激光相干检测在动目标频谱识别中的应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光相干检测由于具有高增益及抗干扰能力强等优点,在弱回波信号及复杂背景目标探测方面具有较大优势。随着高相干性稳频激光的发展,激光相干检测所需光源逐渐得以解决,目前正朝着远距离目标探测跟踪及近距离目标成像方向发展。在远距离目标探测跟踪方面,国外相关系统可实现几千公里空间目标精密跟踪,同时具备几百公里目标多普勒成像能力,而国内在远程激光相干检测方面研究较少,主要受制于高稳定、高相干大功率激光发射源。在近距离成像方面,国外已有多个波段实验测量装置,可用于埋藏地雷及伪装目标探测与识别,国内主要有距离成像,对多普勒成像研究较少。因此,无论远距离目标探测跟踪,还是近距离目标成像,都将是未来发展的方向。
     本文采用理论仿真与实验研究结合的方法,对光学相干检测在动目标频谱识别中的应用展开理论与实验研究,主要内容如下:
     (1).光学相干检测在国内外远程及进程应用的发展现状分析,凝练出针对不同应用场景下的关键技术,提出在国内发展该项技术需解决的问题,为后续深入研究提供指导。
     (2).深入分析光学相干检测的外差效率及信噪比,并根据相应物理模型进行仿真计算,为系统总体设计提供理论支持;同时对影响相干检测系统性能的主要因素进行理论分析。
     (3).开展传统的强本振光干涉实验,完成室内、室外100m、360m、1000m、7000m距离干涉实验,掌握光学相干检测需满足的条件;并利用Si-APD对直线运动目标、旋转漫反射目标进行测速实验,测速误差0.06m/s。
     (4).采用多像素光子计数器MPPC模块,分别对弱本振光干涉中的相干光场和赝热光场统计特性进行研究,获得光场F参数和对称参数,并通过曲线拟合方式,推算出探测器对应的窜扰概率和增益因子。并在连续光子流注入情况下,获得MPPC探测器的饱和阈值为1200kcps。
     (5).利用MPPC对旋转漫反射目标实现弱本振信号相干检测。其中对运动漫反射目标,采用功率谱累积,可提高信噪比;进一步采用数据段细分功率谱累积技术,能在较少数据量前提下,提高信噪比。本文中,采用数据细分功率谱累积法至少能将数据利用率提升10倍,并分析限制信噪比提升的因素。
     (6).采用MPPC作为光子计数单元,分别实现30m、45m和60m距离漫反射目标激光干涉。为提高探测概率,需进行功率谱累积,获得具有一定信噪比的频谱分布,然后采用匹配滤波技术,进一步提高信噪比。结果表明,在45m距离,信噪比提升5.90倍;在60m距离,信噪比提升2.73倍。
     (7).利用示波器采集数据,提取振动信号振幅、频率、速度等。每个速度点对应数据长度1ms,为保证1ms时间内具有较多数据,采样率不能过低,本文选取5MHz,记录200ms时长数据,处理可得某目标振动频率83.3Hz、最大振幅5μm、最大振动速度0.6mm/s,并获得几类典型目标二维振动频谱。
     (8).分别采用频谱分析仪、高速采集卡存储数据,并利用扫描振镜对目标二维空间进行扫描。频谱分析仪记录数据较慢,自动性能差;为此,采用80MHz采集卡对干涉电信号进行数字化采集,并结合FFT技术,获得转动目标表面转动频谱,初步实现运动目标二维频谱识别的信号处理。
     (9).针对运动速度快且具有较大动态范围的目标,信号处理系统需具有GHz量级处理带宽,要实现该信号频率提取,可用外差频谱分析法。与某单位合作开发的信号处理模块指标如下:信号输入带宽1GHz,频谱提取以及上位机存储优于20Hz,在100MHz扫宽及100kHz分辨带宽下,扫描时间优于50ms。
     综上,本课题通过对光学相干检测关键技术的理论与实验研究,逐步解决了该探测方式的主要难点,为后续远程激光相干跟踪或近程二维频谱识别提供必要的技术储备。
Laser coherent detection has large potential in the detection of weak signal incomplicated background due to its high gain coefficient and anti-jamming ability.This method of detection requires narrow-linewidth and frequency-stable lasersource, if the system works in far distance, the output power will be much higher.Fortunately, the development of frequency-stable laser becomes faster recently, andthe laser source problem in the long-range detection will be solved in a few years.Laser coherent detection has two main applications: long-range target detection andtracking, short-range target imaging. In the area of long-range application, someexperimental system in America can realize1000km above target tracking andhundreds of kilometers Doppler imaging, but the research in China is so few becauseof the high-stability, long-coherence,high-power laser source. In the area ofshort-range application, there are many research reports in landmine detection andcamouflage discrimination abroad, and the main application in our country is focuson range-imaging for3-D recognition. Therefore, no matter the long-rangedetection/tracking or the short-range imaging, the coherent detection technique is thesignificant developing orientation in the future.
