修井作业机械化装置的系统仿真与实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在石油与天然气生产过程中,修井作业是一个重要的环节。我国大部分油田都已进入开发中后期,修井任务越来越繁重,目前绝大部分修井作业尤其是小修作业,仍采用传统的机械化水平很低的人工作业方式,劳动强度高,安全性差,作业环境也十分恶劣。为使修井工人远离井口,降低修井作业的劳动强度,提高修井作业的效率,实现安全修井作业,研制开发适用于我国油田情况的修井作业机械化系统是大势所趋。
     本文在充分调研分析现场修井作业工艺及国内外各种钻修井机械自动化技术的基础上,提出并设计了一套实现管柱拉送排放、管柱抓取、管柱扶正、对中及管柱上卸扣的机械化装置,本文主要对其起升系统和上卸扣系统的建模理论问题和系统仿真问题进行了研究和分析。
     在修井作业机械化系统的总体设计方案和各组成部分的详细结构设计方案基础上,基于SolidWorks软件创建出整套系统的三维实体模型。
     采用多刚体运动学与动力学理论,研究了吊环吊卡系统运动学、动力学理论模型,推导建立了吊卡的位移、速度和加速度等运动学方程,进行了吊环吊卡摆出过程的逆向动力学分析。基于ADAMS机械系统动力学分析软件,分别对扶正手摆出过程、扶正手推送油管过程及吊环吊卡摆出过程进行了机液系统联合仿真,获得了工作部件的各种动态特性,找到有利于工作部件运动的液压系统参数,为实际液压系统设计与元件的选择提供理论依据。对油管与完全摆出状态的扶正手的接触碰撞过程及油管与扶正手摆向井口的接触碰撞过程进行了系统仿真研究,分析了扶正手承接件的材料、油管重量及节流阀开口大小对接触碰撞过程的影响。
     文中利用功率键合图理论以及模块化方法建立了修井作业机械化系统的功率键合图模型,对上卸扣系统进行了重点分析,将其简化为阀控非对称缸、阀控马达及定量泵-溢流阀等液J压单元。基于解析建模法,应用物理学、流体力学、动力学定律和方程推导其数学模型及传递函数,为其仿真实验奠定了理论基础。在此基础上,采用AMESim软件建立起上卸扣系统的仿真模型,进行了变参数仿真实验研究,掌握了各参数变量随时间变化的规律,这些研究工作为评价上卸扣系统的工作性能提供了理论依据。
     文中最后对试验样机及现场试验情况进行了介绍,将试验测得的结果与仿真结果进行了对比,就试验数据与仿真数据之间的误差及其成因进行了分析,验证了系统理论模型的正确性,证明利用系统仿真技术来研究系统动态特性是可行的,仿真结果对于全面深入掌握系统工作特性具有指导意义。
Workover operation is important in the oil and gas production. As most oilfileds in our country have entered into the later period, workover tasks become more and more heavy. But the traditional operation mode with lower level mechanical automation is still used in most cases, especially in common maintance. Workover wokers work in high labor intensity and poor safety, and the working environment is also very poor. In order to let the workover wokers far away from wellhead, reduce labor intensity, increase the operational efficiency and realize safe operation, it is a general trend to design and develop new type of workover mechanical system to satisfy actual situations.
     In this paper, based on full investigation and analysis of the progress of workover operation and domestic and aboard workover and drilling mechanical automation technology, a system scheme that can better realize draging pipe, feeding pipe, pushing pipe, grasping pipe, centralizing pipe, make-up and break-out pipe by mechanical automation is put forward. This system mainly consists of integrated hydraulic tong system and hoisting system. The paper is mainly focused on the research and analysis about modeling and simulation of hoisting system and make-up and break-out system.
     The paper finished overall design of the new type workover mechanical system, and the detailed and reasonable design of all components of the system are given. The 3D models of the system are created in SolidWorks software.
