铝电解惰性阳极制备及其应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
因为惰性阳极拥有许多诱人的优点,例如:彻底杜绝了铝电解工业的温室气体排放,减低了生产成本等。但是因为此项技术难度很大,至今仍没有惰性阳极能用于铝电解生产的报导。
     本文作者及其同事在总结前人对惰性阳极研究正反两方面经验的基础上,通过一系列高温电解质浸泡及高温氧化或电解试验,优选出(WC-M)涂层复材、(Al2O3-M)金属陶瓷和(NiFe2O4-M)金属陶瓷三种材料作为研究对象,并用上述三种材料制作的惰性阳极完成铝电解小试。结果表明:在上述三种材料制作的惰性阳极中,以(NiFe2O4-M)阳极的抗腐蚀性最优。但在批量和深入电解应用中,却暴露出许多问题,如由于NiFe2O4氧化物相与Cu-Ni合金相的物理性能差异大、互相润湿性差,导致(NiFe2O4-M)阳极在压制脱模时极易破断,压成型成功率还不足30%;因(NiFe2O4-M)阳极的烧结属互不相溶两相机械混合物的烧结,常规烧结工艺易导致烧结体出现横向裂纹、变形、流淌等缺陷,造成烧结成品率低;现有的电解质会造成惰性阳极腐蚀过快或导电性能下降过快。为了克服上述问题,作者及其同事发明了以下三种创新技术:
     (1)在NiFe2O4粉末与金属粉末混合并压成形前,预先使用高能球磨法使NiFe2O4研磨到纳米/准纳米级别,然后再与金属粉末混合进行普通球磨。此项技术显著改善了NiFe2O4陶瓷粉末与金属粉末M之间的润湿性和相溶性,使压成型成功率提高到95%以上,同时改善了阳极的烧结性能和应用效果;
     (2)(NiFe2O4-M)惰性阳极的主要成分-陶瓷相NiFe2O4与金属相Cu-Ni是两种物理性能差异很大的物质,烧结温度相差也大。采用作者设计的“同步烧结”工艺后(即制造一种工艺环境,使NiFe2O4尖晶石的烧结与配入金属粉Cu、Ni的烧结在同一温度、同一保温时间内完成),消除了烧结裂纹和变形流淌等缺陷,显著提高了烧结产品质量,将烧结成功率从25%提高到90%以上;
     (3)深入开展了(NiFe2O4-M)惰性阳极与电解质的“互适应”研究,优良的互适应性意味着(NiFe2O4-M)惰性阳极可以长时间保持良好导电性和抗腐蚀性。研究结果表明:(NiFe2O4-M)阳极在当前的常规电解质中有较好的导电性,但抗腐蚀性欠佳;在某些低温电解质中的抗腐蚀性较好,但低温电解质会导致阴极铝下层形成导电不良的阴极结壳而使系统导电性变坏,不能有效地进行铝电解;本课题组所发明的NAIE型理想电解质具备常规和低温电解质的优点,与(NiFe2O4-M)阳极配合使用具有良好的互适应性、有持久的导电性(100小时电解中阳极的电阻约为0.5Ω)和满意的抗腐蚀性(100小时的电解后测量不出腐蚀量),可推荐进入中试使用。
     在有关部门的经费合作和支持下,采用NAIE理想电解质配合(NiFe2O4-M)惰性阳极作铝电解已进入中试阶段。中试电解槽装备了自动加料槽控机,电解电流为4kA及自热式加热,预计1-2年后可完成。
The conductive materials resisting against high temperature corrosion and oxidation are mainly used to make inert anodes for aluminium electrolysis in this thesis. Therefore, the fabrication and application of inert anode for aluminium electrolysis are main contents of the thesis.
     Because the inert anodes have several obvious advantages in aspects of eliminating green-house gas release and saving production cost, many researchers have been of primary concern to inert anodes. But the inert anodes have not been used in aluminium electrolysis up to now because of existing many difficulties.
     In this work, firstly, author and his colleagues made choice of a coating composite of (WC-M)/316L,(Al2O3-M) and (NiFe2O4-M) from many materials by soaking tests in electrolytes melting, high temperature oxide tests or electrolysis. Then three types of inert anodes made up of the above three materials and completed tests of aluminium electrolysis. Results shown up that (NiFe2O4-M) anode had better corrosive resistance than other two candidates. But when (NiFe2O4-M) cermet inert anodes were tried further with a batch of anodes, the results proved out that when (NiFe2O4-M) was used as inert anodes, many problems were protruded out again, for examples, anode green bodies were often broken down at pattern drawing in press compacting, success rate was less than30%; In addition, cracks or bending of sintered anodes appeared often in the sintering; otherwise present electrolytes were not suitable with (NiFe2O4-M) anode.
