基于数学模型的寒区河流水量水质联合调控研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
松花江地处我国寒冷地区,整个流域介于北纬41°42'—51°38'之间,其水环境特征与国内其他大河有所不同。松花江干流存在多个河流型水源地,水源地的水质关系到沿岸哈尔滨、齐齐哈尔、吉林、松原等多个重要城市上千万人口的用水安全。每年由工业、农业、生活等排放的大量污水进入松花江,加重了松花江水体污染,增加了发生突发性污染事件的几率。为了给流域水质日常管理提供分析平台,给流域突发性水污染事件应急管理提供技术支撑,本论文做了相关研究,主要包括以下几方面内容:
     (1)本文根据流域特点建立了松花江干流非冰封期及冰封期水动力水质耦合模型。首先利用多年实测水文、水质资料,建立非冰封期数值模型,模型的重要参数(纵向扩散系数、污染物衰减系数等)的确定采用实地监测和模型率定相结合的方法,利用监测结果分析了Fischer、E1der两种纵向扩散系数经验公式在松花江的适用性,在此基础上,根据冰封期水利要素及水文监测特点,对模型进行改进,建立了适合该地区的冰封期水动力水质模型。
     (2)文中对松花江南源第二松花江干流水质问题进行了深入研究,比较了上游来水和支流饮马河对第二松花江干流水质的影响,并进一步预测了各类水质边界条件变化后干流水质的变化。通过评价饮马河水质对干流水质的影响,类推其它流量较小的支流、水质好于饮马河的支流对干流水质的影响。进一步分析了干流上游来水和支流对干流水质改善的影响比重。文中分析了第二松花江丰满水库水量调控措施对下游松原水源地CODcr、氨氮水质的影响。
     (3)利用模型对2005年松花江硝基苯水污染事件进行模拟。对污染冰体融化导致的二次污染问题进行研究,通过结冰实验,了解硝基苯在冰冻过程的分配特点,利用冰封期模型对冰体融化过程中残留污染物释放对水质的影响进行了预测。对2010年吉林化工原料桶污染事件进行模拟,对不同污染负荷导致的水质变化情况进行预测。
     (4)建立了面向突发性水污染事件的水库群应急调控机制。根据调控机制需要,将干流研究区域划分为5段,分析了各段在不同水量条件下的水流传播规律及水库群对水质的调控规律,模拟研究了10种调控措施在应对硝基苯污染事件中发挥的作用。文中模拟了五种潜在突发性污染事件,根据污染物的类型、发生地点及季节的不同,共采取了25个调度方案,并对调控效果进行了比较和分析。
The Songhua River is located in China cold region of between north latitude41°42'and51°38' which water environment characteristics is different from those of other rivers of china. There are several river-water resources on the main stream of Songhua River, which water quality affect supply water safety of millions of people in the longshore cities, for example, Haerbin, Qiqihaer, Jilin, Songyuan et al. Every year, much sewage from industry, agriculture, living is poured into the Songhua River and deteriorates water quality in Songhua River and increases the probability of contamination accidents. In order to provide a analysis platform of technical support for daily and emergency management, relevant researches were carried on in this paper, and the contents are followed:
     (1) Hydrodynamics and water quality modes of the Songhua River main stream were provided for frozen period and no-frozen period. First, no-frozen numerical model was set up based on the measured hydrologic and water quality data of many years. Some key parameters, such as dispersion coeffient and contaminant attenuation coefficient, were determined by integrating field monitoring with directional model. The applicability of Fischer and Elder discrete coefficient formula to the Songhua River was analysed, according to the monitoring results. Further, another improved model was made, according to the water elements and the hydrologic monitoring features for frozen period.
     (2) Some problems of the second Songhua River water quality were discussed in detail. How the upstream inflow and the Yinma River tributaries water quality influence that of the second Songhua River was compared and the main stream water quality change was forecasted after the water quality in boundary conditions changeed. The effects of other smaller tributaries and those with better water quality than Yinma River on the main stream was analogized by the way of by analogy. Furtherly, the influence of the quantity of flow regulation of Fengman reservoir on the second Songhua river on the CODcr and ammonia of downstream water sources of Song Yuan was analysed.
