基于三维地质分析模型的水电工程复杂坝基处理分析研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
观音岩水电站坝址工程地质条件复杂,坝基为软硬相间的层状地层岩体,且局部区域有岩溶现象发育。在这样复杂的地基条件下,修建高达160m级的碾压混凝土重力坝,准确认识与把握复杂岩体特性,通过进行科学的计算与分析,提出切实可行的基础处理方案,是确保整个工程安全的必要条件。
     本文针对观音岩水电工程复杂的地质条件,基于所建立的三维地质分析模型,充分考虑坝基存在软硬相间、有岩溶发育等多种结构面组合的岩体特性,重点研究了各种工况下坝体、坝基的应力变形特性。考虑到岩溶发育的不确定性,采用随机有限元仿真分析方法,研究了溶蚀区域在坝址基岩部位分布对大坝安全性的影响。在对提出的坝基处理方案进行计算、分析与评价基础上,提出了较优的地基处理方案。
     论文主要研究内容及成果如下:
     (1)充分考虑包括岩溶发育在内的复杂坝基地质条件,建立了工程三维地质分析模型并进行精细的可视化分析研究。在此基础上,采用数值模拟的方法建立三维整体地质的有限元模型,可完全模拟坝基岩层软硬相间、有岩溶发育及多种结构面组合的坝基岩体特性。
     (2)运用有限元结构数值仿真分析方法,研究复杂层状坝基基岩条件下,特别是溶蚀区域存在时坝体、坝基的静、动力特性,并对坝基基岩内有无溶蚀区域分布的不同计算结果进行比较。
     (3)在考虑实体模拟溶蚀分布对坝体影响分析基础上,加入了溶蚀区域材料参数随机和溶蚀区域位置随机两种方法,进行了溶蚀区域在坝址基岩部位分布对典型坝段安全性影响的有限元分析研究工作。
     (4)基于随机场理论建立整个坝址区溶蚀分布整体随机场,并选取典型坝段,建立典型坝段溶孔分布频率随高程变化的若干种回归模型。确定最优的回归模型并根据该模型随机抽取若干方案进行有限元计算,得到多方案下坝体应力、应变结果,对典型坝段进行安全性评价。
     (5)基于三维地质分析模型,提出了多种地基处理方式,并进行三维非线性有限元敏感性分析,基于计算结果对这些地基处理方式进行评价,提出较优的地基处理方案,为工程设计提供参考。
The engineering geological conditions of the dam foundation of Guan Yinyan hydropower project are quite complex. The dam foundations are consisted of soft and hard layered rock masses alternately distributed where occasionally exist corrosion phenomenons in some area. To build a RCC gravity dam with a height of nearly 160m under such complex foundation condition, it is quite necessary to recognize the characteristics of the complicated rock masses and provide feasible foundation treatment scheme according to scientific calculation and analysis to ensure the project safty.
     In this paper, aiming at the complex engineering geological condition of Guan Yinyan hydropower project, a 3D geological analysis models are established which expressed integrated geological information of the dam foundation including alternately distributed soft and hard layered rock masses and occasionally existed corrosion. The stress and deformation characteristics of the dam and its foundation under different calculation conditions have been mainly studied. Considering the uncertainty of karst development, the influence of regional distribution of corrosion on dam safety is researched using the SFEM simulation analysis method. The optimal dam foundation treatment measure is proposed according to computing, analyzing and evaluating these proposed dam foundation treatment measures.
     The main research contents and achievements are as follows:
     (1) 3D geological analysis models of Guan Yinyan hydropower project are established considering soft and hard layered rock masses alternately distributed where occasionally exist corrosion phenomenons in some area. The refined 3D visualization analysis research is carried out through the 3D geological analysis models. The finite element model of the whole 3D geological models, which can completely simulate dam foundation rock mass characteristics of soft and hard layered rock masses alternately distributed, corrosion development and various structure surface combination, is set up adopting numerical simulation method.