     In order to overcome the above problems, author and his colleagues presented following technical inventions:
     1. Before mixing with metallic powder, calcined NiFe2O4was ball-milled by high energy grinding to nano or quasi-nano sizes which were late ball-milled together with metallic powder in common ball-mill, which is beneficial to improve wetting characteristics of NiFe2O4towards metallic powders. After the process was introduced, success rate of press-compacting anode green bodies increased to above95%, but was only than30%without high energy ball-mill;
     2. The (NiFe2O4-M) anodes are mechanical mixture of NiFe2O4ceramic phase and Cu-Ni metallic phase. Generally, the sintered temperatures of the above two phases are different. The synchro-sintering means that the above two phase were sintered at same temperature and in same duration by means of adjusting the ratio of Cu to Ni in metallic phase in order that the above two phases have very near sintering temperature. After synchro-sintering process was introduced, the bending or cracks of sintered anodes were disappeared satisfactorily;
     3. The mutual appropriation of (NiFe2O4-M) anode with different electrolytes was researched thoroughly by completing many electrolysis tests in different electrolytes. Good mutual appropriation means that (NiFe2O4-M) anodes can keep on better conductivity and lest corrosion for long electrolysis. The tests results pointed out that (NiFe2O4-M) anodes were not appropriated with present electrolytes used commonly and low melting point electrolytes because in the former, the anodes were corroded more rapidly, and in the later, the conductivity did not keep on for long because of producing curdling cathode crust without better conductivity. On the bases of the above results, writer and his colleagues invented a new Na3AlF6Ideal Electrolyte (NAIE) which is composed of Na3AlF6、Al2O3and the others. When electrolyzing in NAIE electrolyte, the (NiFe2O4-M) anode kept on better conductivity and resistance against corrosion for long. Subsequently repeated electrolysis tests were done, the results shown up that for100hs electrolysis tests, the (NiFe2O4-M) anodes were only corroded with trace and were able to keep on ideal electric conductivity in NAIE electrolyte.
     Presently (NiFe2O4-M) anodes and aluminium electrolysis in NAIE electrolyte have been developed already into pilot test stage with4kA current cell.
引文
[1]Alcoa plans for inert anodes, JOM, May 2001.
    [2]铝及铝合金标准汇编,中国标准出版社,2004,1
    [3]邱竹贤,泥土中的铝-科技腾飞的使者[M].北京:清华大学出版社,2000,p.10-24
    [4]The Aluminum Association. May 1997, Aluminum Industry Technology Roadmap, Washinton, DC
    [5]The Aluminum Association, Feb.1998, Inert Anode Roadmap. Washington, DC.
    [6]Ross Brindle, Nancy Margolis, Sara Dillich, Strategy for Technology Innovation in the U.S. aluminum industry,1999:p.23-31
    [7]The Aluminum Association.1998, Industry Facts:Facts at a Glance. Aluminum Association Home Page, Http://www.aluminum.org/facts.cfm/2/114, Feb.1999
    [8]The Aluminum Association. March 1999. Aluminum Industry Roadmap for The Automotive Market. Washington, DC.
    [9]2011年3月世界原铝产量报告(含中国),中国铝业网http://www.alu.cn/aluMarket/MarketDisplay_50216.html
    [10]刘静安,谢水生,铝合金材料的应用与技术开发[M],北京,冶金工业出版,2004
    [11]苏苏,中铝称下半年力争不亏损,http://www.cnal.com/,2009-08-26
    [12]伦敦铝下试2300美元支撑力度, www.chinania.org.cn,2008-09-25
    [13]Nancy Margolis, Jack Eisenhauer, Inert anode roadmap-A framework for technology development, The Aluminum Association in conjunction with The U.S. Department of Energy, February 1998, Http://www.oit.doe.gov/aluminum/inertmap.shtml
    [14]Noel J. Future developments in the Bayer-Hall-Heroult process. Burkin A R. Production of aluminium and Alumina John Wiley & sons,1987:p.188-207
    [15]Joeseph C. Benedyk, Status report on inert anode technology for primary aluminum, Light Metal Age, Feb.2001:p.36-37
    [16]Rudolf P.Pawlek, Inert Anodes Research, Development, and Potential[C], Light Metal, Age 60 (1-2), February 2002:p.50-51
    [17]Report of the American Society of Mechanical Engineer, Technical Working Group on Inert Anode Technologies:under contract #DE-FC07-981D12652 to The U.S. Department of Energy, Office of Industrial Technologies, July 1999.