     (3) The nitrobenzene pollution event in Songhua River in2005was modeled using established hydrodynamic model. The secondary pollution problems caused by polluted ice melting were studied and the distribution characteristics of nitrobenzene in the freezing process were understood through freezing experiments. The influence of the residual contamination release on water quality was predicted by use of the frozen period model. The chemical raw materials bucket pollution event happened in Jilin province in2010was also modeled and the change of water quality caused by different pollution load was predicted.
     (4) The reservoir group emergency regulatory mechanism for the sudden pollution incident was established. The study area is divided into five sections according to the regulatory mechanism. The flow propagation for every section of different water conditions and influence of reservoirs on the water quality regulation law were analyzed. Ten kinds of control measures in response to nitrobenzene pollution event were simulated. Five potential sudden pollution incidents were simulated and twenty-five scheduling schemes were adopted according to the type of contaminants, the different occurrence location and season. And the regulatory effects were compared and analyzed.
引文
[1]郑秋红,伍永秋,张永光.冰封期河流中污染物损耗估算模型[J].北京师范大学学报,2006,42(6):615-617.
    [2]王宪恩,董德明,赵文晋,等.冰封期河流中有机污染物削减模式[J].吉林大学学报,2003,41(3):392-395.
    [3]Vladimir N, Geronimo V S,Gordon C.Mathematical modeling of land runoff contaminated by phosphorus[J]. Research Journal of the Water Pollution Control Federation,1978,20(1) 33-37.
    [4]郝芳华,任希岩,张雪松,等.洛河流域非点源污染负荷不确定性的影响因素[J].中国环境科学,2004,24(3):270-274.
    [5]Yang X M,Wander M M.Temporal changes in dry aggregate size and stability:Tillage and crop effects on a silty loam mollisoil in Illinois[J]. Soil and Tillage Research,1998,11(02) 147-154.
    [6]岳勇,程红光,杨胜天,等.松花江流域非点源污染负荷估算与评价[J].地理科学,2007,27(2):231-236.
    [7]李兴春,李云鹏,王咏.第二松花江吉林市江段污染控制对策研究[J].水系污染与保护,2003,(1):44-48.
    [8]崔长俊,翟平阳.松花江水质有机毒物生态污染防治[J].北方环境,2005,4(30):24-26.
    [9]于达,刘萍,史峻平,等.松花江水污染模型研究[J].数学的实践与认识,2009,39(11):104-108.
    [10]Mujumdar P. P.,Asikumar K. A fuzzy risk approach for seasonal water quality management of a river system[J]. Water Resources Research,2002,38(1):5-15.
    [11]Hallett J. Harris,Robert B. A method for assessing environmental risk:A case study of Green Bay, Lake Michigan, USA[J]. Environmental Management,1994,2 (3):295-306.
    [12]Xu Xiangyang, Xu Tianyi. Simulation of organic matter loss in area around Taihu Lake[J]. Bioinformatics and Biomedical Engineering,2008,1 (2):3176-3179.
    [13]Lanlan Ying, Xiyong Hou, Xiao Lu.Long-term impacts of land use change on non-point source pollution in the Dagujia River watershed of shandong peninsula[J]. Knowledge Acquisition and Modeling,2011,2(131):482-486.
    [14]Vivian Palmieri, Roberto JoseDe Carvalho. Qual model for the corumbatai river[J]. Ecological Modeling,2006,198 (1/2):269-275.
    [15]Yang M D, Sykes R M, Merry C J. Estimation of algal biological parameters using water quality modeling and SPOT satellite data[J].Ecological Modeling,2000,125:1-13.
    [16]田英QUAL2K模型在大凌河流域水资源保护管理中的应用[J].东北水利水电,2011,20(10):1274-1278.
    [17]张婷婷,王文勇QUAL2Kw模型在岷江流域乐山段水质模拟中的应用研究[J].广东农业科学,2010,(6):247-249.
    [18]戴凌全,李华,陈小燕QUAL-2K模型及其主要参数确定[J].灾害与防治工程,2009(2):69-74.
    [19]陈家军,于艳新,李森QUAL2E模型在呼和浩特市水质模拟中的应用[J].水资源保护,2004,29(3):1-4.
    [20]方晓波,张建英,陈伟,等.基于QUAL2K模型的钱塘江流域安全纳污能力研究[J].环 境科学学报,2007,27(8):1402-1407.
    [21]郭怀成环境规划与管理工作组.水污染控制技术[EB/OL].(2009-08-22)[2009-11-13].http://www.ccepr.org/huanjing/frontend/fangxiangmain_19.htm.
