光路保护系统的设计与开发
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
从上世纪光纤和优良激光器的诞生,到近些年来海底光缆和普通光纤作为信息主干道的广泛应用,人类逐步跨入了光纤通信时代。光纤以其通信容量大、可靠性高、传输损耗小等优点为当前的信息时代所接受。一方面,光纤通信技术迎合了人们对大容量信息传输的需求;另一方面,人们在追求信息化所带来的便利的同时,也进一步推动了光纤通信技术的进一步发展。然而,在追求传输容量的同时,人们正逐渐地更看重传输质量。当前,光纤通信系统的传输状况不甚乐观。除光器件本身发生故障外,光缆线路因为施工挖掘、鼠害、火灾和射击等因素而时常中断也是引发的光路中断的重要原因。
     为了解决光通信中光路中断的问题,本文主要探讨了光路保护系统的方案和组成。光路保护方案通过提供备用光路或者查询其它可用链路提供冗余保护。及时选通未损光路可避免不必要的损失,而其关键点在于切换凭据的可靠性,即:在线监测光缆线路所得到的光功率值的准确度与灵敏度。当前应用较多的方案在检测光功率值方面存在许多弊端,如准确度不高、不够灵敏、检测范围过小,且一旦设定切换阈值后就无法更改等等。
     针对以上弊端,本文在“1+1”光路保护方案的基础上,采用对数放大器、微处理芯片和光器件,设计和开发出一套大范围、高精度的光路自动保护系统。而且增加了网络通信模块,通过向微处理器移植uIP协议,实现了远程微机终端与在线控制模块的通信。此外,为了提高光功率值的准确性,本文对测试结果进行了分析并根据结果对系统进行了拟合和修正。经过实际运行与测试,本文所设计系统的光功率检测范围在-60~4dBm,光路切换时间在ms量级。较之与终端远程通信后做出响应的时间,系统自动切换的响应时间更短,满足ITU-T对于光缆保护线路的切换要求。
     本文提出了一种光纤线路自动保护方案,并进行了设计和实现。结果表明,该系统运行稳定、可靠,灵敏度和测量范围等各项工作指标均优于当前所应用的方案,对于提高光通信网络的可靠性具有重要意义。
From last century when fiber and laser with excellent performance were invented to the recent years when submarine optical fiber cable and ordinary fiber are being used as the main channel of information transmission widely, the human has entered the era of optical fiber communications. Optical fiber is accepted by our information society mainly because of its larger transmission capacity, higher reliability and lower transmission loss. On one side, the optical fiber communication technique meets our human's requirement for information with large capacity. On the other side, the optical fiber communication technique is also propelled by our human's needs. However, we have transferred our attention to the quality of optical fiber instead of only staring at the capacity. Now, the transmission situation is not ideal for optical fiber communication system. Beside the damage of optical devices, the optical fiber communication is always cut down by optical fiber's break caused by earthwork, rodents, fire, shooting and so on.
     This thesis mainly discusses the principles and compositions of the fiber protection system, just to overcome the problems caused by optical fiber's break. The fiber protection system provides redundancy protection by providing backup lines or searching available lines. Unnecessary losses could be avoided if backup lines be selected in time. And the key point is to get a reliable switching standard which concerns about the accuracy and sensitivity for the optical power from optical fiber cable. Right now, there are many disadvantages for fiber protection principles being used, just like low accuracy, less sensitivity, small detecting range, fixed threshold once set and so on.
     To solve these drawbacks above, this thesis designs and develops a new fiber automatic protection system with lager detecting range and higher accuracy using logarithmic amplifier, micro-processing chips and optical devices on the basis of'1+1' fiber protection system. Additionally, network communication module is added to realize the communication between the remote computer and the on-line detecting module by transplanting uIP to micro-processing chips. What's more, this paper analyses and fits the test data and then amends the system in order to improve the accuracy. After running and testing, the optical power of the system designed can reach a range of-60-4dBm, and the switching time is at the lever of many micro-seconds. Compared with working by communicating with remote computer, it needs less time to response with faults just working alone. And the switching time reaches ITU-T's standards.
     An optical fiber automatic protection scheme is proposed in this thesis, and it was designed and realized. The results showed that the system ran stably and reliably, with better performance in sensitivity and larger measurement range than current schemes being used now. So the work is very important for improving the reliability of optical communication networks.