    [18]De Nora V. Inert anodes are knocking at the door of aluminium producer. CRU annual meeting London. June 2001:26
    [19]R.P.Pawlek, Inert Anodes:An Update[C], Light Metals (TMS),283-7(2004).
    [20]R.E.Hanneman et al., Inert anode technologies report, Report CRTD, Vol.53 (New YorkL American society of Mechanical Engineers, July 1999)
    [21]Sadoway C R. Inert anodes for the Hall-Heroult cell:the ultimate materials challenge.JOM,2001,53(5):p.34-35
    [22]Keniry J.The economics of inert anodes and weltable cathodes for aluminum reduction cells. JOM.2001,53(5):p.43-47
    [23]Billehang K. Oye H A. Inert anodes for Aluminium electrolysis in Hall-Heroult cells (I), Aluminium,1981,57(2):p.146-150
    [24]_Billehang K. Oye H A. Inert anodes for Aluminium electrolysis in Hall-Heroult cells (II), Aluminium,1981,57(3):p.228-231
    [25]刘卫,刘静梅,吴贤熙,大型铝电解惰性阳极的研制,轻金属,2006年第5期:37-40
    [26]J. Thonstad, Anodic over voltage on platinum in cryolite-alumina melts [J], Electrochemical Acta.1968,13:449-456
    [27]张明杰,铝电解中阳极过程研究,沈阳,东北大学,1985
    [28]V Subramanian, M.G Lakshmikantha, J.A.Sekhar. modeling of sequential reactions during micro pyretic synthesis[J], Metal Mater Trans A,1996,27(24):p.961-972
    [29]A.I.Belyaev, YE. Studentsov. Electrolysis of alumina with noncombustible (metallic) anode[J], Legkic Metally,1937,6(3):p.17-22
    [30]Sadoway D.R., Inert anode for the Hall-Heroult cell:The ultimate materials challenge[J], JOM,2001,53 (5):p.34-35
    [31]Vivien Singleton,Barry J.Welch, Influence of Cobalta Additions On Electrochemical Behaviour of Ni-Fe-based Anodes For Aluminium Elecdtrowinning, Light Metals 2011 edited by Stephen J. Lindsay, TMS,2011,p.1123-1128
    [32]JohnN.Hryn, Donald R. Sadowat,Cell testing of metal anode for aluminium electrolysis [J], Light Metals,1993,p.475-483
    [33]Jiang Hong, John N, Hryn and Greg K. Krundick, Aluminum Electrolysis Tests with Inert Anode in KF-AlF3 [J]. Light Metal,2006 Edited by Travis. J.Galloway TMS, p. 421-423
    [34]D.R. Sadoway, A materials systems approach to selection and testing of nonconsumable anodes for the Hall cell, Light Metals (TMS),1990.
    [35]Mark Glucina, Margaret Hyland, Laboratory-scale performance of a binary Cu-Al alloy as an anode for aluminium electrowinning, Corrosion Science 48 (2006): p.2457-2469
    [36]Vittorio de Nora, VERONICA and TINOR 2000 New Technologies for Aluminum Production, The Electrochemical Society Interface, Winter 2002:p.20-24
    [37]Haugsud R. High-temperature oxidation of Ni-20wt%Cu from 700 to 1000℃[J]. Oxidation of Metals,2001,55/(5/6):p.571-583
    [38]J.A.Sekhar, J Liu, Graded Non-consumable anode material[J]. Light Metals,1998,p.579-603
    [39]于先进,邱竹贤, Cu-Ni基合金在氧气中的高温氧化腐蚀[A],赫冀成,铝冶金进展-庆祝邱竹贤院士八十诞辰[C],沈阳:东北大学出版社,2001:p.431-434
    [40]Zhongning Shi, Junli Xu, Qiu Zhuxian, Copper-nickel superalloys as inert alloy anodes for aluminum electrolysis[J], JOM,2003,55(11):p.63-65
    [41]石忠宁,邱竹贤,徐君莉,金属基铝电解惰性阳极及其制备方法[P],CN:1443877A,2003,9.24。
    [42]石忠宁,邱竹贤:Ni-Fe-Cu惰性金属阳极的抗氧化和腐蚀性能[J],中国有色金属学报,2004年第4期,p.591-595。
    [43]Zhongning Shi, Xiangliang Zhao, Junli Xu, Anti-oxidation properties of Iron-Nickel Alloy at 800-900℃, Light metals 2008, Electrode Technology Symposium:1051-1054
    [44]J.J. Duruz, V.De nora, O.Crottaz,Nickel-iron alloy-based anodes for aluminum electrowinning cells, WO Patent 00106,804,8,Jan.1999.