    [22]彭泽洲.水环境数学模型及其应用[M].化学工业出版社,2007.
    [23]廖振良,徐祖信,高廷耀.苏州河环境综合整治一期工程水质模型分析[J].同济大学学报(自然科学版),2004,32(4):499-502.
    [24]史铁锤,王飞儿,方晓波.基于WASP勺湖州市环太湖河网区水质管理模式[J].环境科学学报,2010,30(3):631-640.
    [25]徐仲翔,孙建富,章献忠,等WASP水质模型在兰江流域水体纳污能力计算中的应用[J].北方环境,2011,23(10):30-34.
    [26]姜雪,卢文喜,张蕾,等.基于WASP模型的东辽河水质模拟研究[J].中国农村水利水电,2011,(12):26-30.
    [27]姜毅,张龙涛,吕永涛,等.基于WASP模型城市人工景观水体水质的模拟[J].西安建筑科技大学学报,2011,31(3):306-310.
    [28]王旭东,刘素玲,张树深,等.白洋淀水域WASP富营养化模型改进研究[J].环境科学与技术,2009,32(10):19-24.
    [29]Galen Bernard Kaufman. Application of the water quality analysis simulation program (WASP) to evaluate dissolved nitrogen concentrations in the altamaha river estuary[D]. B.S.,US:University of Florida,2003.
    [30]Venkatesh Merwade, Aaron Cook, Julie Coonrod. GIS techniques for creating river terrain models for hydrodynamic modeling and flood inundation mapping[J]. Environmental Modelling & Software,2008,23 (10/11):1300-1311.
    [31]Andreas L Horn, Francisco J Rueda, Georg Hormann. Implementing river water quality modelling issues in mesoscale watershed models for water policy demands-an overview on current concepts, deficits, and future tasks[J]. Physics and Chemistry of the Earth,2004,29 (11/12):725-737.
    [32]王万战,董利瑾.渤海流场基本特性的Mike21模拟研究[J].人民黄河,2007,(10):32-33.
    [33]许婷,孙连成,李铁良.天津港国际邮轮码头工程泥沙数模试验研究[J].水道港口,2008,29(2):100-105.
    [34]李娜,叶闵.基于MIKE21的三峡库区涪陵段排污口COD扩散特征模拟及对下游水质的影响[J].华北水利水电学院学报,2011,(1):30-34.
    [35]Song S. Qian. Water quality model structure identification using dynamic linear modeling: River Cam case study revisited[J]. Water Science and Technology,1998,36(5):27-34.
    [36]N. Pochai, S. Tangmanee, L.J. Crane, J.J.H. Miller, A mathematical model of water pollution control using the finite element method[J].Proceedings in Applied Mathematics and Mechanics,2006,6 (1):755-756.
    [37]Ru-zhong LI, Masunaga SHIGEKI, Tian-qiu HONG. Fuzzy model for two-dimensional river water quality simulation under sudden pollutants discharged[J]. Journal of Hydrodynamics, 2007,19(4):434-441.
    [38]郑金树.美国黑石河有机污染物输送入海的一维水质模式研究[J].海洋与湖沼,1991,22(1):44-50.
    [39]Mellor, G. L., Yamada, T..Development of a turbulence closure model for geophysical fluid problems[J]. Review of Geophysics and Space Physics,1982,20:851-875.
    [40]Couillard D, Cluis DA. Generation of polluting loads within river basins [J].Water Research, 1980,14(11):1621-1630.
    [41]Javier Paredes, Joaquin Andreu, Abel Solera. A decision support system for water quality issues in the Manzanares River[J].Science of the Total Environment,2010,408:2576-2589.
    [42]Se Woong Chung, Ick Hwan Ko, Yu Kyung Kim. Effect of reservoir flushing on downstream river water quality [J]. Journal of Environmental Management,2008,86:139-147.
    [43]Ray-Shyan WU,Wen-Ray Sue,Ching-Ho Chen. Simulation model for investigating effect of reservoir operation on water quality[J]. Environmental Software,1996,11(1/3):143-150.
    [44]L.J. Alvarez-Vazquez, A. Martinez, M.E. Vazquez-Mendez. Flow regulation for water quality restoration in a river section:Modeling and control [J] Journal of Computational and Applied Mathematics,2010,234:1267-1276.