     The paper introduces the combination of simulation and experiment methods inthe moving target frequency-spectrum discrimination, and the main content are shown as follows:
     (1). Analyze the research status about optical coherent detection at home andabroad, and summarize the key technology in different applications. At last, theprincipal problems need to be solved are put forward while developing thistechnology in our own country, and give some guidance for the subsequent research.
     (2). Discuss the heterodyne efficiency and Signal to Noise Ratio (SNR) of theoptical coherent detection, and give the simulated calculation corresponding to thephysical model in order to supply some theoretical foundation for the system design.At the same time, the acting factors of the coherent detection ability are analyzed.
     (3). The traditional interference experiment based on strong local oscillator (LO)was completed indoor, outdoor100m,360m,1000m,7000m respectively. We havegrasped the experimental requirement about the long-range laser interference.Moreover, the Si-APD detector was used in the velocity measurement with linearand rotatable moving target, and the velocity error is0.06m/s.
     (4). The Multi-Pixel Photon Counter(MPPC) module was applied in the photonstatistic for coherent and pseudo-thermal light field, the Fano factor and symmetryparameter can be obtained during the experiment, the cross-talk probability and gaincoefficient can be extracted through the curve fitting of the experimental data. At theend, the saturation threshold was measured as1200kcps while at the condition ofcontinuous light injecting on the active area of MPPC module.
     (5). The MPPC module was used in the weak LO laser coherent detection basedon rotating diffuser indoor. The results showed that the SNR would be increased withthe method of Power Spectral Density (PSD) averaging. In addition, if the longerdata segment was cut into many shorter sections (named data segment fractionizing),then averaging the PSD for the total shorter sections, the SNR will be inceased at thesame level compared with no data cutting while just have the1/10data volume inthe experiment above.Without doubt, the method of data segment fractionizing andPSD averaging also have some restrictions during in the course of SNRimprovement, such as the influence of DC or low frequency noise.
     (6). The MPPC module was used in the laser interference with outdoor diffuserat the distance of30m,45m and60m. Because the echo photons were disturbed bythe atmosphere, the interference signal was not stable for a long time. So the PSDaveraging and matched filtering were applied to enhance the SNR, the resultsshowed that the SNR raising5.90times at the distance of45m, and2.73times at thedistance of60m.
     (7). The oscilloscope was employed in the data acquirement of target vibrationdetection with laser coherent detection, the amplitude,frequency and velocity of thevibrating object will be extracted from this technique. The time span of each datasegment is200ms, and dividing this data into200parts equally, so every short datasegment has1ms time span. In order to ensure that each short data segment haveadequate data volume for FFT algorithm, the sampling rate is setting as5MHz. Theresults showed that the vibrating frequency is83.3Hz, the maximal amplitude is5μm,the maximal velocity is0.6mm/s. In addition, the vibrating frequency-spectrum wasachieved for several typical vibrating objects.
     (8). The frequency spectrum analyzer and high speed data acquisition card wereapplied in the intermediate frequency (IF) signal recording and memorizing, and thescanning galvanometer was used in the target surface well-distributed latticescanning. At first, the frequency spectrum analyzer was adopted as the dataaquisition system, but the efficiency of data recording was not so satisfy. So the highspeed data acquisition card was selected, and the maximal sampling rate is80MHz,combining with FFT algorithm, we can obtain frequency spectrum of the rotatingdiffuser, and realize the2-D frequency spectrum discrimination preliminarily.
     (9).The application of coherent detection will expand into the detection oflong-range and fast-moving target, so the data processing system requires widebandwidth near GHz level, and the method of FFT can not satisfy this requirement,but the Method of heterodyne spectrum analyzing will be a strong candidate for highfrequency and radio frequency (RF) signal processing. In order to save manpowerand material resources, we seek cooperation with a domestic company to develop and manufacture the signal processing module, and the main parameter valves are asfollows: input bandwidth is1GHz, frequency extracting and memorizing speed is20Hz, the frequency spectrum sweep time is less than50ms under100MHzfrequency span and100kHz resolution bandwidth.