     (2) By applying the finite element structure numerical simulation analysis method, static and dynamic characteristics of dam body and foundation is reasearched under the complex layered bedrock condition where occasionally exist corrosion phenomenons in some area. The computation results with or withnot corrosion region in dam foundation are compared and analyzed.
     (3) Based on analyzing the influence of corrosion distribution on dam body using entity simulation method, considering the material randomicity and position randomicity of corrosion region, the influence of regional distribution of corrosion on safety of the typical dam section is researched using the FEM simulation analysis method.
     (4) The whole random field of corrosion distribution in dam site region is established based on the random field theory. And several regression models, which reflect the distribution frequency of dissolution pore with the elevation change, are built through choosing the type dam section. The best regression model can be confirmed and some schemes can be obtained. By computing using the FEM, the stress and strain results of multiple schemes are acquired, which can be used to estimate the security of the typical dam section.
     (5) Several foundation treatment schemes are proposed based on 3D geological analysis model. These schemes are compared and evaluated through 3D nonlinear finite element sensitivity analysis. The optimal dam foundation treatment measure is confirmed, which can provide some references to engineering design.
引文
[1]林育梁,岩土与结构工程中不确定性问题及其分析方法,北京:科学出版社,2009,24~29
    [2]黄炎生,随机有限元法及结构可靠性分析方法在大坝中的应用,博士学位论文,华南理工大学,1995
    [3]吴中如,水工建筑物安全监控理论及其应用,北京:高等教育出版社,1990
    [4]李珍照,张淑丽,大坝观测数据的模糊分析,大坝观测与土工测试,1992,16(1):3~6
    [5]刘观标,用逐步模糊聚类分析法进行混凝土坝的位移预报,大坝观测与土工测试,1989,13(3):10~17
    [6]李旦江,刘望亭,用原型观测资料推求大坝混凝土的力学参数,水利学报,1992,(7):16~22
    [7] Liu W K,Mani A. Random fields finite elements. Int J of Numerical Methods in Eng.Mech.1986.23(10):1831~1845
    [8] S Chakraborty, S.S.Dey. Stochastic finite element method for spatial distribution of material properties and external loading. Computers & Structures. 1995, (55): 41~45
    [9] Manolis papadrakakis, Vissarion Papadopoulos. Robust and efficient methods for stochastie finite element analysis using Monte Carlo simulation. Computer. Methods Appl. Mech. Eng.1996(134):325~340
    [10] R. Mellaha. G. Auvinetb. F. Masrouria,Stochastic finite element method applied to non-linear analysis of embankments. Probabilistic Engineering Mechanics. 2000, (15): 251~259
    [11]朱位秋,任永坚,随机场的局部平均与随机有限元,航空学报,1986,6(7):604-611
    [12]朱位秋,吴伟强.基于随机场局部平均的随机有限元法在实特征值问题中的应用,航空学报,1989,10(2):20~26
    [13]陈虬,刘先斌,随机有限元法及其应用[M],成都:西南交通大学出版社,1993
    [14]高行山,张汝清,有限变形弹性理论随机变量变分原理及有限元法,应用数学和力学,1994,15(10):855~862
    [15]崔海涛,温卫东,随机有限元法及其工程应用,南京航空航天大学学报,2000,32(1):91~98
    [16]郭书祥,冯元生,吕震宙,随机有限元方法和可靠性,力学进展,2002,30(3):343~350
    [17]马风雷,随机有限元法自动微分方法的研究,博士学位论文,吉林大学,2008
    [18]刘军,基于递推随机有限元法的结构可靠度研究,硕士学位论文,武汉理工大学,2006
    [19]郝志明,随机结构有限元法及可靠性研究,博士学位论文],中国工程物理研究院,2001