    [45]邹友琴,钟茂生,周文斌.鄱阳湖三维水质模拟软件设计与仿真[J].南昌大学学报(理科版),2012,(1):72-78.
    [46]潘鸣钟.河流二维水质模型及其应用研究[C].中国环境保护优秀论文集上海:中国环境科学学会,2005.
    [47]吴迪军,陈建国,黄全义,等.水污染扩散的二维数值模拟及其可视化[J].武汉大学学报(工学版),2009,42(3):298-302.
    [48]韩龙喜,朱党生.多污染源多污染因子明渠的—维水质线性计算方法[J].水资源保护,1999,(4):20-23.
    [49]吴飞,曹玉清,李苍松.二维水动力弥散的随机数学模型[J].数学的实践与认识,2004,34(6):106-111.
    [50]余江,许刚,康建雄.河流—维水质预测模型在污染贡献值计算中的应用[J].环境科学与技术,2006,29(1):32-34.
    [51]郭新蕾.河网的—维水动力及水质分析研究[D].硕士论文,武汉:武汉大学,2005.
    [52]朱健,王平,李捍东.基于—维水质模型贾河自净能力分析[J].环境科学与技术,2009,32(6c):245-248.
    [53]刘梅冰.闽江下游河道水动力水质动态模拟[D].硕士论文,福建:福建师范大学,2006.
    [54]黄本生,李西萍,范舟,等.河流重金属随水—悬浮物—底泥迁移转化模型[J].中国安全科学学报,2008,18(12):23-28.
    [55]申献辰,冯惠华,王凤荣,等.有毒物质在黄河小花河段迁移转化的水质模拟研究[J].人民黄河,1996,(7):23-28.
    [56]申献辰,冯惠华,王凤荣,等.重金属在黄河中游输送和迁移的水质模拟研究[J].水利学报,1997,(11):49-55.
    [57]周孝德,吉灯才,李家科,等.重金属预测模型的简化及在糯扎渡水库的应用[J].水利水电技术,2003,34(9):42-43.
    [58]张防修,王艳平,刘兴盛,等.黄河下游突发性污染事件数值模拟[J].水利学报,2007,(10):613-618.
    [59]蒋新新,李鸿.突发水污染事故风险预测中数学模型的研究[J].环境科技,2008,21(2):6-8.
    [60]王志文.感潮河网地区重金属数学模型研究[D].硕士论文,南京:河海大学,2004.
    [61]郑文波,侯国祥,徐学军,等.应用MO的汉江水污染控制信息系统的开发[J].华中科技大学学报(自然科学版),2003,26(3):9-11.
    [62]张仙娥,周孝德,吉灯才,等.糯扎渡水库—维水流水质数值模拟[J].中国农村水利水电,2004,(6):50-51.
    [63]王起超,邵志国,张磊.20年来第二松花江汞污染自净规律研究[J].环境科学学报,2007,27(3):474-479.
    [64]张波,王桥,李顺,等.基于系统动力学模型的松花江水污染事故水质模拟[J].中国环境科学,2007,27(6):811-815.
    [65]高鹏飞,王鹏,郭亮,等.流域水污染应急决策支持系统中模型系统研究[J].哈尔滨工业大学学报,2009,41(2):92-96.
    [66]赵红梅,徐宏恩,王士君.松花江佳木斯江段水环境容量分析[J].东北师大学报(自然科学版),2008,40(2):109-114.
    [67]赵南霞,王鹏,郑彤,等.松花江有机毒物环境归宿模型及程序设计[J].哈尔滨工业大学学报,2001,33(4):479-481.
    [68]王博,杨志强,李慧颖,等.基于模糊数学和GIS的松花江流域水环境质量评价研究[J].环境科学研究,2008,21(6):124-129.
    [69]薛梅.河流中污染物质的通量与残量分析[D].硕士论文,哈尔滨:哈尔滨工业大学,2006.
    [70]魏良琰,黄继忠.冰盖流阻力与综合Manning糙率[J].武汉大学学报,2002,35(4):1-8.
    [71]李贞荣,魏良琰.可变形控制体的广义Reynolds输运定理[J].武汉大学学报,1995,35(5):8-19.
    [72]茅泽育,高亮,马壮,等.春季河道武开河与文开河的判别准则初探[J].水利水电科技进展,2010,(6):58-61.
    [73]付辉,杨开林,王涛,等.河冰水力学研究进展[J].南水北调与水利科技,2010,3(1):1-9.