     According to multiple rigid body kinematics and dynamics, research and analysis of modeling ring-elevator system are made. The kinematics equations of elevator including position, velocity and acceleration are derived. The inverse dynamics analysis is also made for the ring-elevator system. Based on ADAMS, the mechanical-hydraulic simulation of the swinging out manipulator, its pushing oil pipe and the swinging out rings-elevator are made respectively. Various dynamic characteristics of the composition parts are obtained, and hydraulic system parameters are founded, which is beneficial to the work of composition parts and provides theoretical basis for the selection of actual hydraulic component. The mechanical-hydraulic simulations, including the process of contact-impact between oil pipe and centralizing manipulator that in the state of swinging out completely and the state of the oil pipe swinging to the wellhead are simulated. The influence of the materials of supporting part of centralizing manipulator, the weight of oil pipe and the open size of throttle valve in the process of contact-impact are also analyzed.
     The properties of workover mechanical system lie in good structure design and the ability of quick and accurate response, and the system coupling relationship constrains its performance. That is, it decides whether the performance of the whole system is good or not. In this paper, bond graph and modular approach are used to establish oil pipe make-up and break-out system. The system is simplified as a valve controlled asymmetrical cylinder, valve controlled motor, quantitative pump-relief valve and so on. Based on physics, fluid mechanics, and dynamics, the mathematical model and transfer function are obtained, which is the theoretical foundation of the system simulation. On this basis, AMESim is used to modeling oil pipe make-up and break-out pipe system, then making the simulation experiments of variable parameters. These studies provide theoretical basis for evaluating the performance of oil pipe make-up and break-out system.
     The paper introduces experimental prototype and field test at last. Contrast of test results and simulation results is made, and the error between the test data and the simulated data are analyzed. The correctness of theoretical models of the system is verified, and simulation techniques are feasible to study system dynamic characteristics. The simulation results are helpful to understand the working characteristics of the system thoroughly and comprehensively.
引文
[1]尹永晶,杨汉立.石油修井机[M].北京:石油工业出版社,2003:1-15.
    [2]聂海光,王新河.油气田井下作业修井工程[M].北京:石油工业出版社,2005:1-35.
    [3]王俊亮,张天军.井下作业[M].北京:石油工业出版社,2006:1-24.
    [4]刘发群,詹逸伦.井下作业工[M].哈尔滨:黑龙江人民出版社,2001:8-58.
    [5]徐忠明.轻型修井机的技术现状与开发展望[J].石油机械,2000,28(2):48-51.
    [6]彭金申.油田小修作业设备的技术现状与发展[J].石油机械,1999,27(3):53-54.
    [7]Don Francis. World-class workover [J]. E&P,2006,53(1):89-91.
    [8]石冰,谢鹏明,Louis Witte.两人操作的新型修井机[J].国外石油机械,1997,(1):46-47.
    [9]陈蔚茜,穆延旭等.国外不压井作业机[J].石油机械,2005,33(01):63-65.
    [10]柴辛,李云鹏,刘锁建.国内带压作业技术及应用状况[J].石油矿场机械,2005,34(5):31-33.
    [11]Halliburton International Inc. Halliburton Rigless Services [EB/OL]. http://www.halliburton.com/.
    [12]张阳春,杨志康,郭东.国内外石油钻采设备技术水平分析[M].北京:石油工业出版社,2001:183-211.
    [13]Udo C, Devin R, Dan Kara, Sean Mclaughlin. True Hybrid Operations Combining Coiled-Tubing Drilling and Conventional Rig Workover Techniques and Practices [J]. SPE Drilling & Completion.2006, vol.21:248-253.
    [14]胡博仲.井下作业机械化配套装置[M].北京:石油工业出版社,2005:152-168.
    [15]谭云,陈传庆.修井起下作业中的油管机械化排放问题[J].石油机械,1997,25(3):46-48.
    [16]崔旭明,孟繁志.修井作业油管自动拉排机的结构与参数设计[J].石油机械,2002,30(9):14-16.
    [17]崔时光.油田修井自动作业装置[P].中国专利:200410036305.4,2005.
    [18]张宝增,王瑞和.修井作业用新型管柱起下装置[J].石油机械,2006,34(10):49-51.
    [19]张宝增,王瑞和.修井作业中的自动起下管柱系统探讨[J].石油矿场机械,2007,36(4):22-25.
    [20]陈朝达.顶部驱动钻井系统[M].北京:石油工业出版社,2001:149-153.