    [45]J.J.Duruz,V.De nora, A low consumable non-carbon meta-based anode for aluminum production cell[P], US Patent 6248,227,30 July 1998.
    [46]T.R.Beck, A non-consumable metal anode for production of aluminum with low temperature fluride melts, Light metals,1995(TMS):p.355-360
    [47]Z.N. Shi, J.L. Xu, Z.X.Qiu, Fabrication and test of metal matrix composites as advanced anodes for aluminum electrolysis, Canadian Metallurgical Quarterly, 2004,Vol 43, No.2:p.259-264
    [48]Y Zhang, Wu X, Rapp R A.,Modeling of the solubility of NiO/NiAl2O4 and FeO/FeAl2O4 in cryolite melts[C],Crepean P N. Light Metals. Warrendale, Pa:TMS, 2003,p.415-421
    [49]Qiu Zhuxian, Shi Zhongning, Xu Junli, Metal-alumina cermet inert anode in a 100 A bench-scale cell for aluminium electrolysis, ALUMINIUM,80. Jahrgang,2004,3: p.219-221
    [50]邱竹贤、石忠宁,铝电解用Fe-Ni-Co-Al2O3金属陶瓷惰性阳极,中国工程科学,2004,Vo1.6 No.8:p.35-39
    [51]邱竹贤,铝电解原理与应用[M],徐州:中国矿业大学出版社,1998:p.449-457
    [52]N. Xie, W.Z. Shao, L. Zhen, Electrical Conductivity of inhomogeneous Cu2O-10CuAlO2-xCu Cermets, Communictions of the American Ceramice Society,2005,Vol.88,No.9:p.2589-2592
    [53]Tao Sun, Xiaoshan Ning, Yongsheng Han, Study on spark plasma sintering of nial2or-metal inert anodes, Key Engineering Materials Vols.280-283(2005):p.771-774
    [54]Augustin C O, Srinivasan L K, Srininasan K S. Inert anodes for environmentally clean production of aluminium. Bull Electrochem,1993,9(8-9):p.502-503
    [55]于先进、邱竹贤、金松哲,ZnFe2O4基材料在NaF-AlF3-Al2O3熔盐中的腐蚀,中国腐蚀与防护学报,2000,20(5):p.275-279
    [56]丁金城,于先进,赵增典,铝电解用惰性阳极研究现状,甘肃科技纵横,2006年(第35卷)第4期:p.51-52
    [57]A.I.Belyaev, A.E.Studentsov, Legkie Metally 6(3) (1937)17
    [58]A.I.Belyaev, A.E.Studentsov, Legkie Metally 8(1) (1938) 7
    [59]J.D.Weyand, D.H.Deyang, S.P.Ray, G.P. Tarcy and F.W.Baker. Inert Anodes for Aluminium Smelting Final Report, DOE No. DOE/CS/40158-20, Department of Energy, Idaho Operations Office, Idaho Falls, ID (1986).
    [60]T.R.Alcorn, A.T.Tabereaux et al. Operation Result of Pilot Cell Test with Cermet "inert" Anodes[C]. Light Metals 1993:p.433-443. [61] C F Windsch, Strachan D M, Henager C H, et al. Materials Characterization of Cermet Anodes Tested in a Pilot Cell[C]. Genesca J. Light Metals. Denver:The Minerals, Metals and Materials Society,1993:p.445-453
    [62]J.S.Gregg, M.S.Frederick et al. Testing of Cerium Oxide Coated Cermet Anodes in a Laboratory Cell. Light Metals 1993:p.455-464. [63] J.S.Gregg, M.S.Frederick et al. Pilot Cell Demonstration of Cerium Oxide Coated Anode. Light Metals 1993:p.465-473.