    [74]郭永鑫,王涛,杨开林,等.黄河宁蒙河段冰情预报决策支持系统的设计与开发[J].水利水电技术,2005,12(10):10-19.
    [75]杨开林,刘之平,李桂芬,等.河道冰塞的模拟[J].水利水电技术2002,33(10):40-48.
    [76]王军,聂杰.河流冰期水位研究[J].南京林业大学学报,2002,25(2):69-72.
    [77]朱洁,陈胖胖,王军.冬季引水明渠冰盖生长的数值模拟[J].合肥工业大学学报(自然科学版),2011,34(11):1692-1696.
    [78]王军.冰塞形成机理与冰盖下速度场和冰粒两相流模拟分析[D].博士论文,安徽:合肥工业大学,2007.
    [79]王军,倪晋,张潮.冰盖下冰花颗粒的随机运动模拟[J].合肥工业大学学报(自然科学版),2008,31(2):191-195.
    [80]赵新,练继建,黄焱.基于真冰模型试验的冰盖稳定性研究[J].水利水电技术,2011,25(10):531-534.
    [81]史杰.冰盖流水流结构的试验研究[D].硕士论文,新疆:石河子大学,2008.
    [82]唐学远,张占海,孙波.南极冰盖数值模拟研究进展与展望[J].极地研究,2006,(4):9-12.
    [83]Yuntong She, Francois Nzokou Tanekou, Faye Hicks. Ice jam formation and release events on the athabasca river[C]. CGU HS Committee on River Ice Processes and the Environment. Quebec,2007.
    [84]Martin Jasek. Ice jam release and break-up front propagation[C]. CGU HS Committee on River Ice Processes and the Environment. Edmonton,2003.
    [85]Darrell D, Kathleen D, Steven F. Predicting ice jams with neural networks[J].Can.J.Civ.Eng, 2001,28(10):856-864.
    [86]Hung Tao Shen, Lianwu Liu. Shokotsu river ice jam formation[J]. Cold Regions Science and Technology,2002,10(37):35-49.
    [87]Hung Tao Shen, Junshan Su, and Lianwu Liu. SPH simulation of river ice dynamics[J]. Journal of Computational Physics,2000,9(13):752-770.
    [88]Spyros Beltaos, Brian C. Burrell. Water temperature decay under breakup ice jams[J]. Cold Regions Science and Technology,2006,5(2):123-136.
    [89]Spyros Beltaos, Terry Prowse, Barrie BonsaI. Climate Impacts on ice-jam floods in a regulated northern river[J]. Cold Regions Science and Technology,2002,35(8):115-122.
    [90]A. F. Voevodin, T. B. Grankina. Numerical simulation of ice formation in a reservoir[J]. Journal of Applied and Industrial Mathematics,2008,4(25):47-54.
    [91]G. E. Zdorovennova. Spatial and temporal variations of the water-sediment thermal structure in shallow ice-covered Lake Vendyurskoe(Northwestern Russia)[J].Aquat Ecol,2009,43: 629-639.
    [92]U. Hammerschmidt. Thermal transport properties of water and ice from one single experiment[J]. International Journal of Thermophysics,2002,23(4):975-996.
    [93]付意成,魏传江,王瑞年,等.水量水质联合调控模型及其应用[J].水电能源科学,2009,27(2):31-35.
    [94]董增川,卞戈亚,王船海,等.基于数值模拟的区域水量水质联合调度研究[J].水科学进展,2009,20(2):184-189.
    [95]栾震宇.河网水食水质调度分析研究[D].硕士论文,南京:南京水利科学研究院,2007.
    [96]左其亭,高洋洋,刘子辉.闸坝对重污染河流水质水量作用规律的分析与讨论[J].资源科学,2010,32(2):261-266.
    [97]Willey RG, Smith DJ, Duke JH. Modeling water-resource systems for water quality management[J].Journal of Water Resources Planning and Management,1996,122(3): 171-179.
    [98]Pingryde, Shafteltl, Boleske. Role for decision-support systems in water-delivery design[J], Journal of Water Resources Planning and Management,1990,116(6):629-644.
    [99]Hayes D F, Labadie J W, Sanders TG. Enhancing water quality in hydropower system operations[J].Water Resources Research,1998,34(3):471-483.