    [21]Scandinavian Oil Gas Magazine Group. Award-Winning Power Tong Sets to Revolutionize the Market [J]. Scandinavian Oil Gas Magazine.2007,33(7):182.
    [22]V-tech. Wedge Device[P]. WO 126319 A1,2007.
    [23]Simpson M, David S, Colin J. Tubular transfer system[P]. US Patent:6705414,2004.
    [24]谢永金.我国修井机发展的技术现状与展望[J].石油机械,2005,33(10):72-75.
    [25]兰州石油机械研究所.国外动力大钳发展概况之一[J].石油矿场机械,1972(3).
    [26]唐上智,王继兰.钻杆动力钳国外发展情况[J].石油矿场机械,1982(6):27-33.
    [27]刘常福,宋开利,张振海,马恩才.自动化液压动力大钳[J].石油机械,2002(9):61-62.
    [28]傅永森.一种行星爪式开口型动力钳钳头卡紧机构[P].中国,01101342.7,2002.
    [29]John W, Turner J, Houston T. Power Tong[P]. US Patent:4.060.014,1977.
    [30]Joerg E, Schulze B. TONG[P]. US Patent:7.281.451,2007.
    [31]Jarosav B, Pearland T. Automated Arm for Positioning of Drilling Tools Such as an Iron Roughneck[P]. US Patent:7.178.612,2007.
    [32]肖乐.一种座式背钳[P].中国,89200789.3,1989.
    [33]杨春会.一种动力钳行星爪双向夹紧机构[P].中国,CN93213627.3,1994.
    [34]Halse, Helge-Ruben. A Power Tong[P]. World Intellectual Property Organization Patent:PCT/WO 052306,2005.
    [35]Holger K, Kurt B, Manf red J. Gripping without Slipping the Safe Handling and Running of Chrome Pipe with Hard Surfaces [R]. IADC/SPE 77243,2002.
    [36]Campisi, etal. Power Slip[P]. US Patent:7,419,008,2008.
    [37]冉秀玲.三向卡紧液动卡瓦装置[P].中国,90106685.0,1991.
    [38]王志安.油田修井作业气动卡盘[J].中国安全科学学报,2001,11(2):57-59.
    [39]储明来,丁建林.气动套管卡瓦的研制与应用[J].石油机械,2006,34(9):68-70.
    [40]赵海娜.油田钻井新型启动卡瓦的研究[D].哈尔滨:哈尔滨工业大学,2006.
    [41]朱海燕等.钻杆卡瓦牙板齿形设计[J].石油机械,2008,36(11):68-70.
    [42]邓习树,李自光.当前液压系统仿真技术发展现状及趋势[J].机床与液压,2003,27(1):20-22.
    [43]缪雄.混凝土泵液压系统动态建模与仿真[J].系统仿真学报,2001,12(5):129-134.
    [44]李成功,和彦淼.液压系统建模与仿真分析[M].北京:航空工业出版社,2008:14-28.
    [45]Schiehlen W O. Multibody System Dynamics-Roots and Perspectives[M]. Cambridge University press,1997.
    [46]Haug E J机械系统的计算机辅助运动学和动力学[M].北京:高等教育出版社,1996:106-165.
    [47]Zweiri Y H, Seneviratne L D, Althoefer K. Model-based Automation for Heavy-duty Mobile Excavator[J].2002 IEEE/RSJ Int. Conference on Intelligent Robots and Systems,2967-2972.
    [48]陈立平,张云清等.机械系统动力学分析及ADAMS应用教程[M].北京:清华大学出版社,2005:72-75.
    [49]Leung A Y T. Subspace Iteration for Complex Symmetric Exigent Problems[J]. Journal of Sound and Vibration,1995,184(4):627-637.
    [50]李永堂,雷步芳,高雨茁.液压系统建模与仿真[M].北京:冶金工业出版社,2003:6-32.
    [51]Narciso F.Macia、George J.Thaler..动态系统建模与控制[M].北京:清华大学出版社,2006:43-58.
    [52]Torben O A, Michael R H. Fluid Power Systems, Modeling and Analysis[M]. Aalborg University,2003.
