液体表面调整剂的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
表面调整是磷化处理中的一个工序,在磷化工艺中采用表面调整工序是目前涂装行业获得高质量磷化膜的重要方法之一。表面调整处理能够为磷化膜的生长提供良好的晶核,提高膜的致密性和降低膜重。
     目前表面调整工序中使用的表面调整剂多是固体状态,存在着对涂装有粉尘污染、不适于流水线自动加料作业等问题。因此,制备液体表面调整剂有很好的市场前景和良好的社会效益。
     本文通过对聚磷酸盐、PO_4/Ti比、K/Na比等方面对液体表面调整剂的配方进行了研究和讨论得出:聚磷酸盐主要起稳定剂的作用,对磷化成膜性能影响不大;提高液体表面调整剂中的钛含量有利于使磷化膜更均匀细致,PO_4/Ti比越高,液体表面调整剂的稳定性越好,但磷化膜质量在高PO_4/Ti比时会出现劣化现象;引入K~+离子可以明显改善液体表面调整剂的性能,适当K/Na比的液体表面调整剂不仅使磷化膜更细致,还能使低锌磷化在酸洗条件下形成良好的磷化膜。本文还对液体表面调整剂制备工艺中含水量、pH值、温度的影响和液体表面调整剂的应用工艺中的使用浓度、温度、处理时间等进行了研究和讨论,最终得到了CS100液体表面调整剂的配方、制备工艺和应用工艺。
     配方:
     K_2TiF_6:2.2%;
     Na_5P_3O_(10):26.3%;
     Na_2HPO_4:16.7%;
     K_2HPO_4:47.5%;
    
     KZCO3:
     NaOH:
    制备工艺:
     温度:
     pH值:
     含水量:
    应用工艺:
    少量(调整K闪a比)
    少量(调整pH值)
    75℃~95℃
    9 .0~1 1 .5
    35%~41%
    使用浓度:5一10ml几;
    使用温度:室温至70℃;
    处理时间:155一1805;
    使用时pH值:5.5一9.5。
     通过与国内外表面调整剂性能对比测试得出:CS 100液体表面调整剂与
    国内固体表面调整剂和国外液体表面调整剂相比,在磷化成膜的膜外观、膜
    重、结晶形貌等性能上基本相当,但CS 100表面调整剂能使低锌磷化在酸洗
    条件下也能形成均匀细致的磷化膜,明显优于国内固体表面调整剂和国外液
    体表面调整剂。
During pre-treatment of phosphating, surface conditioning is the most important means to gets high-quality phosphate conversion coating. The fine conditioner can offer good crystals embryo for growth of the phosphate conversion coating, and can improve phosphate conversion coating dense and reduce the film weight.
    Mostly it is solid surface conditioner used at present, which have dirty for coating process, and is unsuitable for assembly control in product line, etc. So, liquid surface conditioner has very good market prospects and good social benefit.
    The thesis studies several parts: poly-phosphate, ratio of PO4/Ti, ratio of K/Na etc. The result is that poly-phosphate has a important effect on phosphating or degreasing as a stabilizer, High ratio of PO4/Ti is benefit to form fine film, the higher the ratio of PO4/Ti is, the better the stabilization is, but the phosphate conversion coating gets bad. K+ ion can improve the characteristic of surface conditioner, the reasonable ratio of K/Na not only form fine phosphate conversion coating, but also form good film after pickling in low zinc phosphating. The thesis prodes into the following: the influence of the content of water, pH and temperature during the manufacture of liquid surface conditioner, concentration, temperature and time during the application of liquid surface conditioner. So, the thesis gets CS100 surface conditioner, the content, manufacture craft and application craft is following.
    The content:
    K2T1F6 :2.2%;
    