    [100]Loftis B, Labadie J W, Fontane D G. Optimal operation of a system of lakes for quality and quantity[C].TORNOHC. Computer Applications in Water Resources. New York: ASCE, 1989:693-702.
    [1]罗肇森.分汉网河航道整治工程方法研究[C].第九届全国海岸工程学术讨论会论文集,1999.
    [2]曹祖德,王运洪.水动力泥沙数值模拟[M].天津:天津大学出版社,1994.
    [3]李岳生.河网不恒定流隐式方程组稀疏矩阵解法[J].中山大学学报(自然科学版),1977,(2):21-27.
    [4]吴持恭.水力学(第二版)(上下册)[M].成都:成都科技大学出版社,2002.
    [5]李炜.水力计算手册[M].北京:中国水利水电出版社,2006.
    [6]徐正凡.水力学[M].北京:高等教育出版社,1987.
    [7]吴持恭.水力学[M].北京:高等教育出版社,1982.
    [8]吴明远,詹道江,叶守泽.工程水文学[M].北京:水利电力出版社,1987.
    [9]张蔚榛.地下水与土壤水动力学[M].北京:中国水利水电出版社,1996.
    [10]A.I. Stamou, K. Hadjibiros, A. Andreadakis, A. Katsiri, Establishing minimum water level for plastiras reservoir (Greece) combining water quality modelling with landscape aesthetics [J].Environmental Modeling and Assessment,2007,12 (3):157-170.
    [11]Zhu Fahua, Zhang Jingrong, Yao Suping. The distribution of fluorine in plants in the endemic fluorine disease area of Xuzhou and its environmental significance[J]. Journal of Geology in University,2001,7(2):158-163.
    [12]Adlul Islam, Raghuwanshi N. S.,Ingh R.et al. Comparison of gradually varied flow computation algorithms for open-channel network[J]. Journal of Irrigation and Drainage Engineering,2005,131(5):457-465.
    [13]Geiger W. F. Combined sewer overflow treatment knowledge or speculation[J]. Water Science and Technology,1998,38(10):1-8.
    [14]Lin, J., Xie, L., Pietrafesa, L.J. Water quality gradients across albemarle-pamlico estuarine system: seasonal variations and model applications[J].Coastal Res,2007,23(1):213-229.
    [1]徐祖信,鄢忠纯.河流一维纵向离散系数的研究方法[J].上海环境科学,2003,22(增刊):135-137.
    [2]K.J. Kachiashvili, D.I. Melikdzhanian. Parameter optimization algorithms of difference calculation schemes for improving the solution accuracy of diffusion equations describing the pollutants transport in rivers[J]. Applied Mathematics and Computation,2006,183 (2):787-803.
    [3]Kyong Oh Baek, I Won Seo. Routing procedures for observed dispersion coefficients in two-dimensional river mixing[J]. Advances in Water Resources,2010,33(12):1551-1559.
    [4]O. Levenspiel,W. K. Smith. Notes on the diffusion-type model for the longitudinal mixing of fluids in flow[J]. Chemical Engineering Science,1995,50(24):227-233.
    [5]Ll. Pujol, J.A. Sanchez-Cabeza. Determination of longitudinal dispersion coefficient and velocity of the Ebro river waters (Northeast Spain) using tritium as a radiotracer[J]. Journal of Environmental Radioactivity,1999,45(1):39-57.
    [6]Atul Kumar, Dilip Kumar Jaiswal, Naveen Kumar. Analytical solutions to one-dimensional advection-diffusion equation with variable coefficients in semi-infinite media[J]. Journal of Hydrology,2010,380(3/4):330-337.
    [7]S.N. Lane, S.C. Reid, V. Tayefi, D. Yu. Reconceptualising coarse sediment delivery problems in rivers as catchment-scale and diffuse[J]. Geomorphology,2008,98(3/4):227-249.
    [8]Seyed M. Kashefipour, Roger A. Falconer. Longitudinal dispersion coefficients in natural channels[J]. Water Research,2002,36(6):1596-1608.
    [9]R.W.H Carroll, J.J Warwick, K.J Heim. Simulation of mercury transport and fate in the Carson River, Nevada[J]. Ecological Modelling,2000,125(2/3):255-278.
    [10]Daniel Campos, Joaquim Fort, Vicenc Mendez. Transport on fractal river networks: Application to migration fronts[J]. Theoretical Population Biology,2006,69(1):88-93.
