好氧氨氧化菌与厌氧氨氧化菌耦合培养及NO_2的强化作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
好氧氨氧化与厌氧氨氧化耦合颗粒污泥完全自营养脱氮与传统的硝化反硝化过程相比可以减少60%以上的O_2消耗并且不消耗COD,能大幅减少废水生物脱氮过程的能量消耗和CO_2排放量。论文通过EGSB连续运行试验、SBR反应器间歇实验和显微镜观察法,研究好氧和厌氧氨氧化耦合颗粒污泥限制DO下完全自营养脱氮机理及影响因素;研究添加微量NO_2强化生物反应器完全自营养脱氮特性;研究投加活性炭粉末对反应器内脱氮性能及颗粒化效果的影响。
     ①在EGSB反应器中同时接种好氧氨氧化污泥和厌氧氨氧化污泥进行完全自营养脱氮颗粒污泥的培养,pH控制在7.6~8.0,DO控制在0.6~0.8 mg/L,上升流速为4.2m/h。反应器经过120多天的运行,NH_4~+-N去除效率达75%,总氮去除效率为52%,总氮去除速率达0.101 kg/(m~3·d)。
     ②采用间歇实验研究NH_4~+-N浓度、DO浓度及pH对颗粒污泥完全自营养脱氮的特性的影响。好氧氨氧化和厌氧氨氧化速率在一定范围内随NH_4~+-N浓度增加而增加。过高的DO使亚硝酸盐氧化速率升高,厌氧氨氧化受到抑制,反应器总氮去除效率降低,NO_2-和NO_3~-累积;DO较低时,好氧氨氧化速率降低,NO_2-生成速率低,限制了厌氧氨氧化的提高,导致总氮去除速率低,但总氮去除效率较高,NO_2-和NO_3~-积累较少。当氨氮浓度为60mg/L、DO为0.4~0.6mg/L时,总氮去除速率为27.96 mg/(gMLSS·d),总氮去除效率为68%。合适的pH有利于提高颗粒污泥的脱氮性能,当pH值为7.8时,总氮去除率达最大值。
     ③采用SBR反应器间歇实验方法,研究微量NO_2对颗粒污泥完全自营养脱氮学特性的影响。无O_2时好氧氨氧化菌的NO_2型氨氧化可用Andrews方程描述,最大氨氮降解速率为5.36 mg/(g·h)。存在O_2时,NO/NO_2形成的NOx循环能强化好氧氨氧化过程,常规好氧氨氧化过程和NO_2强化好氧氨氧化过程同时发生。当DO浓度为1.5~2.0mg/L,NO_2为4.475 mmol/m~3时,氨氮降解速率最大值为161.21 mg/(g.h)。
     ④向EGSB反应器中投加活性炭粉末,研究其对反应器脱氮性能和颗粒化效果的影响。投加活性炭后NH_4~+-N和总氮的去除效率分别达到85%、59%,与未加活性炭时相比有提高;总氮的去除速率达0.10 kg/(m~3·d),与未加活性炭时相比基本相同。未投机活性炭粉末时,污泥颗粒平均粒径主要分布在0.5~1.0mm;投加活性炭粉末提高了完全自营养脱氮颗粒污泥的颗粒化效果,污泥颗粒平均粒径主要分布在0.8~1.2,污泥颗粒的平均粒径增加了33%。
Based on co-existing of aerobic and anaerobic ammonium oxidizing bacteria in granular sludge, completely autotrophic nitrogen removal process was achieved. Compared to traditional nitration-denitrification process, completely autotrophic nitrogen removal process technology could decrease O_2 consuming as much as 60% and hardly consumed COD, which could decrease the energy consuming and the release of CO_2 in nitrogen removal process. Through EGSB (Expanded Granular Sludge Bed) reactor starting up, batch experiment in SBR, and observing by microscope, the mechanism of coupling aerobic and anaerobic ammonium oxidizing process was investigated, and by adding trace NO_2, the enhancement of NO_2 on completely autotrophic nitrogen removal was studied and stimulated, as well as the capabilities of nitrogen removal and the impacts of granules were studied with active carbon added. The results were given as follows:
     ①In a Expanded Granular Sludge Bed (EGSB)reactor, completely autotrophic nitrogen removal granular sludge was cultured inoculating simultaneously aerobic and anaerobic ammonium oxidation bacteria. The pH was controlled between 7.6 and 8.0, DO between 0.6 mg/L and 0.8 mg/L and the up-velocity 4.2m/h. In the end, NH_4~+-N and TN average removal efficiency was 75% and 52% respectively, TN removal rate reached 0.101 kg/(m~3·d).