     To sum up, we state and resolve the main difficulty of coherent detectionthrough the theoretical and experimental research in the paper, and give sometechnical storage for the long-range laser coherent tracking or the short-range2-Dfrequency spectrum discrimination.
引文
[1] Alfred B. Gschwendtner, William E. Keicher. Development of CoherentLaser Radar at Lincoln Laboratory[J].Lincoln Laboratory Journal,2000,12(2):383~394
    [2] R. J. Carbone. Characteristics of a Single-Frequency Sealed-Off CO2Amplifier [J]. IEEE Journal of Quantum Electronics,1969,1:48~49
    [3] R. H. Kinston. Coherent Optical Radar[J]. Optics News,1977,Summer:27~31
    [4] Charles Freed. Design and Short-Term Stability of Single-Frequency CO2Lasers [J]. IEEE Journal of Quantum Electronics,1968,4(6):404~408
    [5] Ivars Melngailis, William E.Keicher, Charles Freeed, et al. Laser RadarCompo-nent Technology[C]. Proceedings of the IEEE,1996,84(2):227~267
    [6] K.1.Schultz, S.Fisher. Ground-based laser radar measurements of satellitevibrations [J]. Applied Optics,1992,31(36):7690~7695
    [7] R.S.Eng, C.Freed, C.L.Summers. Dynamic Speckle Bandwidth and Charac-terization of Vibration Frequency and Amplitude using a CO2Laser Vibrometer[C]. Proceedings of SPIE,1993,1936:120~136
    [8] Eric A. Swanson, Gary M. Carter, D. Jonathan Bernays, et al. Optical spatialtracking using coherent detection in the pupil plane [J]. Applied Optics,1989,28(18):3918~3928.
    [9] A. L. Kachelmyer, K. I. Schultz. Spectrogram processing of laser vibrationdata[C]. Proceedings of SPIE,1993,1936:78~89
    [10] C. Freed, R. S. Eng, J. S. Greene, et al. Performance of a Sealed-OffCO2-Isotope Laser Amplifier for High Resolution Optical Radar/LidarApplications[C]. Proceedings of SPIE,1992,1633:180~192
    [11] K.1. Schultz, D. G. Kocher, J. A. Daley, et al. Satellite vibrationmeasurements with an autodyne CO2laser radar [J]. Applied Optics,1994,33(12):2349~2355
    [12] C. Freed. Ultrastable CO2Lasers [J]. Lincoln Laboratory Journal,1990,3(3):479~500
    [13] Alan L. Kachelmyer, Kenneth l. Schultz. Laser Vibration Sensing [J]. LincolnLaboratory Journal,1995,8(1):3~28
    [14]付有余.相干激光雷达的进展[J].光机电信息,2010,27(10):16~21
    [15] H.P.Chou, R.S.Eng, V.Hasson, et al. Advanced face-cooled acousto-opticmodu-lator in a high-power, high fidelity CO2laser transmitter [C]. Proceedingsof SPIE,1996,2702:106~117
    [16] J. Campbell. STARSAT: A Joint NASA/AF Project For Laser Calibration ofSmall Objects in Space[C]. Proceedings of SPIE,2002,4760:821~832
    [17] Francis Corbett, Gerry Nordstrom, Michael Groden. Design Considerationsfor a Multi-Channel, Laser Radar Receiver/Processor[C]. Proceedings ofSPIE,1996,2702:140~153
    [18] R. S. Eng, V. Hasson, B. C. Wiliman. Extending spectral coverage of gaslasers using EO and AO modulators: spectral purity issues[C]. Proceedings ofSPIE,1996,2702:130~139
    [19] Steven C. Cohen. Heterodyne detection: phase front alignment, beam spotsize, and detector uniformity [J]. Applied Optics,1975,14(8):1953~1959
    [20] Debora E. Mosley, Charles L. Matson, Stanley R. Czyzak.Active imaging ofspace objects using the HI-CLASS (High Performance CO2ladar surveillancesensor) laser system[C]. Proceedings of SPIE,1997,3065:52~60
    [21] Debora E. Mosley, Charles L. Matson, Stanley R. Czyzak. Applications ofthe HI-CLASS (High Performance CO2Laser Radar Surveillance Sensor)lasersystem for active imaging of space objects[C]. Proceedings of SPIE,1998,3380:243~249