    [53]Peter K. Modeling and Simulation of Heterogenous Engineering Systems[M]. Linkoping University,2002.
    [54]张勇,吴先福,王勇等.面向液压系统原理图自动建模的动态仿真软件研究[J].机床与液压,1998,22(1):11-13.
    [55]Iliff K W. Parameter Estimation for Flight Vehicle[J]. Guidance and Control,1989, 12(5):609-622.
    [56]Piechnick M. Simulating Hydraulic-driven Mechanical Systems[C].10th European ADAMS User Conference Papers,1995,14-15.
    [57]张越今,宋健.多体动力学仿真软件ADAMS理论及应用研讨[J].机械科学与技术,1997,16(5):753-755.
    [58]Gianni F, Gian A M, Paolo R. Virtual Prototyping of Mechatronic Systems[J]. Annual Review in Control.2004,(28):193-206
    [59]Mechanical Dynamics Incorporation. ADAMS/Hydraulics Component Reference[M], 2007.
    [60]Mechanical Dynamics Incorporation. Getting Started Using ADAMS/Hydraulics [M], 2003.
    [61]Mechanical Dynamics Incorporation. Contact Modeling in ADAMS[M],2005.
    [62]Mechanical Dynamics Incorporation. ADAMS View User Guide[M],2005.
    [63]李增刚ADAMS入门详解与实例[M].北京:国防工业出版社,2006:243-247.
    [64]刘静.挖掘机器人虚拟样机建模技术及其应用研究[D].杭州:浙江大学,2005.
    [65]孙成通,韩虎等ADAMS/Hydraulics模块的研究与应用[J].机床与液压,2008,36(1)138-140.
    [66]杨海军.液压克令吊虚拟样机技术应用研究[D].大连:大连海事大学,2006.
    [67]简诚颖COMOS/Motion-工程师的设计分析工具[J]. CAD/CAM与制造业信息化.2006,Z1:92-95.
    [68]McConville J B. The Application of the ADAMS, General-purpose Mechanical Systems Simulation Code to Aerospace Problems[C].14th Annual AESS/IEEE Dayton section symposium, Synthetic Visualization:Systems and Applications,1997,35-50.
    [69]余新康,王健.基于ADAMS的液压系统虚拟样机[J].工程机械,2003,34(1):42-45.
    [70]孟祥德,詹隽青等.自装卸系统虚拟样机设计与仿真分析[J].现代制造工 程.2007(1),47-49.
    [71]安雪斌,潘尚峰.多体系统动力学仿真中的接触碰撞模型分析[J].计算机仿真,2008,25(10):98-101.
    [72]彼得·艾伯哈特,胡斌.现代接触动力学[M].南京:东南大学出版社,2003:77-87.
    [73]刘才山,陈滨.多柔体系统碰撞动力学研究综述[J].力学进展,2000,30(1):7-14.
    [74]石明全,刘雷.火炮开闩过程动力学分析[J].弹道学报,2003,15(2):17-22.
    [75]秦志英,陆启韶.基于恢复系数的碰撞过程模型分析[J].动力学与控制学报,2006,4(12):294-298.
    [76]Lankaran H M, Nikravesh I P E. A Contact Force Model with Hysteresis Damping for Impact Analysis of Multibody Systems[J]. Journal of Mechanical Design,1990,1(12): 369-376.
    [77]Lankaran H M, Nikravesh I P E. Continuous Contact Force Models for Impact Analysis in Multibody Systems[J]. Nonlinear Dynamics 1994,5:193-207.
    [78]唐华平,钟掘.一种复杂机电系统的全局建模方法[J].中南工业大学学报,2002,33(5):522-525.
    [79]张尚才.工程系统的键图模拟和仿真[M].北京:机械工业出版社,1993.5:5-17.
    [80]布伦德尔.键合图在工程建模中的应用[M].北京:科学出版社,1987:12-16.
    [81]潘亚东.键图技术的发展与应用[J].机械工程,1987,23(5):56-60.
    [82]潘亚东.键合图概论.一种系统动力学方法[M].重庆:重庆大学出版社,1990,15-20.
    [83]王双中.键合图理论及其在系统动力学中的应用[M].哈尔滨:哈尔滨工程大学出版社,1999:15-50.
