-wound desulfurizing and denitrifying system was better than the purification efficiency of simultaneous desulfurization and denitrification by using only one biotrickling filter, the purification efficiency of SO_2 was 100% and the purification efficiency of NO_x could up to 90%.
     In series-wound desulfurizing and denitrifying system, there is basicly balance between the reactants and the products in the biotrickling filter which used to desulfurization; there is a large gap between the measured and calculated results of the NO3- concentration in the biotrickling filter which used to denitrification, the reactants and the products do not balance. The circulating fluid from the biotrickling filter which used to desulfurization cans effectively leaching copper from copper oxide.
     Sphingomonas paucimobilis, Acidithiobacillus thiooxidans, Trichosporon pullulans, Nitrobacter, Delftia acidovorans and Bispora sp. have been isolated from the biotrickling filter which used to desulfurization. And Nitrobacter vulgaris, Thermomonas brevis, Acinetobacter venetianus and Chloroflexi bacterium have been isolated from the biotrickling filter which used to denitrification.
引文
[1]祝社民,李伟峰,陈英文等.烟气脱硝技术研究新进展[J].环境污染与防治, 2005, 27 (9) : 699-703
    [2]王艳锦,郑正,周培国等.生物法烟气脱硫技术研究进展[J].中国电力, 2006, 39(6) : 56-60
    [3]徐姣,张卫红,胡金榜等.工业废气生物法脱硫脱氮的研究进展[J].现代化工, 2007, 27(2)增刊: 103-105
    [4]刘宗豪,孟凡华.国内SO2污染现状及治理技术[J].辽宁城乡环境科技. 2003(1): 5-7.
    [5]刘伟军,马其良. SOx污染控制技术的现状与发展[J].能源研究与信息. 2003, 19(1): 1-9.
    [6]冯一平.燃煤SO2污染控制技术初探[J].通化师范学院学报. 2003, 24(4): 51-53.
    [7]赖光楷.工业煤炉与煤的清洁燃烧[J].工业锅炉. 2006, 1: 1-5.
    [8]安晶,李振华.工业锅炉的烟气脱硫技术[J].节能技术. 2003, 21(4): 35-37.
    [9]毛健雄,毛健全等.煤的清洁燃烧[M].北京:科学出版社, 1998.
    [10]钟毅,曾汉才,金峰,等.联合脱硫脱硝技术的现状[J].电力科学与工程, 2002, (4): 12- 14.
    [11]张虎,佟会玲,陈昌和.燃煤烟气同时脱硫脱硝机理概述[J].环境科学与技术,2006,29(7):103-105.
    [12] Jason Makansi. Will combined SO2 / NOx processes find aniche in the market[J]. Power, 1990, (9): 26- 28.
    [13] Sang Mun Jeong, Sang Done Kim. Removal of NOx and SO2 by CuO/γ- Al2O3 Sorbent/Catalyst in a Fluidized– Bed Reactor [J]. Ind. Eng. Chem. Res, 2000, (39): 1911- 1988.
    [14]吴静,于瑛妍,李岩.同时脱硫脱硝技术初探[J].东北电力技术,2004,5:40-44.
    [15] Kazuhiko Tsuji, Ikuo Shiraishi. Combined desulfurization/denitrification and reduction of air toxics using activated coke[J]. Fuel,1997, 76(6): 549- 559.
    [16]赵海红,谢国永.燃煤烟气SOx/NOx污染控制技术[J].化学工业与工程技术,2004,25(1):26-29.
    [17] Suzuki N, Nishimura K , Tokunaga O . Radiation treatment of waste gases: Part XII, Notric oxide removal in moist nitric oxide-sulfur dioxide-oxygen-nitrogen [J], J Nucl Sci Technol, 1980, 17: 822.
    [18]赵毅,韩钟国,韩颖慧等.干法烟气同时脱硫脱硝技术的应用及新进展[J].工业安全与环保,2009,35(2):4-6.
    [19]许勇毅,查智明,赵翠仙.燃煤烟气中脱硫脱硝技术简述[J].云南化工,2007,34(1):74-76.
    [20] N W Frank. Introduction and historical review of electron beam processing for environmental pollution control [ J ] .Radiation Physics and Chemistry, 1995, (45): 989- 1002.
    [21]王旭伟,鄢晓忠,陈彦菲等.国内外电厂燃煤锅炉烟气同时脱硫脱硝技术的研究进展[J].电站系统工程,2007,23(4):5-7.