    [64]Ray S. P, Electrolysis with an inert electrode containing ferrite, copper and silver[P], US patent 5865980,1997
    [65]席锦会,两步烧结制备铝电解惰性阳极材料的研究[D](Study on Preparation Inert Anodes Used in Aluminum Electrolysis by Two-step Sintering),东北大学博士学位论文,2006
    [66]C.F.Windisch and S.C.Marschman. Electrochemical Polarization Studies on Cu and Cu-containing Cermet Anodes for the Aluminium Industry', Battellep-PNL report No. PNL-SA-14299, Pacific Northwest Laboratories, Richland, WA, USA (1986)
    [67]C.F.Windisch. Comparative Study on Cermet and Platinum Anodes for the Electrolytic Production of Aluminium, Electrochemistry in Mineral and Metal Procesing III,The Electochemical Soc., Pennington NJ(1992)
    [68]S.P.Ray, Effect of Cell Operating Parameters on Performance of Inert Anodes in Hall-Heroult Cells[C], Light Metals 1987
    [69]WeIch B.J., Hyland M.M., James B.J., Future materials requirements for the high-energy-intensity production of aluminum[J],JOM,2001, p.53(2):13-18
    [70]Qingwei Qin, Yanqing Lai, Jin Xiao, Prelininary testing of NiFe2O4-NiO as ceramic matrix of cermet inert anode[J], Trans.Nonferrous Met. Soc. China. Vol.13.No.5.Oct.2003
    [71]刘业翔,功能电极材料及其应用[M],中南工业大学出版社,1996:p.144-145
    [72]Horinouchi K, Tachikawa N, Yamada K, DSA in aluminum reduction cells. In: Organizing Committee of the First international Symposium on molten Salt and Technology, eds. Proceedings of the first international symposium on molten salt chemistry and technology. Kyoto, Japan:Molten Salt committee of the Electrochemical Society of Japan,1983:p.65-68
    [73]秦庆伟,铝电解惰性阳极及腐蚀率预测研究[D],中南大学博士论文,2004
    [74]Grjotheim K. Krohn C. Malinovsky M et al. Aluminium electrolysis Fundamentals of the Hall-Heroult process.2nd edition, Dusseldorf:Aluminium-Verlag.1982:p.265
    [75]Thonstad J, Fellner P, Haarberg G M et al. Aluminium electrolyasis-Fundamentals of the Hall-Heroult process.3nd edition, Dusseldorf:Aluminium-Verlag,2001:p.279
    [76]E.OLSEN and J.THONSTAD, Nichel ferrite as inert anodes in aluminium electrolysis: Part I Material fabrication and preliminary testing, Journal of Applied Electrochemistry 29(1999):p.293-299
    [77]Binary Alloy Phase Diagrams, vol.2,2nd edn.ASM Intternational, USA(1990)
    [78]Y.S.Touloukian. Thermophysical Properties of High Temperature Solid Materials, vol.4b, Collier-Macmillan ltd., London, UK(1967):p.1089.
    [79]Luo Tao, Preparation of a cermet inert anode based on ferrous nickel and its use in an electrolysis study[C], Light Metals 2005.134th TMS Annual Meeting,541-3,2005
    [80]Pawlek R P. Inert Anode:An update[C]. Scheiderw. Light Metals[C]. Warrendal:TMS, 2002:449-456
    [81]黄培云,粉末冶金原理,第2版[M]。北京:冶金工业出版社,1997。
    [82]Xinghua Liu, Siba P.Ray, Alfred F et al, U.S.patent.7014881B2(Mar.21.2006)
    [83]Siba P.Ray, Xinghua Liu, Douglass.A, U.S.patent.6372119B1(Apr.21.2006)
    [84]J.D.Weyand. Manufacturing Procdess Used for the Production of Inert Anodes', light Metals 1986. The Mineral, Metals and Materials Soc. Warrendale. Warrendale:TMS, PA(1986)[C]:p.321-339.
    [85]Ray S P and Woods R W. Controlled atmosphere for fabrication of cermet electrodes[P]. US patent 5794112(1997).
    [86]R.K.Dawless,et al., Reduced Temperature Aluminum Production in an Electrolytic Cell Having an Inert Anoce[P], U.S. patent No.6030518, Feb.29,2000
    [87]S.P.Ray, et al., Inert Anode Contining Metal Oxides, Copper and Noble Metal, U.S. patent No.6126799,oct.3,2000.