引文
[1]K.C.Kao, G.A.Hockham. Dielectric-fibre surface waveguides for optical frequencies [J]. Proc. IEEE,1966,113(7):1151-1158.
    [2]J. Wang, D. T. Walton, M. J. Li, et al. Recent specialty fiber research at Corning towards high-power and high-brightness fiber lasers. proceedings of the ICO20: Lasers and Laser Technologies, F,2006 [C]. SPIE.
    [3]B. Mukherjee. WDM optical communication networks:progress and challenges [J]. Selected Areas in Communications, IEEE Journal on,2000,18(10): 1810-1824.
    [4]王加强,岳新全,李勇.光纤通信工程[M].第一版.北京:北京邮电大学出版社,2003.
    [5]及燕丽,王友村,沈其聪.现代通信系统[M].北京:电子工业出版社,2005.
    [6]孔守章.浅谈光缆线路的监测与管理[J].通信世界,2000,(16):17.
    [7]纪越峰,李慧,陆月明.自动交换光网络原理与应用[M].北京:北京邮电大学出版社,2005.
    [8]张引发,王宏科,邓大鹏.光缆线路工程设计施工与维护[M].北京:电子工业出版社,2002.
    [9]朗讯科技(中国)有限公司光网络部.光传输技术[M].北京:北方交通大学出版社,2003.
    [10]孙学康,张金菊.光纤通信技术[M].第二版.北京:人民邮电出版社,2008.
    [11]刘忠伟,翟虹强,尹传平,et al. SDH技术及其应用和发展[J].电力系统自动化,2001,25(3):72-76.
    [12]Stamatios V. Kartalopoalos. DWDM Technology [M].高启祥译.密集波分复用技术导论[M].北京:人民邮电出版社,2001.
    [13]G.872. Telecommunication Standardization Sector of ITU.
    [14]L. Kant, Hsing Deh-Phone, Wu Tsong-Ho. Modeling and simulation study of the survivability performance of ATM-based restoration strategies for the next generation high-speed networks, proceedings of the Computer Communications and Networks,1999. Proceedings. Eight International Conference on, F 1999, 1999 [C].
    [15]T. H. Noh. Layered bandwidth management in the integrated ATM, SDH/SONET, and optical transport networks. proceedings of the Computers and Communications,1998. ISCC'98. Proceedings. Third IEEE Symposium on, F 30 Jun-2 Jul 1998,1998 [C].
    [16]M. Maier, M. Herzog, M. Scheutzow, et al. PROTECTORATION:a fast and efficient multiple-failure recovery technique for resilient packet ring using dark fiber [J]. Lightwave Technology, Journal of,2005,23(10):2816-2838.
    [17]C. Awad, B. Sanso. Network reliability under mixed IP and optical protection. proceedings of the Design of Reliable Communication Networks,2005. (DRCN 2005). Proceedings.5th International Workshop on, F 16-19 Oct.2005,2005 [C].
    [18]Christian Awad, Brunilde Sans, Andr Girard. DiffServ for differentiated reliability in meshed IP/WDM networks [J]. Computer Networks,2008,52(10): 1988-2012.
    [19]Sun-Il Kim, Xiaolan J. Zhang, Steven S. Lumetta. Minimizing Protection Cost for High-Speed Recovery of Mission Critical Traffic in WDM Mesh Networks. proceedings of the Military Communications Conference,2007. MILCOM 2007. IEEE, F,2007 [C].
    [20]Choi Don, D. Taylor, R. Seibel. Priority-based optical network protection and restoration with application to DOD networks. proceedings of the Military Communications Conference,2003. MILCOM 2003. IEEE, F,2003 [C].
    [21]N. Correia, M. Medeiros. Protection Schemes for IP-over-WDM Networks: Throughput and Recovery Time Comparison [J]. Photonic Network Communications,2006,11(2):127-149.
    [22]Guo Lei, Cao Jin, Yu Hongfang, et al. Path-based routing provisioning with mixed shared protection in WDM mesh networks [J]. Lightwave Technology, Journal of,2006,24(3):1129-1141.
    [23]Giulia Conte, Marco Listanti, Marina Settembre, et al. Strategy for Protection and Restoration of Optical Paths in WDM Backbone Networks for Next-Generation Internet Infrastructures [J]. J. Lightwave Technol.,2002,20(8): 1264.