    
    By comparing the performance of CS100 liquid surface conditioner with the performance of domestic and international surface conditioner, the result shows: such performance as the phosphorus film appearance, film weight and crystal appearance is equal to those of domestic solid surface conditioner and international liquid surface conditioner, but CS100 liquid surface conditioner can form fine film after pickling in low zinc phosphating, which is better than domestic solid surface conditioner and international liquid surface conditioner.
引文
[1]解培民等.镀锌钢板在汽车工业中应用的进展[J].西安公路交通大学学报,2000,20(2):76~80
    [2]叶守富译.结晶速度:磷化中有用的控制参数[J].上海涂料,1998,4:39
    [3]陈慕祖等.涂装前处理材料的最新成果[J].现代涂料与涂装,1999,1:15
    [4]G.W.Jernstedt. Corrosion Resistant Coatings for Metal Surfaces[P]. U.S. Patent 2310239, 1943
    [5]G.W.Jernstedt. Corrosion Resistant Coating for Metal Surfaces[P]. U.S. Patent 2456947, 1948
    [6]G.W.Jernstedt. Protective Phosphate Coatings for Metal Surfaces [P]. U.S. Patent 2462196, 1949
    [7]G.W.Jernstedt. Cleaning and Activating Compositions and Use Thereof in Producing Protective Phosphate Coatings on Metal Surfaces [P]. U.S.Patent 2490062, 1949
    [8]Donald J. Method of Preparing Titanium-containing Phosphate Conditioner for Metal Surfaces[P].U.S. Patent 4152176, 1979
    [9]Hun R. Clearing and Priming Composition Containing Titanium Acetylacetonate and Method[P]. U.S. Patent 4281037, 1981
    [10]Toan M. Composition and Process of Metal Treatment[P].U.S.Patent 5112395, 1992
    [11]Rüdiger Rein .Activator for Use in Phosphating Processes[P].U.S.Patent 5160551, 1992
    [12]表面处理工艺手册编审委员会编.表面处理工艺手册[M].上海:上海科学技术出版社,1991:331
    [13]叶扬祥,潘肇基主编.涂装技术实用手册[M].北京:机械工业出版社,19918:161
    [14]Sienkowski etal.Zinc Phosphate Conversion Coating and Process[P].U.S.Patent 601858, 2000
    [15]Roland etal. Nickle-free Phosphating Process[P].U.S.Patent 5762283, 1998
    [16]曾华梁,杨家昌.电解和化学转化膜[M].北京:轻工业出版社,1987
    [17]李光瑾.钢铁零件中温磷化膜的形成、形态与工艺研究[J].金属热处理,1990(3):36-37
    
    
    [18]戚怡群.磷化膜形成过程的电镜观察与讨论[J].材料保护,1992(6):38
    [19]Helmut Endres. Composition and Process for Activating Metal Surfaces Prior to Zinc Phosphating and Process for Making Said Composition[P]. U.S. Patent 4957568, 1990
    [20]刘康平.超声波清洗技术在磷化处理中的应用[J].材料保护,35(5)
    [21]吴鹏.金属除锈磷化预处理技术[J].铁道车辆,36(5):30
    [22]曾华梁等.电镀工艺手册[M].北京:机械工业出版社,1989:405
    [23]表面处理工艺手册编审委员会编.表面处理工艺手册[M].上海:上海科学技术出版社,1991:288
    [24]K.Schneider et al. Electric Arc Furnace[P]. U.S.Patent2164024,1939
    [25]黄清安,宋毓秀.磷化前制件表面活化处理的述评[J].五金科技,1991,(6):30~31
    [26][日]矶田孝一,藤本武彦.表面活性剂[M].天津市轻工业化学研究所译,北京.0轻工业出版社,1973:14
    [27]汪泉发,黎燕.磷化处理用表面调整剂的制备和作用[J].广州化工,1994,22(4):11
    [28]周弘.钢铁零件磷化处理前表面调整工序浅探[J].电镀与精饰,1994,16(1):36~37
    [29]Henkel. Titanium Free Composition and Process for Activating Metal Surfaces Prior to Zinc Phosphating[P]. U.S. Patent 5039362, 1991
    [30]Edward J. Compositions and Process for Metal Treatment[P]. U.S. Patent 4770717, 1988
    [31]Linda S. Process for Activating a Metal Surfaces for Conversion Coating [P]. U.S. Patent 5776265, 1998
    [32]Yamagata Yutaka. Phosphate Method[P]. JP 62260075, 1987
    [33]汪泉发,黎燕.金属磷化前表面调整技术[J].表面技术,1994,23(2):83
    [34]Takaomi Nakayama. Conditioning Metal Surfaces before Phosphating Them[P]. U.S. Patent 6478860, 2002
    [35]Hans Gotta. Method of Treating Metal Surfaces Prior to Phosphatization[P]. U.S. Patent 4384900, 1983
    