    [11]Bosko K.Advances in water pollution research[J].Inter-national Association on Water Pollution Research,1966,45(3):153-161.
    [12]蒲讯赤,李克锋.紊动对水体中有机污染物降解影响的试验[J].中国环境科学,1999,19(6):485-489.
    [13]王有乐,张建奎,孙苑菡,等.黄河兰州市区段泥沙特性及水质预测研究[J].甘肃科技, 2006,22(7):69-71.
    [14]J.D. Rhoades, D.L. Suarez. Reducing water quality degradation through minimized leaching management[J]. Agricultural Water Management,1977,1(2):127-142.
    [15]窦明,马军霞,谢东瑜,等.北江重金属镉污染事故数值模拟[J].郑州大学学报,2007,28(2):117-120.
    [16]窦明,马军霞,谢平,等.河流重金属污染物迁移转化的数值模拟[J].水电能源科学,2007,25(3):22-25.
    [17]周孝德,吉灯才,李家科,等.重金属预测模型的简化及在糯扎渡水库的应用[J].水利水电技术,2003,34(9):42-43.
    [18]汤亚飞,王焰新,蔡鹤生.地表水环境中农药迁移与归宿[J].武汉化工学院学报,2005,27(4):13-16.
    [19]王庆改,赵晓宏,吴文军,等.汉江中下游突发性水污染事故污染物运移扩散模型[J].水科学进展,2008,19(4):500-504.
    [20]张防修,王艳平,刘兴盛,等.黄河下游突发性污染事件数值模拟[J].水力学报,2007,10:613-618.
    [21]Alain Mailhot, Alain N. Rousseau, Serge Massicotte. A watershed-based system for the integrated management of surface water quality: The GIBSI system[J]. Water Science and Technology,1997,36(5):381-387.
    [22]Stefan H Maier, Roger S Powell. Calibration and comparison of chlorine decay models for a test water distribution system[J]. Water Research,2000,34(8):2301-2309.
    [23]Christiana G Aguirre, Kamyar Haghighi. Stochastic modeling of transient contaminant transport[J]. Journal of Hydrology,2003,276(1/4):224-239.
    [24]Betty Ng, A. Turner, A.O. Tyler. Modelling contaminant geochemistry in estuaries[J]. Water Research,1996,30(1):63-75.
    [25]Jianfeng Li, Bin Zhang, Mao Liu. Numerical simulation of the large-scale malignant environmental pollution incident[J]. Process Safety and Environmental Protection,2009, 84(4):232-244.
    [26]Li Huimin, Zhou Xuezhi, Chen Haiping. Numerical simulation and field experiment validation of atmopheric pollution chemical accidents based on canopy model[J]. Procedia Environmental Sciences,2012,12:30-37.
    [27]Haipu Bi,Hu Si.Dynamic risk assessment of oil spill scenario for Three Gorges Reservoir in China based on numerical simulation[J]. S afety Science,2012,50(4):1112-1118.
    [28]A Giambanis, J Anagnostopoulos, G Bergeles. Numerical simulation of pollutant dispersion and photochemical kinetics over complex terrain[J]. Applied Mathematical Modelling, 1998,22(4-5):313-329.
    [29]Joseph H.W. Lee, Yan Huang, Mike Dickman. Neural network modeling of coastal algal blooms[J]. Ecological Modelling,2003,159:179-201.
    [30]A. James, M.B. Beck. Modelling of dissolved oxygen in a non-tidal stream[J]. Mathematical Models in Water Pollution Control,1987,3(1):137-163.
    [31]N. Pochai, S. Tangmanee, L.J. Crane, A mathematical model of water pollution control using the finite element method[J]. Applied Mathematics and Mechanics,2006,6 (1):755-756.
    [32]H.Q. Xue,X.D. Liu.Study on geometric features of river pollutant zone caused by continuous point sourcesfJ]. Water Resources Protection,2005,21:22-25.
    [33]Friedrich Recknagel. Artificial neural network approach for modeling and prediction of algal blooms[J].Ecological Modeling,1997,96:11-28.
    [34]Mujumdar. P., Sasikumark. A fuzzy risk approach for seasonal water quality management of a river system [J]. Water Resources Research,2002,38(1):5-15.
    [35]Fried J. J. Groundwater pollution [M]. Amsterdam: Elsevier Scientific,1975.