     ②The effecting of NH_4~+-N, DO, and pH on the completely autotrophic nitrogen removal performance was investigated in the batch experiments. Aerobic and anaerobic ammonium oxidation rates increased with increasing NH_4~+-N concentration in a certain range. The much higher DO increased nitrite oxidation rate and inhibited anaerobic ammonium oxidation, and resulted in the lower efficiency of total nitrogen (TN) removal with NO_2- and NO_3~- accumulation in the reactor. The much lower DO decreased aerobic oxidation rate with the less production of NO_2-. Anaerobic ammonium oxidation rate and TN removal rate were limited by the lack of NO_2-, however, TN removal efficiency was higher with less accumulation of NO_2- and NO_3~- in the reactor. When the concentration of NH_4~+-N was 60mg/L and DO was 0.4~0.6mg/L, total nitrogen (TN) removal rate was 27.96 mg/(gMLSS·d) and the TN removal efficiency reached 68%. When pH was 7.8, TN removal efficiency reached the maximum.
     ③The effect of trace NO_2 and kinetic characteristics for coupling of aerobic and anaerobic ammonium oxidation in granular sludge was investigated by batch experiment in SBR. Without O_2, the NO_2 -dependent ammonia oxidation could be described by the Andrews model. The maximum ammonia oxidation rate was 5.36mg/(g·h). Under trace NO_2 atmosphere conditions, aerobic ammonium oxidation was enhanced by increasing the activity of O_2 in NOx circulation. When DO was 1.5~2.0mg/L and NO_2 was 4.475 mmol/m~3, The maximum ammonia oxidation rate was 161.21 mg/(g.h).
     ④The capabilities of nitrogen removal and the impacts of granules were studied with active carbon added. With active carbon, NH_4~+-N and TN average removal efficiency was 85% and 59% respectively, which rised to 13% compared with without active carbon. And TN removal rate reached 0.10 kg(/m~3·d).Without active carbon , the average diameter of granule was 0.5~1.0mm, and with active carbon , the average diameter of granule was 0.8~1.2mm, which increased 33%.
引文
[1]张忠祥,钱易.城市可持续发展与水污染防治对策[M].北京:中国建筑工业出版社, 1994.
    [2]郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社, 1998.
    [3]李军,杨秀山,彭永臻.微生物与水处理工程[M].北京:化学工业出版社, 2002.
    [4]王海燕,刘海涛,田华菡等.全自养生物脱氮新工艺研究进展[J].环境污染治理技术与设备, 2006, 7(4): 1–5.
    [5] Dijkman H., Strous M. Process for ammonia removal from wastewater[J]. Patent 1999. PCT/NL99/00446.
    [6] Sliekers A. O., Derwort N., Gomez J.L.C., et al. Completely autrophic nitrogen removal over nitrite in one single reactor[J]. Water Research, 2002, 36 (10): 2475–2482.
    [7] Third K. A., Sliekers A. O, Jetten M.S.M. The CANON system (Completely autotrophic nitrogen removal over nitrite) under Ammonium Limitation: Interaction and Competition between Three Groups of Bacteria[J]. Systematic and Applied Microbiology, 2001, 24(4): 588–596.
    [8]方芳,郭劲松,秦宇等.单级自养脱氮生物膜工艺的启动研究[J].中国给水排水, 2006, 22(1): 58–61.
    [9]廖德祥,李小明,曾光明.单级SBR生物膜中全程自养脱氮研究[J].中国环境科学,2005, 25(2): 222–225.
    [10] Sliekers A.O., Third K.A., Abma W., et al. CANON and Anammox in a gas lift reactor[J]. FEMS Microbiology Letters, 2003, 218(2): 339–344.
    [11] Pynaert K., Barth F., Beheydt D., et al. Start-up of autotrophic nitrogen removal reactors via sequential biocatalyst addition [J]. Environ. Sci. Technol, 2004, 38(4): 1228–1235.
    [12]杨虹,李道棠,朱章玉.全程自养脱氮新技术处理污泥脱水液的研究[J].环境科学,2001, 22(5): 105–107.