    [22] H Chu, T W Chien, S Y Li. Simultaneous absorption of SO2 and NO from flue gas with KMnO4/NaOHsolutions[J]. The Science of the Total Environment, 2001, (275): 127- 135.
    [23]赵建海,赵毅,马双忱,等.粉煤灰在烟气脱硫方面的应用前景[J ] .粉煤灰综合利用,2000 ,14 (2) :50 - 52.
    [24]岑超平,古国榜.尿素和添加剂湿法烟气同时脱硫脱氮工艺研究(I)[J].环境污染与防治,2004,26(4):285-287
    [25]刘凤,赵毅,王亚君等.酸性NaClO2溶液同时脱硫、脱销的试验研究[J].动力工程,2008,28(3):425-429.
    [26]贡俊,张肇铭.微生物法去除二氧化硫的研究进展[J ] .微生物学通报,2004 ,31(3).
    [27]冯玲,胡稳奇.烟气脱硫技术的发展及应用现状[J].环境工程,1997,15(2):19-24.
    [28]陶有胜.微生物法在空气污染控制中的应用[J].生物技术,1995 ,5(6):5-8.
    [29]徐姣,张卫红,胡金榜等.工业废气生物法脱硫脱氮的研究进展[J].现代化工,2007,27(2)增刊: 103-105.
    [30]高丹,王英刚,夏永旭.生物膜填料塔净化二氧化硫烟气初步实验研究[J].沈阳大学学报,2003,15(4): 114-116.
    [31]曾二丽,孙珮石,王洁,等.生物膜填料塔净化SO2废气的研究[J].云南大学学报(自然科学版), 2006, 28(4):350-353.
    [32]蒋文举,董小双,朱晓帆等.微生物法液相氧化SO2 [J].环境科学,2006,27(5): 841-845.
    [33]李华,李新.金属矿物对微生物烟气脱硫的影响研究[J].IM&P化工矿物与加工,2007,4:27-29.
    [34]周少奇.环境生物技术[M].北京:科学出版社,2004:248-249.
    [35]李建政,任南琪.环境工程微生物学[M].北京:化学工业出版社,2004.
    [36]陈建孟,陈浚.自养生物过滤器消化氧化一氧化氮[J],环境科学,2003,24(2):1-6.
    [37]张唯,孙珮石,苏毅,等.生物法净化废气中NOx的实验研究[J],贵州环保科技,2004,4:24-27.
    [38]蒋文举,毕列锋,李旭东.生物法废气脱硝研究[J].环境科学,2007,4:27-29
    [39] WANGAijie ,DU Dazhong ,REN Nanqi , et al . Tentative study on a new way of simultaneous desulfurization and denitrification[J].Chinese J Chem Eng ,2005,13(3):422-425.
    [40]王爱杰,杜大仲,任南琪,等.一种同步脱氮脱硫并回收单质硫的新工艺初探[J].中国科技信息,2005,9:56-58.
    [41] Koening Albert,刘玲花.脱氮硫杆菌处理垃圾填埋场渗滤污水的研究[J].环境科学,1997,18(5):51-54.
    [42]王爱杰,杜大仲,任南琪,等.脱氮硫杆菌在废水脱硫脱氮处理工艺中的应用[J].哈尔滨工业大学学报,2004,36(2):56-60.
    [43] Koening A ,L Lin H. Autotrophic dinitrification of landfill leachate using elemental surfur[J].Wat Sci Tech,1998,34(5/6):469-476.
    [44]Kuoh H Lee,Kerry L Sublette. Simultaneous combined microbial removal of sulfur dioxide and nitric oxidefrom a gas stream[J]. Applied Biochemistry and Biotechnology,1991,28(29):623-633.
    [45]孙珮石,王洁,吴献花,等.生物法净化几种气态污染物的研究[J].中国工程科学, 2007, 9(1):73-77.
    [46]曾二丽,孙珮石,王洁,等.生物膜填料塔净化SO2废气的研究[J].云南大学学报(自然科学版), 2006, 28(4):350-353.
    [47]张唯,孙珮石,苏毅,等.生物法净化废气中NOx的实验研究[J],贵州环保科技,2004,4:24-27.
    [48]杨显万,孙珮石,黄若华等.生物法净化低浓度有机废气研究[J],中国工程科学,2001,3 (9) : 64-68.
    [49]董双梅,肖海平,王中立,等.硝酸氧化法脱硫脱硝的实验研究[J].现代电力与设备,2008, 25(4): 59-63.