    [22] M.Kovacs, S.Ghoshroy, V. Hasson, et al. The FLD (Field LADARDemonstration) System, Algorithms, and Phase I/Phase II Test Resu1ts[C].Proceedings of SPIE,1996,2748:309~324
    [23] M. Kovacs, G. Dryden R. Pohieb, K. Ayers, et al. HI-CLASS on AEOS:ALarge Aperture Laser Radar for Space Surveillance/Situational AwarenessInvestigations[C]. Proceedings of SPIE,2001,4490:298~306
    [24] S. Ghoshroy, J. DiMercurio, R. S. Eng, et al. Status Report of an AirborneCO2Transceiver for Remote Sensing Employing Direct and CoherentDetection[C]. Proceedings of SPIE,1996,2748:189~200
    [25] V. Hasson. Overview of the Field Ladar Demonstration Program Developinga High-Resolution Imaging and Remote Sensing[C]. Proceedings of SPIE,1996,2748:294~308
    [26] Dr. Paul Konkola1, Charles Crandall, Tim Georges, et al.Pushing theenvelope: HI-CLASS Range and Range-rate[C]. Proceedings of the2005AMOSTechnical Conference,2005,9
    [27] R. S. Eng, J. Cunningham, Y. Wang, et al. Single-Mode Frequency-Agile9~11μm CO2Laser Local Oscillator[C]. Proceedings of SPIE,1997,2987:43~53
    [28] F. Corbett, M. Groden, G. Dryden, et al. Real-Time Image Generation with aPulsed Coherent Laser Radar[C]. Proceedings of SPIE,1997,3065:42~51
    [29] M. Kovacs, S. Ghoshroy, V. Hasson, et al.Phase1high performance CO2ladar surveillance sesor description and test tesults[C]. Proceedings of SPIE,1996,2702:84~94
    [30] V. Hasson, F. Corbett, M. Kovacs, et al.Use of laser radar for small spaceobject experiments[C].Proceedings of SPIE,2000,4091:363~374
    [31] Francis Corbett, Michael Groden, Gordon Dryden, et al. The Digital ImageProcessing System for a High Powered CO2Laser Radar[C]. Proceedings of SPIE,1996,2847:35~57
    [32] Victor Hasson. Review of recent advancements in the development ofcompact high power pulsed CO2laser radar systems[C]. Proceedings of SPIE,3707:499~512
    [33] John V. Foster. A laser device for Remoter Vibration Measuremen t[J].IEEETransactions on aerospace and electronic systems,1967,3(2):154~157
    [34] Waymond R. Scott, Jr., Seung-Ho Lee, et al. Use of High-Frequency SeismicWaves for the Detection of Buried Land Mines[C]. Proceedings of SPIE,2001,0277-786:543~552
    [35] James M. Sabatier, Ning Xiang.An Investigation of Acoustic-to-SeismicCoupling to Detect Buried Antitank Landmines [J]. IEEE Transactions onGeoscience and Remote Sensing.2001,39(6):1146~1154.
    [36] Philippe Gueguen, Veronique Jolivet, Clotaire Michel, et al.Comparison ofvelocimeter and coherent lidar measurements for building frequency assessment[J]. Bull Earthquake Eng.2010,8.327~338
    [37] Julien Totems, Véronique Jolivet, Jean-Philippe Ovarlez, et al. Advancedsignal processing methods for pulsed laser vibrometry [J]. Applied Optics.2010,49(20):3967~3978
    [38] Thorsten Pfister, Philipp Günther, Lars Büttner, et al. Shape and vibrationmeasurement of fast rotating objects employing novel laser Dopplertechniques[C]. Proceedings of SPIE,2007,6616:66163S-1~66163S-12
    [39] Engin B. Arik. Recent developments in fiber optic and laser sensors for flow,surface vibration, rotation, and velocity measurements[C]. Proceedings ofSPIE,1991,1584:202~211
    [40] Peter Lutzmann, R. Frank, M. Hebel, et al. Potential of Remote LaserVibration Sensing for Military Applications[C]. RTO SCI Symposium,2004,145:1~24
    [41] Waymond R. Scott, Jr. Experimental Model for a Seismic LandmineDetection System [J]. IEEE Transactions on Geoscience and Remote Sensing,2001,39(6):1155~1164
    [42] Ning xiang, James M. Sabatier. Land mine detection measurements usingacoustic-to-seismic coupling[C]. Proceedings of SPIE,2000,4038:645~654