    [24]Ou Canhui, Zang Hui, N. K. Singhal, et al. Subpath protection for scalability and fast recovery in optical WDM mesh networks [J]. Selected Areas in Communications, IEEE Journal on,2004,22(9):1859-1875.
    [25]Song Lei, B. Mukherjee. Accumulated-Downtime-Oriented Restoration Strategy With Service Differentiation in Survivable WDM Mesh Networks [J]. Optical Communications and Networking, IEEE/OSA Journal of,2009,1(1):113-124.
    [26]O. Gerstel, R. Ramaswami. Optical layer survivability-an implementation perspective [J]. Selected Areas in Communications, IEEE Journal on,2000, 18(10):1885-1899.
    [27]R. Antosik. Protection and restoration in optical network. proceedings of the Transparent Optical Networks,2000 2nd International Conference on, F,2000 [C].
    [28]司书国,张辉,李世忠.光纤自动倒换保护系统在WDM中的应用[J].电信技术,2005,(10):51-53.
    [29]陈希.光纤和光缆的监测与管理系统[J].电力系统通信,2002,(5):11-13.
    [30]沈琰,乐孜纯.一种基于ARM的多路光纤自动保护系统[J].光通信技术,2009,(8):45-47.
    [31]韩旭东.传输一级干线无阻断通信解决方案[J].通信世界,2004,(47):46-47.
    [32]李苑,方少元.SDH自愈环网特性分析及应用[J].现代电子技术,2006,(20):94-96.
    [33]G.841. Telecommunication Standardization Sector of ITU.
    [34]Y. Silberberg, P. Perlmutter, J. E. Baran. Digital optical switch [J]. Applied Physics Letters,1987,51(16):1230-1232.
    [35]程晓飞,方来付,王健全,et al.光开关技术综述[J].通讯世界,2001,(7):11-16.
    [36]徐波.一种通用光功率计的实现原理[J].电子质量,2006,(5):3-7.
    [37]蔡履中,王成彦,周玉芳.光学[M].济南;山东大学出版社.2002.
    [38]Analog Device Corporation. Datasheet ofAD8304 [M].2002.
    [39]童长飞.C8051F系列单片机开发与C语言编程[M].北京:北京航空航天大学出版社,2005.
    [40]Primanex Corporation. Datasheet of 1x1/1x2 Opto-Mechanical Switch [M]. 2001.
    [41]Motorola Corporation. Datasheet of ULN2803/2804 [M].1996.
    [42]Atmel Corporation. Datasheet ofAtmega128/128L [M].2004.
    [43]Realtek Corporation. Datasheet of RTL8019AS [M].2001.
    [44]Philips Corporation. Datasheet of 74HCT573 [M].1990.
    [45]Stc International Limited Corporation. Datasheet of STC62WV256 [M].2004.
    [46]阎石.数字电子技术基础[M].第四版.北京:高等教育出版社,2006.
    [47]Z. M. Zain, R. B. Ahmad, M. R. Arshad. Design and development of an RS232-based ROV controller system, proceedings of the TENCON 2004.2004 IEEE Region 10 Conference, F 21-24 Nov.2004,2004 [C].
    [48]徐爱钧,彭秀华.Keil Cx51 V7.0单片机高级语言编程与μ Vision2应用实践[M].第二版.北京:电子工业出版社,2008.
    [49]余明兴,吴明哲,黄世阳,et al. Borland C++ Builder6程序设计经典[M].北京:科学出版社,2004.
    [50]赵松涛.SQL Server 2000系统管理与应用开发[M].北京:人民邮电出版社,2006.
    [51]Agilent Corporation. Datasheet of Agilent Power Sensor Modules [M].2010.
    [52]Agilent Corporation. Datasheet of Compact Tunable Laser Sources [M].2004.
    [53]张继龙,甄蜀春,曹鹏,et al.实验数据的曲线拟合方法及其应用[J].测试技术学报,2003,3(17):255-257.
    [54]乔立山,王玉兰,曾锦光.实验数据处理中曲线拟台方法探讨[J].成都理工大学学报(自然科学版),2004,31(1):90-95.
    [55]张志涌.精通MATLAB 6.5版[M].北京:北京航空航天大学出版社,2003.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700