    [20] Soong T T and Bogdanoff J.On the natural frequencies of a disordered linear chain of n degree of freedom,Int. J. Meeh. SCI., 5,1963:237~265
    [21] Boyee E W and Goodwin BE. Random transverse vibration of elastic beams,SLAM Journal,12(3),1964:613~629
    [22] Collins J D and Thompson W T. The eigenvalue problems for structural systems With uncertain parameters,AIAA J.7(4),1969:642~648
    [23] Shinozuka M and Astill J. Random eigenvalue Problems in struetural mechanics, AIAAJ, 1972, 10(4): 456~462
    [24] Hart G C and Collins J D. The treatment of randomness in finite element modeling,SAE Shock and Vibrations Symp. Sec.of Automative Engrs. 1972: 2509~2519
    [25] Hasselman P C and Hart G C.Model analysis of random structural systems.Proc. ASCE. EM. 1972, 98(2): 561~586
    [26] Chen P C and Soroka W W. Impulse response of a dynamic system with statisties, Journal of Sound and Vibration,31(3),309~314
    [27] Combou B.Application of first order uncertainty analysis in the finite element Method in linear elasticity Proc. 2nd Int. Conf on Appli.of Statis.And probab.in Soil and Structural Eng.,London,1975
    [28] Dendrou B.and Houstis,E, An inference finite element model for field problems, Appl. Math. Modeling,l,1978:109~114
    [29] Hisada T and Nakagiri S.Stochastic finite element method developed for structural safety and reliability proe.3rd Int. Conf. on Structural Safety and Reliability. Trondneim,Norway.1981:395~408
    [30] Hisada T and Nakagiri S. Stochastic finite element analysis of uncertain structural systems. Proc. 4th Int. Conf. on Structural Safety and ReliabilityMelbourne,Australia.1982:133~138
    [31] Hisada T Nakagiri S and Nagasaki T. Stochastic finite element analysis of uncertain intrinsic stresses caused structural misfits. 7th Int. Conf. on Structural Mechanics in Ractor Technology. Chicago,1983
    [32] Handa K and Anderson K. Application of finite element methods in the statistical analysis of structures. Proc.3rd Int. Conf.on Structural Safety and Reliability 1981:409~417
    [33] Baecher G B and Ingra T S. Stochastic FEM in settlement Predietions,J. Geotech. Engrg. Div,107(4),1981:449~463
    [34] Liu W K,Belytschko T and Mani A. Random filed finite elements .int. J.Number. Methods Engrg,23(10),1988:1831~1845
    [35] Ryu Y S et al,Struetural design sensitivity analysis of nonlinear response,Computers & Structure. 21(l/2),1985:245~255
    [36] Haldar A and Zhou Y ,Reliability of geometrically nonlinear PR frames .J. Engrg. Mech,ASCE,118(10),1992:2148~2155
    [37] Hisada T and Noguchi H. Development of a nonlinear stochastie FEM and its application.5th Int. Conf. on Struetural Safety and Reliability, Australia,1989: 1097~1104
    [38]刘宁,基于三维弹塑性随机有限元的结构体系可靠度计算,博士学位论文,河海大学,1994
    [39] Liu W K. et al. Probabilistic finite elements in nonlinear dynamics.Compt. Mech. Appl. Mech. Engrg,56(l),1986:61~81
    [40]赵雷,随机参数结构动力分析方法及地震可靠度研究,博士学位论文,西南交通大学,1996
    [41] Liu W K, Ong J S and Uras R A. Finite element stabilization matrices - a unification approach, Comput. Methods. Appl. Mech. Eng.,53,1985:13~46