    [13]孟了,陈永,陈石. CANON工艺处理垃圾渗滤液中的高浓度氨氮[J].给水排水, 2004, 30(8): 24–29.
    [14] Siegrist H., Reithaar S., Koch G., et al. Nitrification Loss in Nitrifying Rotating contactor Treating Ammonium-Rich Wastewater Without Organic Carbon[J]. Water Science and Technology, 1998, 38(8-9): 241–248.
    [15] Hippen A., Rosenwinkel K.H., Baumgarten G., et al. Aerobic deammonification:a new experience in the treatment of wastewaters[J]. Water Science and Technology, 1996, 35(10):111–120.
    [16] Schmid M., Twachtmann U., Klein M., et al. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation[J]. Appl. Microbiol., 2003, 23: 93–106.
    [17] Kurai L.P., Verstraete W. Ammonium removal by the oxygen-limited autotrophic nitrificaiton-denitrification system[J]. Applied and Environmental microbiology, 1998, 64(11):4500–4506.
    [18]董远湘,李小明,尹疆等.溶解氧对OLAND生物膜反应器硝化性能的影响及其微生物种群动态研究[J].环境污染与防治, 2005, 27(8): 561–564.
    [19] Jetten M. S. M., Strous M., Van de Pas-Schoonen K.T., et al. The anaerobic oxidation of ammonium[J]. FEMS Microbiol, 1999, 22: 421–437.
    [20]卢俊平,杜兵,孙艳玲等.亚硝化-厌氧氨氧化组合工艺脱氮研究[J].中国给水排水, 2004, 22(15): 40–43.
    [21]廖德祥,吴永明,李小明等.亚硝化-厌氧氨氧化联合工艺处理高含氮废水的研究[J].环境科学, 2006, 27(9): 1176–1780.
    [22]李小鹏,张代钧,曹琳等.氨氧化菌在污水生物处理中的应用[J].中国给水排水, 2004, 20(5): 24-27.
    [23] Ye RW, Thomas SM.Microbial nitrogen cycles:physiology, genomics and applications[J]. Curr. Opin Microbiol, 2001,4:307-312.
    [24] Khin T, Annachhatre AP. Novel microbial nitrogen removal processes[J]. Bio Adv, 2004, 22:519-532.
    [25] Hyungseok Y, Kyu-Hong A, Hyung-Jib L, et al. Nitrogen removal from synthetic wastewater by simultaneous nitrification and denitrification via nitrite in an intermittently-aetated reactor[J]. Wat.Res, 1999, 33(1):145-154.
    [26] Ruiz G,Jeison D, Chamy R. Nitrification with high nitrite accumulation for the treatment of wastewater with high ammonia concentration[J]. Wat Res, 2003,37: 1371-1377.
    [27] Schuch R., Gensike R.Merkel K et al.Nitrogen and DOC removal from wastewater streams of metal-working industry[J]. Water Res,2000,34(1):295-303.
    [28] Balmelle B.,Nguyen KM, Capderille B. et al.Study of factors controlling nitrite build-up in biological processes for water nitrification[J]. Wat Sci.Tech.,1992,26(5-6):1017-1025.
    [29]祖波,张代钧,张萍等.普通活性污泥富集好氧氨氧化菌试验[J].重庆大学学报(自然科学版),2005,28(2):100-104.
    [30] Hellinga C, Schellen AAJC, Mulder JW, et al. The SHARON process: an innovative method for nitrogen removal from ammonium-rich wastewater[J]. Wat Sci Tech, 1998,37(9):135-142.
    [31] Hanaki K.Chalermraj W.Shinihiro O. Nitrification at low levels of dissolved oxygen with and without organic loading in a suspended-growth reactor[J]. Wat.Res.,1990,24(3):297-302.
    [32] Yang I, Alleman JE. Investigation of batchwise nitrite build-up by an enriched nitrification culture[J]. Wat Sci Tech, 1992, 26(5-6):997-1005.
    [33] Abeling U, Seyfried CF. Anaerobic-aerobic treatment of high-strength ammonium wastewater-nitrogen removal via nitrite[J]. Wat Sci Tech, 1992, 26(5-6):1007-1015.
    [34] Balmelle B, Nguyen KM, Capderille B, et.al. Study of factors controlling nitrite build-up in biological processes for water nitrification[J]. Wat Sci Tech, 1992, 26(5-6): 1017-1025.