    [88]KOVROV VADIM ANATOL'EVICH, INERT ANODE TO ELECTROLYTIC PRODUCTION OF METALS[P], Russian Patent No.RU 2008126361,2010-01-10
    [89]Jinhui Xie, Yingjie Xie, Guangchun Yao, Effect of additive on corrosion resistance of NiFe2O4 ceramics as inert anodes, Trans. Nonferrous Met. Soc. China 18(2008): p356-260
    [901秦庆伟,赖延清,张刚,铝电解惰性阳极用Ni-Zn铁氧体的固态合成[J],中国有色金属学报,2003,13(3):p.769-773
    [91]赖延清,黄蔚,田忠良等,铝电解NiFe2O4基金属陶瓷惰性阳极性能的研究进展[J],矿产保护与利用,No.4.Aug.2006
    [92]吴贤熙,徐利华,张立成,铝电解大型金属陶瓷惰性阳极制备及电解测试,贵州大学学报,Vol.35 No.3,6月2006年:p.22-24
    [93]Xianjin Yu, Guangli Zhang, Zhuxian Qiu, Electrical Conductivity and Corrosion Resistance of ZnFe2O4-Based Materials Used as Inert Anode for Aluminum Electrolysis, Jounal of Shanghai University, Vol.3, No.3, Sep.1999:p.251-254
    [94]张刚李劫赖延清,CaO掺杂对10NiO-NiFe2O4基复合陶瓷致密化及导电性能的影响,材料与冶金学报,2007年03期:p.214-219
    [95]何汉兵黄伯云李志友,BaO掺杂对10NiO-NiFe2O4复合陶瓷烧结致密化的影响,中国有色金属学报,2008年第18卷第5期:p.851-855
    [96]王家伟,Na3AlF6-K3AlF6-AlF3体系的初晶温度、Al2O3溶解能力及NiFe2O4基惰性阳极低温电解腐蚀研究[D],长沙:中南大学,2008:p100-111
    [97]张雷,周科朝,铝电解用NiFe2O4型金属陶瓷惰性阳极的研究进展,材料导报,2005年6月第19卷第6期,p.48-51
    [98]Donald Sadoway, Inert Anodes for the Hall-Heroult Cell [J].JOM,2001(5):34-35
    [99]PHILIPPE TAILHADES, Inert anode for producing aluminium by igneous electrolyse and method for producing said anode[P],S. Africa Patent No. ZA 200602351, 2007-05-30
    [100]VERONIQUE LAURENT, Method for the manufacture of an inert anode for the production of aluminium by means of fusion electrolysis[P], S. Africa Patent No. ZA 200508244,2007-01-31
    [101]张刚,赖延清,田忠良,铝电解用NiFe2O4基金属陶瓷的制备,材料科学与工程学报,Vol.21 No.4,Aug.2003
    [102]Siba P.Ray,Xinghua Liu, Frankie E. Phelps et al,US Patent No.6821312B2, Nov.23,2004
    [103]张雷,周科朝,李志友,气氛对NiFe2O4陶瓷烧结致密化的影响,中国有色金属学报,Vol.14 No.6,2004年6月:p.1002-1006
    [104]Yuchun Li, Tao Zhou, Kechao Zhou, A new corrosion-resistant material for use as an inert anode in electrolytic molten salt aluminium extraction systems, Anti-Corrosion Methods and Materials, Vol.51,No.1,2004:p.25-30
    [105]焦万丽,张磊,姚广春,NiFe2O4合成工艺对惰性阳极力学性能及电导率的影响,东北大学学报,Vol.26,No.3,Mar.2005:p.270-273
    [106]于先进,戴厚晨,邱竹贤,NiFe2O4基铝用惰性阳极的试制[J],沈阳黄金学院学报,1996,15(2):p.120-124
    [107]赵群,邱竹贤,小型金属陶瓷惰性阳极的低温铝电解实验[J],轻金属,2002,(10):p.49-50
    [108]Galasiu R et al. Inert anodes for aluminium electrolysis:variation of the properties of nickel ferrite ceramics as a function of the way of preparation. Haarberg G M. Eleventh International Aluminium symposium. Norway, September 19-22,2001: p.133-136
    [109]Lai Yanqing, Sun Xiaogang, Li Jie, Densification of Ni-NiFe2O4 cermets for aluminum electrolysis, Trans. Nonferrous Met.Soc., China Jun.2005Vol.15 No.3, p.666-670
    [110]杨宝刚,于先进,邱竹贤等,铝电解用NiFe2O4基惰性阳极的研究[J],有色矿冶,1998,14(6),p.21-24
    [111]Tao Luo, Zhaowen wang, Bingliang Gao, Study on corrosion of cermet iner anode based on Nickel Ferrite spinel, Light Metal,2006, TMS:p.491-493
    [112]Olsen Espen, JJormar Thonstad, The behavior of Nickel ferrite cermet materials as inert anodes [J], Journal of applied electrochemistry 1000,23:p.293-299
    [113]Stanislaw Pietrzvk, Ryszard Oblakowski, Investigation of the concentration of the inert anodes in the bath and metal during aluminium electrolysis [J], Light Metals, 1999,p.407-411
    [114]Odd-Arne Lorentwen, Jormar Thonstad, Electrolysis and post-testing of inert cermet anodes[J], Light Metals 2002,p.457-462
    [115]W.C. Sleppy,C.N. Cochran,Bench scale electrolysis of aluminium in sodium fluoride-aluminium fluoride melts below 900℃, Warren S. Peterson,eds,Light Metals 1979, New Orleans,Louisiana,USA,TMS,1979:p.385-395
    [116]Jianhong Yang et al., New opportunities for aluminum electrolysis with Metal anodes in a low temperature electrolyte system, Light Metals 2004, EMS, Warrendale PA,2004:p.321-326