    [42] Liu W K. Bestefield G and Belytschko T. Variational approach to probabilistic finite element, ASCEJ. Engrg. Mech.,114(12), 1988:2115~2133
    [43] Hien T D and Kleiber M. Finite element analysis based on stochastic Hamilton variational Principle. Compt.AND Stucture,37(6),1990:893~902
    [44]刘先斌,陈虬,随机变分原理和随机有限元法,计算力学理论与应用,1992,360~363
    [45]张汝清,高行山,随机变量的变分原理及有限元法,应用数学和力学,1992,13(5):383~388
    [46]赵雷,陈虬,结构动力分析的随机变分原理及随机有限元法,计算力学学报,1998,15(3):263~274
    [47] Bellman R .On the foundations of a theory stochastic variation Processes,Proc of Symposium on Applied Mathematies,No.12,1988:2115~2133
    [48]马风雷,张义民,姜振海,基于自动分析的随机有限元方法,吉林大学学报工学版,2008,38(2)增刊:141~144
    [49] Michael Bartholomew-biggs etc,Automatic differentiation of algorithms;Journal of Computational and Applied Mathematics 124(2000)171~190
    [50] ILIE S,CORLESS RM,REID G.Numerical solutions of index-1 differential algebraic equations can be computed in polynomial time[J].Numerical algorithms, 2006, 41(2):161~171
    [51] VOGEL T,BACHMANN D etc.Sensitivities of flow and transport parameters in fractured porous media using automatic differentiation[J].International Journal for Numerical Methods in Engineering,2006,65(12):1923~1934
    [52] DIEHL M,BOCK HG,KOSTINA E.An approximation technique for robust nonlinear optimization[J].Mathematical Programming,2006,107(1-2): 213~230
    [53] HERMANN SCHICHL, ARNOLD NEUMAIER.Interval Analysis on Directed Acyclic Graphs for Global Optimization[J]. Journal of Global Optimization, 2005, 33(4): 541~562
    [54] EBERHARD P.Analysis and Optimization of Complex Multibody Systems using Advanced Sensitivity Analysis Methods[J].Zeitschrift fur Angewandte Mathematik und Mechanik,1996,76(S3):40~43
    [55]傅旭东,随机有限元法及其在岩土工程中的应用,博士后论文,武汉水利电力大学,2000
    [56] Liu P L, Liu K G. Selection of random field mesh in finite element reliability analysis,Journal of Engineering Mechanics, 1993, 119(4):667~680
    [57] Mahadevan S, Haldar A. Practical random field discretization stochastic finite element analysis. Structural Safety,1991(9):283~304
    [58]张生祥,杜士斌,观音阁水库坝基防渗处理设计,水利水电技术,1995,(8):57~62
    [59]杨殿臣,观音阁水库坝址区主要工程地质问题及其处理,东北水利水电,2005,23(5):47~48
    [60]肖佳梅等,观音阁水库坝基固结灌浆设计与施工,东北水利水电,1999,9:9~10
    [61]姜润文,观音阁大坝坝基断层影响带处理效果分析,大坝观测与土工测试,2001,25(1):23~24,45
    [62]徐年丰,林文亮,隔河岩大坝基础开挖及处理设计,人民长江,1999,30(7):18~19,22
    [63]吴祥华,胡中平,隔河岩重力拱坝拱座深层处理平面有限元分析,人民长江,1998,29(7):29~31
    [64]任朗明,蒋和平,构皮滩水电站坝基无盖重固结灌浆试验工艺,贵州水力发电,2006,20(3):79~83
    [65]胡中平,曹去修,构皮滩水电站混凝土拱坝设计,贵州水力发电,2004,18(6):16~20
    [66]陈文理,王怀球等,构皮滩水电站坝址区岩溶发育特征,人民长江,2006,37(3):11~13
    [67]陈文理,向能武,王怀球,构皮滩水电站高拱坝建基岩体工程地质研究,人民长江,2006,37(3):14~16
    [68]彭第,孟玉红等,水布垭水利工程基岩固结灌浆工艺,长春工程学院学报,2006,7(2):14~17
    [69]金良智,水布垭枢纽防空洞溶洞群固结灌浆施工,人民长江,2005,36(5)
    [70]徐瑞春,段建肖,水布垭枢纽地质研究与实践,人民长江,2007,38(7):1~6
    [71]谢树庸,东风水电站的工程地质评价及初步检验,水力发电,1994,(12):23~27
    [72]谢树庸,贵州乌江梯级水电站工程地质特征,贵州水力发电,2005,19(5):1~5
    [73]徐光祥,余波,索风营水电站主要工程地质问题及勘测技术,贵州水力发电,2006,20(4):4~8
    [74]吴述,索风营水电站坝基优化地质分析与工程处理,贵州水力发电,2006,20(4):9~12.