    [35] Mauret M, Puech-Costes E. Application of experimental research methodology to the study of nitrification in mixed culture[J]. Wat Sci Tech, 1996, 34(1):269-252.
    [36] Strous M, Kuenen J G, Jetten M S M. Key Physiology of Anaerobic Ammonium Oxidation[J]. Applied And Enviromental Microbiology, 1999,65(7) :3 248 - 3 250.
    [37] Strous M, Heijnen J J, Kuenen J G, et al. The sequencing batch reactor as a powerful tool for the study of slowly growing anaerobic ammonium-oxidizing microorganisms[J]. Appl Microbiol Biotechnol, 1998, 50: 589–96.
    [38] Egli K, Fanger U, Alvarezz P J J, et al. Enrichment and characterization of an anammox bacterium from a rotating biological contactor treating ammonium rich leachate[J]. Arch Microbiol, 2001, 175:198– 207.
    [39] Van de Graaf A A, De Bruijn P, Robertson LA, et al. Metabolic pathway of anaerobic ammonium oxidation on the basis of N-15 studies in a fluidized bed reactor[J]. Microbiology, 1997, 143(7):2 415-2 421.
    [40] Jetten MSM, Strous M, van de Pas-Schoonen KT, et al. The anaerobic oxidation of ammonium[J]. FEMS Microbiol Rev, 1998, 22(5): 421-437.
    [41] Bock E,Schmit I and Stuveen R.Nitrogen loss caused by denitrifying Nitrosomonascell using ammonium or hydrogen as electron acceptor[J]. Arch Microbiol,1995,163:16~20.
    [42]吴永明,李小明,曾光明等.亚硝化-厌氧氨氧化及其在固定化微生物中的实现[J].工业水处理, 2004, 24(12): 14–17.
    [43] Wrage N., Velthof G.L., van Beusichem M.L., et al. Role of nitrifier denitrification in the production of nitrous oxide[J]. Soil Biology and biochemistry, 2001, 33(12-13): 1723–1732.
    [44]赵宗升,刘鸿亮,李炳伟,袁光钰.高浓度氨氮废水的高效生物脱氮途径[J].中国给水排水,2001,17(5):24~28.
    [45] Schmidt I, Bock E. Anaerobic ammaonia oxidation with nitrogen dioxide by nitrosomonas eutropha[J]. Arch Microbiol, 1997,167(2):106~111.
    [46] Colliver B, Stephenson T. Production of nitrogen oxide and dinitrogen oxide by autotrophicnitrifiers[J]. Biotechnol Adv, 2000,18(3):219~232.
    [47] Stuven R, Bock E. Nitrification and denitrification as a sourcr for NO and NO2 production in high-strength wastewater[J]. Wat Res, 2001,35(8):1905~1914.
    [48] Garrido J.M., Campos J.L., Mendez R., et al. Nitrous oxide production by nitrifying biofilms in a biofilm airlift suspension reactor[J]. Water Science and Technology, 1997, 36(1): 157–163.
    [49] Van Bentum W.A.J., Garrido J., Mathijsse C., et al. Nitrogen removal in intermittent aerated biofilm airlift suspension reactor[J]. Journal of Environmental Engineering, 1998, 12(4): 239–248.
    [50] Qing-Qiao Jiang, Bakken R. Nitrous oxide production and methane oxidation by different ammonia-oxidizing bacteria[J]. Applied and Environmental Microbiology, 1999, 65(6): 2679–2684.
    [51] Beline F., Martinez J., Guiraud C. Application of the 15N technique to determine the contributions of nitrification and denitrification to the flux of nitrous oxide from aerated pig slurry[J]. Water Research, 2001, 35(11): 2774–2778.
    [52] Bremner J.M., Blackmer A.M. Nitrous oxide: emission from soils during nitrification of f ertilizer nitrogen[J]. Science, 1978, 199: 295–296.
    [53] Goreau T.J., Kaplan W.A., Wofsy S.C,et al. Production of NO2-and N2O by nitrifying bacteria at reduced concentration of oxygen[J]. Applied and Environmental Microbiology, 1980, 40(3): 526–532.
    [54] Poth M., Focht D. D.15N kinetic analysis of N2O production by Nitrosomonas europaea: an examination of nitrifier denitrification[J]. Applied and Environmental Microbiology, 1985, 49: 1134–1141.