    [36]Morari F, Logato E. An integrated non-point source model-GIS system for selecting criteria of best management practices in the PoValley, North Italy[J]. Agriculture, Ecosystems andEnvironment,2004,102(3):247-262.
    [37]BEAR J. Hydraulics of groundwater [M]. New York:McGraw-Hill,1979.
    [38]Shilton, A.. Potential application of computational fluid dynamics to pond design [J].Water Science Technology,2000,42 (10/11):327-334.
    [39]雒文生,宋星源.水环境分析及预测[M].武汉:武汉大学出版社,2000.
    [40]Zhang Ming-liang, Shen Yong-ming. Study and application of steady flow and unsteady flow mathematical model for channel networks[J].Journal of Hydrodynamics:Ser-B.2007,19 (5):77-83.
    [1]王起超,邵志国,张磊.20年来第二松花江汞污染自净规律研究[J].环境科学学报,2007,27(3):474-479.
    [2]苏伟,刘景双,李方.第二松花江干流重金属污染物健康风险评价[J].农业环境科学学报,2006,25(6):1611-1615.
    [3]刘景双,于君宝,闫百兴,等.第二松花江水体中氮含量的动态变化分析[J].环境科学,1997,18(1):14-16.
    [4]徐祖信,尹海龙.平原感潮河网地区一维、二维水动力耦合模型研究[J].水动力学研究与进展,2004,19(6):744-751.
    [5]赵南霞,王鹏,郑彤,等.松花江有机毒物环境归宿模型及程序设计[J].哈尔滨工业大学学报,2001,33(4):479-481.
    [6]余江,许刚,康建雄.河流一维水质预测模型在污染贡献值计算中的应用[J].环境科学与技术,2006,29:32-34.
    [7]中华人民共和国环境保护部,国家发展改革委员会.松花江流域水污染防治规划(2006-2010年)[R].北京:中华人民共和国环境保护部,国家发展改革委员会,2006.
    [1]张波,王桥,李顺,等.基于系统动力学模型的松花江水污染事故水质模拟[J].中国环境科学,2007,27(6):811-815.
    [2]Bo Zhang, Yu Qin, Mingxiang Huang. SD-GIS-based temporal-spatial simulation of water quality in sudden water pollution accidents[J]. Computers & Geosciences,2011,37(7):874-882.
    [3]于达,刘萍,史峻平,等.松花江水污染模型研究[J].数学的实践与认识,2009,39(11):104-108.
    [4]英瑜雯.松花江污染冰体中有机物残留量的分析与计算[D].硕士论文,大连:大连理工大学,2007.
    [5]Ce Wang, Yujie Feng,Shanshan Zhao. A dynamic contaminant fate model of organic compound:A case study of Nitrobenzene pollution in Songhua River, China[J].Chemosphere, 2012,88(1):69-78.
    [6]Wenjing Zhang, Xueyu Lin, Xiaosi Su. Transport and fate modeling of nitrobenzene in groundwater after the Songhua River pollution accident[J]. Journal of Environmental Management,2010,90(11):2378-2384.
    [7]Zonglai LI, Min YANG, Dong LI. Nitrobenzene biodegradation ability of microbial communities in water and sediments along the Songhua River after a nitrobenzene pollution event [J]. Journal of Environmental Sciences,2008,20(7):778-786.
    [8]Lingyan Zhu, Baoling Ma, Lei Zhang. The study of distribution and fate of nitrobenzene in a water/sediment microcosm [J]. Chemosphere,2007,69(10):1579-1585.
    [9]刘广民,任南琪,沈吉敏,等.自然冰冻对松花江冰与水中硝基苯分配的影响[J].哈尔滨工业大学学报,2008,40(06):982-984.
    [1]于凤存,方国华,高玉琴.城市水源地突发性水污染事故思考[J].灾害学,2007,22(4):104-108.
    [2]徐兴东.流域突发性水污染事故风险应急防范系统研究[D].兰州:兰州大学,2008.
    [3]谭见安.地球环境与健康[M].北京:化学工业出版社,2004.
    [4]刘砚发,魏复盛.关于突发性环境污染事故应急监测[J].中国环境监测,1995,11(5):59-62.
    [5]万本太.突发性环境污染事故应急监测与处理处置技术[M].北京:中国环境科学出版社,1996.
    [6]彭祺,胡春华.突发性水污染事故预警应急系统的建立[J].环境科学与技术,2006,29(11):58-61.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700