    [117]Jean Jacques Duruz,Geneva, Low temperature alumina electrolysis[P]. United States Patent 4681671,1987
    [118]Jomar Thomtad,Pavel Fellner,Geir Martin Haarberg, Aluminium Electrolysis: fundamentals of the Hall-Herault process[M], Dusseldorf D-40003, Germany, 2001:p.335
    [119]Haiming Xiao, Rune Hovland, Sverre Rolscth, On the corrosion and the behavior of inert anodes in aluminum electolysis[C]. In:Cutshall E. R., eds. Light Metals 1992, Warrendale, PA, USA:TMS,1992:p.389-399
    [120]Beck T.B., Brooks B., Electrolytic reduction of aluminum[P]. US Patent,5006209, 1991
    [121]Jacobs Stanley C., Jarrett Noel, Alumina reduction process[P]. US Patent, 3852173,1974
    [122]A.F. La Camera, Electrolysis of alumina in a molten salt at 760℃[C]. In:Campbell P.G., eds. Light Metals 1989, Warrendale, PA.,USA:TMS,1989:p.291-295
    [123]La Camera Alfred F,Tomaswick Kathleen M, Ray Siba P, Process and apparatus for low temperature electrolysis of oxides[P]. United States Patent,5279715,1994
    [124]A. Sterten, S. Rolseth, E. Skybakmoen, A. Aolheim and J. Thonstad. Some aspects of low-melting baths in aluminium electrolysis[C]. In:G. C. Paul, eds. Light Metals 1988, Warrendale, PA., USA:TMS,1988:p.663-670
    [125]Kathleen M,Tomaswick,Low temperature aluminum production[P].US.Pa.6428675,2002
    [126]Haupin W. E.. Oxide solubility in lithium chloride-aluminum chloride melts[C]. In:Warren S. Peterson, eds. Light Metals 1979. New Orleans,Louisiana,USA,1979:p.353-361
    [127]P.J. Rhedey, Anode filler coke porosity studies[C],In:G.C.Paul,eds.Light Metals 1988, Warrendale,PA.,USA:TMS,1988:p.217-221
    [128]邱竹贤,张明杰,何鸣鸿等,低温铝电解的研究[J],轻金属,1984,(6):33-36
    [129]邱竹贤,中国铝工业应用新型电极材料的研究与展望[J],中国工程科学,2001,Vol.3 No.5:p.50-54。
    [130]吴贤熙,安丽娜,毛小浩,铝电解惰性阳极研究[J],轻金属,2000,(4):p.41-43
    [131]Julsrud, Risdal, Material for a dimensionally stable anode for the electrowinning of aluminum[P], U.S. Patent 7141148
    [132]J.Li,Q.S. Zhang, Y.Q.Lai, Thermal stresses Relaxation design of Ni/NiFe2O4 System functionally graded cermet inert anode, Acta Metallurgica Sinica (English letters), Vol.18 No.5, Oct.2005:p.635-641
    [133]张晓顺,SnO2基惰性阳极熔盐电解测试[J],有色矿冶,2005,21(6)
    [134]A.M. Popescu, V Constantin, Implementation of a metallic contract on a ceramic SnO2-based electode[J],Rev. Chem 1997,48(8):p.691-692
    [135]A. M. Vecchio-Sadus et al. Tin Oxide-based ceramics as inert anodes for aluminium smelting:a laboratory study [J]. Light Metals,1996:p.259-265
    [136]薛济来,邱竹贤,铝电解用Sn02基惰性阳极的制备及其性能[J],东北工学院学报,1984,39(2):p.107-115
    [137]K Grjotheim, H Kvande,Zhuxian Qiu,et al. Aluminum electrolysis in a 100A Laboratory cell with inert anodes[J], metals 1998,42(6):p.587-589
    [138]Qiu Z X, Fan L M. The rate-determining step of metal loss in cryolite alumina melts. J. P.McGeer.Light Metals 1984. Warrendale, Pa:TMS,1984:p.789-804
    [139]J H Yang, Y X Liu, H Z Wang, The behavior of inert anodes SnO2-based inert anodes in aluminum electrolysis[J], Light Metals,1993:p.193-495
    [140]蔡祺风,刘业翔,SnO2基惰性阳极在Na3AlF6-AlF6-Al2O3熔融电解质中腐蚀行为的研究[J],轻金属,1986,(9):p.28-33
    [141]J.N.Hryn, M.J.Pellin, A dynamic inert metal anode, Light Metal 1999, TMS:377-381
    [142]Meleod A D, Haggerty J S, Sadoway K R. Inert anode materials for Hall edlls[C]. Light Metals[C], Warrendale:TMS,1987,p.269-273
    [143]邱竹贤,铝电解原理与运用[M],中国矿业大学出版社
    [144]王飚,王宇栋,水机磨蚀与抗磨蚀水机材料[M],2008,中国水利水电出版社
    [145]朱玉华,葛立新,马存真,铝冶炼标准手册[M],2005年,冶金工业出版社
    [146]梁英教,车荫昌,刘晓霞,无机物热力学数据手册[M],东北大学出版社,1993。
    Ling Yinjiao, Che Yinchang, Liu Xiaoxia, Handbook of Thermodynamic Data on Inorganic Maters [M], Press of Northeastern Uiversity,1993
    [147]郑子樵,材料科学基础[M],中南大学出版社,2005
    [148]J.C. Slater,《化学物理期刊》(J.Chem. Phys) 1964,41,3199.