    
    [36]Joseph Schapira. Process of Treatment of Phosphatized Metal Surfaces with a Composition Comprising Trivalent Titanium[P]. U.S. Patent 4497666, 1985
    [37]Heinz Portz. Method for Activating Metal Surfaces Prior to Zinc Phosphation[P]. U.S. Patent 4770193, 1987
    [38]Seiichiro Shirahata. Highly Durable Surface Conditioning Agent[P]. U.S. Patent 5908512, 1999
    [39]Tsukasa Yamamoto. Process for Activating Steel Surface Prior to Phosphating Treatment Aqueous Activating Solution Therefore[P]. U.S. Patent 4517030, 1985
    [40]Toshi Miyawaki et al.车身磷化前处理工艺中表面调节剂的作用[J].表面技术,1989,2:16
    [41]郑忠等.分子力与胶体的稳定和聚沉[M].1995:152
    [42]I. Van roy. Study of the Phosphating Treatment of Aluminum Surfaces: Role of the Activating Process[J]. Colloids and Surfaces. A: Physicochemical and Engineering Aspects, 1998, 136:96
    [43]李健美,肖飞.钛系表面调整剂磷化膜的SEM和XRD研究[J].化学通报,1995,9:31~33
    [44]M. Wolpers, J.Angeli. Activation of Galvanized Steel Surfaces before Zinc Phosphating-XPS and GDOES Investigations[J]. Applied surface Science. A: Physicochemical and Engineering Aspects, 2001, 179:282
    [45]Karl-Dieter Brands. Titanium Free Composition and Process for Activating Metal Surfaces Prior to Zinc Phosphating[P]. U.S.Patent. 5112414, 1992
    [46]黄金营.HEDP在工业酸洗中的除垢规律及机理[J].石油化工腐蚀与防护,2002,19(1):59
    [47]赵世匡.复合黄原胶的粘度及其悬浮能力初探[J].食品科学,1998,4(19):14
    [48]金光义.黄原胶在混悬剂和软膏中的应用[J].解放军药学学报,1998,17(6):314
    [49]房秀敏.浅谈三聚磷酸钠[J].日用化学工业,1996,3:34
    [50]范秉德.碱性脱脂剂概说[J].金属表庙技术,1999,(73):64~70
    
    
    [51]张大全.绿色化学及其技术在缓蚀剂研究开发的应用[J].材料保护,2002,(1):30
    [52]刘娅莉.磷化技术最新进展[J].电镀与涂饰,1998,17(4):45~49
    [53]B.Ptacek. Iron Phosphating in a Trichloroethylene Solution[J]. Surface and Coatings Technology, 1996, 82: 277
    [54]陈慕祖.涂装前处理材料的最新进展与展望[J].现代涂料与涂装,1996,3:32
    [55]陈慕祖等.涂装前处理材料的最新成果[J].现代涂料与涂装,1999,1:15
    [56]杨必暖.T3-2表面调整剂的研制及应用.漆前表面处理材料的研究制及应用(内部资料),1994
    [57]郭良生.磷酸钛金属表调调整剂的制备与应[J].福建化工,1992,2:41
    [58]董银卯.不同条件下使用含HEP的缓蚀阻垢剂的配制[J].北京工商大学学报(自然科学版),2002,20(2):12
    [59]周谟银,方肖露.金属磷化技术[M].第一版,北京:中国标准出版社,2000:126

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700