    [55] Olavliekers A., Derwort N., Campos J.L, et al. Completely autotrophic removal over nitrite in one single reactor[J]. Water Research, 2002, 36(24): 75–2482.
    [56] Schmidt I., Bock E., Jetten M.S.M. Ammonia oxidation by Nitriosomonas eutropha with NO2 as oxidant is not inhibited by acetylene[J]. Microbiology, 2001, 147: 2247–2253.
    [57] Ren T., Roy R., Knowles R. Production and consumption of nitric oxide by three methanotrophic bacteria [J]. Appl Environ Microbiol, 2000, 66(9): 3891-3897.
    [58] Kester R. A., de Boer W., Laanbroek H.J. Production of NO and N2O by pure culture of nitrifying and denitrifying bacteria during changes on aeration[J]. Appl Environ Microbiol, 1997,10:3872~3877.
    [59] Schmidt I, Zart D, Bock E. Gaseous NO2 as a regulator for ammonia oxidation of Nitrosomonas eutropha[J]. Antonie van Leeuwenhoek, 2001,79(3-4): 311–318.
    [60]卢培利,张代钧,许丹宇.废水生物脱氮中N2O和NOx的来源及产生机理[J].重庆大学学, 2004, 27(9): 102–108.
    [61] Schmidt I., Zart D., Bock E. Effects of gaseous NO2 on cells of Nitrosomonas eutropha previously incapable of using ammonia as energy source[J]. Antonie van Leeuwenhoek, 2001, 79(1): 39–47.
    [62] Zart D., Bock E. High rate of aerobic nitrification and denitrification by Nitrosomonas eutropha grown in a fermentor with complete biomass rentention in the presence of gases NO2 or NO[J]. Arch. Microbiol., 1998, 169: 282–286.
    [63] Zart D, Schmidt I, Bock E. Significance of gases NO for ammonia oxidation by Nitrosomonas eutropha[J]. Antonie Leeuwenhoek,2000,77:49~55.
    [64] Schmidt I., Hermelink C., Van de Pas-Schoonen K.T., et al. .Anaerobic ammonia oxidation in the presence of nitrogen oxides(NOx) by two different lithographs[J]. Applied and Environmental Microbiology, 2002, 68(11): 5351–5357.
    [65] Speece R E. Anaerobic biotechnology for industrial wastewaters[M]. USA: Arche Press, 1996.
    [66]刘效梅,辛宝平,徐文国微生物颗粒在废水处理中的应用与研究[J].工业水处理, 2005,25(8):1- 4.
    [67] Liu Y, et al. Mechanisms and models for anaerobic granulation in upflow anaerobic sludge blanket reactor [J] . Wat Res, 2003, 37(3) : 661- 673.
    [68] Pereboom J H F, et al. Methanogenic granule development in full scale internal circulation reactors [J] . Water Sci. Technol., 1994, 30(1): 9- 21.
    [69]李宗义,等.成熟厌氧颗粒污泥的结构及其特征[J].微生物学通报, 2003, 30( 3) : 56- 59.
    [70] Zhu Jianrong, et al. The bacterial numeration and an observation of a new syntrophic association for granular sludge[J]. Water Sci Technol, 1997, 36(6- 7) : 133- 140.
    [71] Schmidt J E, et al. An improved most probable number (MPN) method for counting of anaerobic bacteria: The use of support material[J]. Appl Environ Microbiol, 1995, 61(3) : 862- 869.
    [72] Grotenhuis J T C, et al. Bacteriological composition and structure of granular sludge adapted to different substrates[J]. Appl Environ Microbiol, 1991, 57(8):1942- 1949.
    [73] Schmidt J E , Ahring B K. Extracellular polymers in granular sludge from different upflow anaerobic sludge blanket (UASB) reactors[J]. Appl Microbiol Biotech , 1994,42:457—462.
    [74] Chen J, Lun S Y. Study on mechanism of anaerobic sludge granula2tion in UASB reactors[J]. Water Sci Tech , 1993 ,28:171-178.
    [75] Shen C F, Kosaric N, Blaszczyk R. The effect of selected heavy metals (Ni, Co and Fe) onanaerobic granules and their extracellularpolymeric substances (ECP)[J]. Water Res , 1993 ,27 :25—33.
    [76] Cammarota M C , Sant’Anna Jr GL. Metabolic blocking of exopolysaccharides synthesis: effects on microbial adhesion and biofilm accumulation [J]. Biotech Letters, 1998, 20:1-4.