    [75]袁宗红,贾立维等,索风营水电站左岸防渗帷幕溶洞区灌浆处理技术,贵州水力发电,2005,19(5):39~42
    [76] Houlding, S.W. 3D Geoscience Modeling: Computer Techniques for Geological Characterization[M]. Berlin, Heidelberg, New York: Springer-Verlag, 1994.
    [77]周世波,许建锋.基于ArcGIS和Creator的三维地形建模[J].集美大学学报(自然科学版),2009,14(3):269~273.
    [78]徐能雄,田红.三维无缝工程地质建模系统的研制[J].岩土力学,2009,30(8):2385~2391.
    [79]梁德玉,管波,盛廷福.基于数值模拟的无缝工程地质建模[J].科学技术与工程,2009,9(15):4437-4440.
    [80]承达瑜,张海荣,范红东.基于单向约束TIN的层状地质体三维建模[J].金属矿山,2009,(5):96~98.
    [81]刘彦花,吴湘滨,叶国华.三维地质建模与可视化[J].科技导报,2009,27(5):96~101.
    [82]钟登华,李明超.水利水电工程地质三维建模与分析理论及实践[M].北京:中国水利水电出版社,2006.
    [83]刘岩,马洪滨,李金生等.基于工程柱体的三维地质建模方法[J].金属矿山,2009,(1):101~103.
    [84]李明超,胡兴娥,安娜等.滑坡体三维地质建模与可视化分析[J].岩土力学,2008,29(5):1355~1360.
    [85]罗智勇,杨武年.基于钻孔数据的三维地质建模与可视化研究[J].测绘科学,2008,33(2):130~132.
    [86]朱良峰,潘信,吴信才等.地质断层三维可视化模型的构建方法与实现技术[J].软件学报,2008,19(8):2004~2017.
    [87]马洪滨,郭甲腾.基于剖面的面体混合三维地质建模研究[J].金属矿山,2007(7):50~52.
    [88]王明华,白云.三维地质建模研究现状与发展趋势[J].土工基础,2006,20(4):68~70.
    [89]苏幸,黄临平,刘艳阳.三维地质实体建模研究进展[J].科技广场,2007,(5):23~25.
    [90]陆瑞年,许国,王长海.水电地质工程三维可视化建模及其应用[J].水利科技与经济,2008,14(4):319~322.
    [91]董梅,慎乃齐,胡辉等.基于GOCAD的三维地质模型构建方法[J].桂林工学院学报,2008,28(2):188~192.
    [92]苏幸,黄临平.四面体格网在三维地质建模中的应用[J].土工基础,2008,22(3):70~72.
    [93]邵华,江南.自适应的三维地质建模插值加密方案[J].计算机工程,2008,34(5):251~253.
    [94]屈红刚,潘懋,董攀等.基于网格细分技术的三维地质模型光滑方法研究[J].地理与地理信息科学,2007,23(6):14~17.
    [95]曾宏,王媛.三维地质建模及其在隧洞工程中的应用[J].水利学报,2007:(S1)729~732.
    [96]王宝军,施斌,宋震.基于GIS与虚拟现实的三维地质建模方法[J].岩石力学与工程学报,2008,27(2):3563~3569.
    [97]刘卉,赵江南.基于GeoMine3D的三维地质建模[J].软件导报,2009,8(2):177~179.
    [98]徐磊,吴立新,车德福基于地层时序与属性语义的相邻钻孔地层连接与推理[J].地理与地理信息科学,2007,23(1):1~4.
    [99]钟登华,李明超,,杨建敏复杂工程岩体结构三维可视化构造及其应用.岩石力学与工程学报, 2005, 24(4): 575~580
    [100]钟登华,李明超水利水电工程地质三维建模与分析理论及实践,北京:中国水利水电出版社,2006
    [101] Zhong DengHua, Li MingChao, Liu Jie. 3D integrated modeling approach to geo-engineering objects of hydraulic and hydroelectric projects. Science in China Series E: Technological Sciences, 2007, 50(3): 329-342
    [102]钟登华,李明超,王刚.大型水电工程地质信息三维可视化分析理论与应用.天津大学学报, 2004, 37(12): 1046~1052

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700