    [84]李伯虎,王行仁,黄柯棣.综合仿真系统研究[J].系统仿真学报,2000,12(5):429-434.
    [85]Finger S, Rinderle J R. A Transformational Approach to Mechanical Design Using a Bond Graph Grammar, Design Theory and Methodology[C], DTM89, DE-17:107-116.
    [86]Redfield R C. Bond Graphs as a Tool in Mechanical System Conceptual Design[C]. ASME Winter Annual Meeting,1992,59-65.
    [87]王艾伦,仇勇.基于键合图的复杂机电系统模块化自动建模及仿真[J].株州工学院学报,2002,19(4):74-75.
    [88]洪伟生.模块化理论与应用[C].北京:中国标协模块化理论与应用研讨会论文集,1991,25-29.
    [89]Smantray A K. Bond Graph Modeling [EB/OL]. http://www.Bondgraphs com/software.html,2001.
    [90]Runhua Tan. Dynamic System Modeling Expert System Based on Bond Graph [C], CIMI,1992.
    [91]王艾伦,钟掘.模态分析的一种新方法-键合图法[J].振动工程学报,2003,35(3):15-17.
    [92]Redfield R C, Mooring B. Concept Generation in Dynamic Systems Using BondGraphs[C]. ASME Winter Annual Meeting,1988, DSC-8.
    [93]檀润华.功率键合图在机械设计中的应用进展[J].机械设计,1999,16(7):1-5.
    [94]摆玉龙,郑岳意,梁西银等.基于功率键合图法的相似系统建模与仿真[J].甘肃科学学报,2006,18(4):56-59.
    [95]Deigado M, Brie C. A Survey of Bond Graph:Theory Applications and Programs[J]. Journal of the Franklin Institute,1991,74(7):49-51.
    [96]刘亭利,胡国清.基于键合图建模法的液压系统动态仿真[J].机床与液压,2008,36(4):173-177.
    [97]刘藻珍,魏华梁.系统仿真[M].北京:北京理工大学出版社,1998:16-48.
    [98]王沫然.Simulink建模及动态仿真[M].北京:电子工业出版社,2002:76-80.
    [99]靳宝全,梁义维,熊诗波,程珩.考虑反馈机构机电耦合的系统振动分析[J].振动测试与诊断,2008,28(2):91-95.
    [100]张柏清,匡伟春,张传才.基于Simulink的全自动液压压砖机液压元件库研究[J].陶瓷学报,2008,29(1):36-39.
    [101]Samantaray A K. Bond Graph Modeling [EB/OL]. http://www.Bondgraphs com/software.html,2001.
    [102]石红雁,许纯新,付连宇.基于SIMULINK液压系统动态仿真[J].农业机械学报,2000,31(5),94-96.
    [103]成凯,张静,王鹏宇,戴群亮,李文新.挖掘机液压系统建模与仿真.工程机械,2010,41(8):29-33.
    [104]Jan F, Bro k.20-sim Software for Hierarchical Bond Graph Block-diagram Models[J]. Journal of Hydraulic Engineering,1999(7):481-492.
    [105]宋志安.基于MATLAB的液压伺服控制系统分析与设计[M].北京:国防工业出版社,2007:14-28.
    [106]多学科领域复杂系统仿真平台-AMESIM软件功能简介[J]. CAD/CAM与制造业信息化,2005(12):32-45.
    [107]刘海丽.基于AMESim的液压系统建模与仿真技术研究[D].西北工业大学,2006.
    [108]余佑官,龚国芳,胡国良AMESim仿真技术及其在液压系统中的应用[J].液压气动与密封,2005(3):28-31.
    [109]郭军,吴亚峰AMESim仿真技术在飞机液压系统中的应用[J].计算机辅助工程,2006(2):42-45.
    [110]王瑜,林立,姜建胜.基于AMESim液压盘式刹车系统建模与仿真研究[J].石油机械,2008(9):31-35.
    [111]杨非,雷金柱.基于AMESim的工程车辆液压悬架系统仿真[J].液压气动与密封,2008,28(2):31-34.
    [112]吴奇.井下作业工程师手册[M].北京:石油工业出版社,2002:80-85.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700