    [149]邱竹贤,王兆文,高炳亮,尖晶石型铝酸镍基金属陶瓷情性电极,[P].CN:1465749,2004.01.07
    [150]石忠宁,徐君莉,邱竹贤,王兆文,高炳亮,铁镍钴金属基复合材料阳极铝电解研究,稀有金属材料与工程,Vol.34,Suppl.2 September 2005:p.151-153
    [151]赖延清、秦庆伟、段华南,NiFe2O4基金属陶瓷材料的制备及其耐腐蚀性能,中南大学学报(自然科学版),Vol.35 Dec.No.6,2004
    [152]叶大伦,实用无机物热力学数据手册[M],冶金工业出版社,2002
    [154]钱旭坤,朱春城,赫晓东,Co-Ni-XNiFe2O4惰性阳极的电导率及耐腐蚀性能[J],稀有金属材料与工程,Vol.36,No.11,2007年11月
    [155]吴贤熙,刘卫,贾贺峰,罗琨琳,电解铝用纳米金属陶瓷惰性阳极材料及其制备方法[P],中国专利号CN200710078043.1,2008-9-3
    [156]贾贺峰,纳米NiO-Cu-NiFe2O4金属陶瓷惰性阳极的制备与研究[D],中国优秀硕士学位论文全文数据库,贵州大学,2007
    [157]Zhang Lei. Microstructural evolution of NiFe2O4-10NiO powder prepared by high temperature solid state reaction[C]. TRANSACTIONS OF NONFERROUS METALS SOCIETY OF CHINA. V16(5), OCT 2006,1076-1079
    [158]W.D.Kingery, H.K.Bowen, D.R.Uhlmann,陶瓷导论(Introductionto ceramics),中国建筑工业出版社,1982
    [159]秦庆伟等,烧结工艺对铝电解NiFe2O4-Cu金属陶瓷阳极性能的影响,武汉科技大学学报(自然科学版),2006年29卷5期,p.436-439
    [160]刘业翔,李劫,现代铝电解[M],冶金工业出版社,2008
    [161]Colin J. Smithells, Smithells Metals Reference Book[M], Oxford, Boston, Butterworth-Heinemann,1998.
    [162]李新征,XM (10NiO-NiFe2O4)金属陶瓷惰性阳极的烧结性能、导电与抗腐蚀性研究,中南大学硕士论文,2006年
    [163]王家伟,赖延清,X(K或Li)3AlF6-A1203体系低温电解研究现状评述[J],轻金属,2007,01
    [164]G. P. Tarcy, Conference paper, Light Metals 1986:edited by R.E. Miller, the Minerals Metals and Materials Soc, Warrendale, Pa 1986:p.309-320
    [165]E.Olsen, Graduation thesis, Norwegian Inst. Of Technology,1991
    [166]Dewing Ernest W, The Chemistry of the Alumina Reduction Cell, CANADIAN METALLURGICAL QUARTERLY,1991,30(3):p.153-161
    [167](?)degard R., Sterten A., Thonstad J., On the Solubility of Aluminum in Cryolitic Melts, METALLURGICAL TRANSACTIONS B-PROCESS METALLURGY,1988, 19B(3):p.449-457
    [168]J. W.Ebans, R.Keller, Factors Affecting the Life Time of Inert Anodes for Aluminum Electrolysis, Electrochem. Soc. Meeting Extended abstract No.653. Pennington, Nj,2986:p.966
    [169]M. Sorlie and H.A.(?)ye, "Cathodes in Aluminium Electrolysis",2nd Ed., Aluminium-Verlag GmbH, Dusseldorf,1994,
    [170]J.D.De Young, Conference paper, light metals 1986:Edited by R.E.Miller, The Minerals Metals and Materials Soc., Warrendale, Pa 1986:p.209-309

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700