    [77] El-Mamouni R, Leduc R. Guiot S R. Influence of synthetic and natural polymers on the anaerobic granultion process [J]. Water Sci Tech , 1998 ,38 : 341—347.
    [78] Kalogo Y, Seka A M, Verstraete W. Enhancing the start2up of a UASB reactor treating demestic wastewater by adding a water extract of Moringa oleifera seeds[J]. Appl Microbiol Biotech, 2001, 55:651-664.
    [79] Wu Y, Wang Y H, Wang L S. Granulation inUASB reactor by addingBentonite and Polyacrylamide[J]. Environment Protection Science ,1997 ,23 (6) :13-15.
    [80] Sharma Jitender. Effect of nutrients supplementation on anaerobic sludge development and activity for treating distillery effluent[J]. Bioresource Technology, 2001, 79(2):203- 206.
    [81]曹刚,等.碱度对UASB污泥颗粒化的影响[J].中国给水排水,2002, 18(8):13- 16.
    [82] Alphenaar P A, et al. The effect of liquid upflow velocity and hydraulic retention time on granulation in UASB reactors treating wastewater with a high soleplate content [J]. Bioresour Technol, 1993, 43(4):249- 258.
    [83] Alves M et al. Characteristics in anaerobic sludge under shock conditions[J]. Wat Res, 2000, 34(1):207-214.
    [84]王建龙.生物固定化技术与水污染控制[M].北京:科学出版社,2002, 200-206.
    [85] Hulshoff Pol L W, et al. Anaerobic sludge granulation[J].Wat Res, 2004,38(6):1376- 1389.
    [86] Shin H-S, et al. Effect of shear stress on granulation in oxygen aerobic upflow sludge bed reactors[J]. Wat Sci Tech, 1992, 26(3- 4) : 601-605.
    [87] Morgenroth E, Sherden T. Aerobic granular sludge in a sequencing batch reactor[J]. Wat Res, 1997,31(12) : 3191- 3194.
    [88] Peng D C, et al. Aerobic granular sludge-A case report[J]. Wat Res, 1999, 33(3):890-893.
    [89] Tsuneda Satoshi, et al. Characterization of nitrifying granules produced in an aerobic upflow fluidized bed reactor[J]. Wat Res, 2003, 37(20):4965-4973.
    [90]卢然超等. SBR工艺运行条件对好氧污泥颗粒化和除磷效果的影响[J].环境科学,2001, 22(2):87-90.
    [91]阮文权,等.同步脱氮好氧颗粒污泥的特性及其反应过程[J] .中国环境科学, 2003, 23(4):380-384.
    [92]周律,钱易.好氧颗粒污泥的形成和技术条件[J].给水排水,1995, 21(4):11- 13.
    [93] Wang Qiang, et al. Aerobic granular cultivated under the selective pressure as a drivingforce[J]. Process Biochemistry, 2004, 39(5):557-563.
    [94]谢珊,等.好氧颗粒污泥的性质及其在脱氮除磷中的应用[ J] .环境污染治理技术与设备, 2003, 4(7):70- 73.
    [95] Beun J J, et al. Aerobic granulation in a sequencing batch reactor[J]. Wat Res, 1999, 33(10):2283-2290.
    [96]王荣昌,文湘华,钱易.生物膜反应器中好氧颗粒污泥形成机理[J].中国给水排水, 2004, 20(3):5- 8.
    [97]胡宝兰,郑平,冯孝善.新型生物脱氮技术的工艺研究[J].应用与环境生物学报, 1995,(增刊) 68-73.
    [98] Van de Graaf, Mulder A, De Bruijin P. Autotrophic Growth of Anaerobic Ammonium Oxidation Microorganism in a Fluidized Bed Reactor [J]. Microbiology, 1996, 142(8): 2187-2196.
    [99]吴永明,李小明,曾光明等.亚硝化-厌氧氨氧化作用机理的研究[J].工业用水与废水, 2005,36(1)5-8.
    [100] Linping K, Verstrate W, Ammonium Removal by the Oxygen Limited Autotrophic Nitrification-denitrification System[J]. Appl Environ Microbiol, 1998, 64(11):4500-4506.
    [101] Laanbroek H J, Gerards S. Competition for Limiting Amounts of Oxygen Between Nitrosomanas Europaea and Nitrobacteria Winogradskyi Grown in Mixed Continuous Cultures[J]. Archmicrobiology, 1993, 159(6): 453-459.