    [50] Zart D, Bock E. High rate of aerobic nitrification and denitrification by Nitrosomonas eutropha grown in a fermentor with complete biomass rentention in the presence of gaseous NO2 or NO[J]. Archives of Microbiology, 1998,169(4):282-286.
    [51] Schmidt I, Zart D, Bock E. Effects of gaseous NO2 on cells of Nitrosomonas eutropha previously incapable of using ammonia as an energy source[J].Antonie van Leeuwenhoek,2001, 79(1): 39-47.
    [52] Zart D, Schmidt I, Bock E. Significance of gaseous NO for ammonia oxidation by Nitrosomonas eutropha[J].Antonie van Leeuwenhoek, 2000, 77(1):49-55.
    [53]马双忱,赵毅,陈颖敏.液相催化氧化脱除烟气中SO2和NOx的机理讨论[J].华北电力大学学报,2001,28(4):75-79.
    [54]丛丽影,张代钧,任宏洋.生物膜全自养脱氮过程及强化机理[J].环境科学与技术,2009,32(10): 92-96.
    [55]陈世和等,微生物生理学原理, 1992,同济大学出版社,上海.
    [56] Joni M. Barnes. WIllian A. Apel,Karen B. Barrett,Removal of nitrogen oxides from gas sreeams using biofitratrion,Jurnal of Hazardous Materials,1995,41:315-326
    [57] G.Samdani,Chen.Eng.,1993,100(10):25
    [58]张唯.生物法净化低浓度NOx废气的应用基础研究[D].昆明:昆明理工大学,2005.
    [59]孙珮石,张唯,王恒颖等.提高生物法净化NOX废气性能的实验探索[J].云南大学学报(自然科学版), 2009, 31(3): 280-284.
    [60]陈金声,史家梁,徐亚同.硝化速率测定和硝化细菌计数考察脱氮效果的应用[J].上海环境科学, 1996, 15 (3): 18-20.
    [61]章非娟.生物脱氮技术[M].北京:中国环境科学出版社, 1992: 17-30.
    [62]姚志通,夏枚生,张红梅等.电气石对硝化细菌生长和生物膜形成、熟化的影响[J].水产科学,2007,26(8): 461-464.
    [63]魏海娟,张永祥,施同平等.移动床生物膜系统同步硝化反硝化脱氮研究[J].水处理技术,2009,35(1): 50-53.
    [64]陈黎明,柴立和.生物膜动力学的研究现状与发展[J].力学进展,2005, 35(3):411-417.
    [65]曾志果,康媞,李晓波等.颗粒载体上硝化生物膜的硝化状况初探[J].环保科技,2009,15(1): 8-11.
    [66] Kyung-Nan Min,Ergas S J,Harrison J M.Hollowfiber membrane bioreactor for nitric oxide removal. Environmental Engineering Science,2002,196:57-583.
    [67]路涛,贾双燕,李晓姜.关于烟气脱硝的SNCR工艺及其技术经济分析.现代电力,2004,21(l):17-22.
    [68]陈建孟,Lance Herhsmna,陈浚,DnaeilPYC.自养型生物过滤器硝化氧化一氧化氮.环境科学,2003,24(2):l-6.
    [69]方振东,赵刚,刘文君等.生物陶粒反应器重硝化自养菌与异养菌生长关系的研究[J].中国给水排水,1998,14(1): 18-20.
    [70]徐亚同.废水反硝化除氮.上海环境科学,1994,13(10):8-12
    [71] Stepnaov A L,Koprela T K. Mierobial basis for the biotechnological removal of nitrogen oxides from flue gases. Bioteehnol. APPI. Bioehem,1997,25:97-104.
    [72]张鸥,周转,屈计宁,顾国维.同时硝化与反硝化研究进展.重庆环境科学,2001,23(6):20-24.
    [73]吕锡武.同时硝化反硝化的理论和实践.环境化学,2002,21(6):564-570.
    [74] Woertz J R,Kinney K R, Szaniszlo P J.A fungal vapor-phase bioreactor for the removal of nitric oxide from waste gas sertams. Joumal of the Air & Waste Management Assoeiation,2001,51:895-902.
    [75] Menoud P , Wong C H , Robinson H A , et al . Simultaneous nitrification and denitrification using siporaxTM packing [J].Water Sci Technol, 1999,40(4-5):153-160.
    [76]胡绍伟,杨凤林,刘思彤等.膜曝气生物膜反应器同步硝化反硝化研究[J].环境科学,2009,30(2): 416-420.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700