    [102] Beun J J, Heijnen J J, Van Loosdrecht M C M. N-removal in a Granular Sludge Sequencing Batch Airlift Reactor[J]. Biotechnol Bioeng, 2001, 75(1):82-92.
    [103] Kato M., Field J.A ., Lettinga G. The anaerobic treatment of low strength wastewater in UASB and EGSB reactor[J]. Water Science and Technology, 1997, 36(6-7):375–382.
    [104]任洪强,丁丽丽,陈坚等. EGSB反应器中颗粒污泥床工作状况及污泥性质研究[J].环境科学研究, 2001, 14(3):33–38.
    [105]左剑恶,王妍春,陈浩等.EGSB反应器的启动运行研究[J].给水排水, 2001, 27 (3):25–31.
    [106]祖波,张代钧,卢培利,张萍,等.普通活性污泥富集好氧氨氧化菌试验[J].重庆大学学报(自然科学版), 2005, 28(2): 100-104.
    [107]任宏洋,张代钧,丛丽影等.厌氧氨氧化反应器启动及污泥产率系数测定[J].重庆大学学报(自然科学版), 2008, 31(1):88-92.
    [108]任宏洋,张代钧,丛丽影等.一种未见报道的厌氧氨氧化菌分子生物鉴定[J].环境工程学报, 2008, 2(3):314-318.
    [109]国家环境保护局.水和废水监测分析方法(第四版)[M].北京:中国环境科学出版社,2002.
    [110] Egli K, Bosshard F, Werlen C, et al. Microbial Composition and Structure of a RotatingBiological Contactor Biofilm Treating Ammonium-Rich Wastewater without Organic Carbon[J]. Microbial Ecology, 2003, 45(4):419-432.
    [111] Zhang TC, Bishop PL. Evaluation of tortuosity factors and effective diffusivities in biofilms[J]. Water Research, 1994, 28(11):2279-2287.
    [112] Fdz-Polanco F, Mendez E, Uruena M A, et al. Spatial distribution of heterotrophs and nitrifiers in a submerged biofilter for nitrification[J]. Water Research, 2000, 34(16): 4081-4089.
    [113]顾夏声编著.废水生物处理数学模式(第二版)[M].北京:清华大学出版社,1993.
    [114] Helmer-Madhok C, Schmid M., Filipov E, et al. Deammonification in biofilm systems: population structure and function [J]. Water Science and Technology, 2002, 46(1-2): 223-231.
    [115]廖德祥,李小明,曾光明.单级SBR生物膜中全程自养脱氮的研究[J].中国环境科学,2005, 25(2):222-225.
    [116]杨虹,李道棠,朱章玉.全程自养脱氮特性因子的研究[J].环境科学研究,2001,14(6): 12-15.
    [117]孟了,陈永,陈石. CANON工艺处理垃圾渗滤液中的高浓度氨氮[J].给水排水, 2004, 30(8): 24-29.
    [118] Lee Kuan-Chun, Rittmann BE. Effects of pH and precipitation on autohydrogenotrophic denitrifica- tion using the hollow-fiber membrane-biofilm reactor[J]. Water Research, 2003,37(7):1551-1556.
    [119] Yang Shu-Fang, Tay Joo-Hwa, Liu Yu. Inhibition of free ammonia to the formation of aerobic granules[J]. Biochemical Engineering Journal, 2004, 17(1):41~48.
    [120]张代钧,任宏洋,祖波等. NO2对颗粒污泥甲烷化动力学特性影响的研究[J].环境工程学报, 2007, 1(12): 33-38.
    [121]张代钧,祖波,任宏洋等.氨氧化菌混培物在O2/微量NO2下氨氧化动力学[J].环境科学, 2008, 29(1): 127-133.
    [122] Ei-Mamouni R., Leduc R., Guiot S. R. Influence of synthetic and natural polymers on the anaerobic granultion process[J]. Water Science and Technology, 1998, 38(8): 341-347.
    [123] Show K.Y., Wang Y., Foong S.F., et al. Accelerated start-up and enhanced granulation in UASB reactors[J]. Water Research, 2004, 38(9): 2293-2304.
    [124]王妍春,左剑恶,肖晶华.EGSB反应器内厌氧颗粒污泥性质的研究[J].中国沼气, 2002, 20(4): 3-7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700