    [43] James M. Sabatier, Ning Xiang. Laser Doppler Based Acoustic-to-SeismicDetection of Buried Mines[C]. Proceedings of SPIE,1999.3710:215~222
    [44] Vyacheslav Aranchuk, Amit Lal, James M. Sabatier. Multi-beam laserDoppler vibrometer for landmine detection[J]. Optical Engineering,2006,45(10):104302-1~104302-9
    [45] Waymond R. Scott, Jr., Gregg D. Larson, et al.Field Testing andDevelopment of a Seismic Landmine Detection System[C].Proceedings of SPIE,2003.5089:643~652
    [46]李醒飞,王驰,向红标,张国雄.光学外差干涉法检测微弱超声振动[J].光学精密工程,2008,16(7):1158~1162
    [47]丁红胜,童莉葛,潘礼庆,王少铁.激光外差干涉仪探测金属表面超声振动的实验设计[J].物理实验,2004,24(2):16~19
    [48]江飞虹,王学勤,原帅.激光微多普勒效应探测系统[J].大气与环境光学学报,2008,3(3):200~202
    [49] Lacroix F., Gautier B.,Vallée R. Laser probe for underground Landminesdiscrimination and neutralization[C]. Proceedings of SPIE,2005,5794:80~89
    [50] Gregg D. Larson, James S. Martin, Waymond R. Scott, et al. Detection ofBuried Landmines Using Seismic Waves and Microphones[C]. Proceedings ofSPIE,2005,5794:655~663
    [51] S.W.McKnight, W.Li, C.A.DiMarzio. Imaging of Buried Objects by Laser-Induced Acoustic Detection[C]. Proceedings of SPIE,1999,3710:231~237
    [52] James S. Martin, Waymond R. Scott Jr., Gregg D. Larson. Probing SignalDesign for Seismic Landmine Detection[C]. Proceedings of SPIE,2004.5415:133~143
    [53] Wen Li. Model for Laser-generated Acoustic Wave in Soil[C]. Proceedings ofSPIE,1999.3853:303~310
    [54] James S. Martina, Gregg D. Larsona, Waymond R. Scott Jr.Surface-Contacting Vibrometers for Seismic Landmine Detection[C].Proceedings of SPIE,2005.5794:590~600
    [55] J.C. van den Heuvel, V.Klein, P. Lutzmann, et al. Sound wave and laserexcitation for acousto-optical landmine detection[C]. Proceedings of SPIE,2003.5089:569~578
    [56][56]Amit K. Lal, Cecil F. Hess, Hansheng Zhang, et al. Whole-field laservibrometer for buried landmine detection[C]. Proceedings of SPIE,2002.4742:640~648
    [57] Vyacheslav Aranchuk, James M. Sabatier, Amit K. Lal, et al. Multi-beamlaser Doppler vibrometry for acoustic landmine detection using airborne andmechanically-coupled vibration[C]. Proceedings of SPIE,2005.5794:624~631
    [58] Murray S. Korman, James M. Sabatier.Nonlinear acoustic experimentsinvolving landmine detection: Connections with mesoscopic elasticity and slowdynamics in geomaterials[C]. Proceedings of SPIE,2005,5794:612~622
    [59] Ning Xiang, James M. Sabatier.Acoustic-to-Seismic Landmine DetectionUsing a Continuously Scanning Laser Doppler Vibrometer[C]. Proceedings ofSPIE,2003,5089:591~595
    [60] J.C. van den Heuvel, F.J.M. van Putten, A.C. van Koersel, et al.Laser-induced acoustic landmine detection with experimental results on buriedlandmines[C]. Proceedings of SPIE,2004,5415:51~60
    [61] Patrick F. O’Malley, Teresa J. Woods, Joseph F. Vignola, et al.Surface-normal vector velocity measurement using a five-axis contour scanninglaser vibrometry system[C]. Proceedings of SPIE,2008,7098:70980D-1~70980D-8
    [62] Timothy V. Writer. Determination of Speed Limitations in Acoustic-to-Seismic Mine Detection using a Laser Doppler Vibrometer[C]. Proceedings ofSPIE,2003,5089:673~679
    [63] Richard Burgett, Marshall Bradley, Mike Duncan, et al. Mobile MountedLaser Doppler Vibrometer Array for Acoustic Landmine Detection[C].Proceedings of SPIE,2003,5089:665~672
    [64] Brad Libbey, Douglas Fenneman, Brian Burns.Mobile platform for acousticmine detection applications[C]. Proceedings of SPIE,2005,5794:683~693
    [65] Yonghuan Gao, Erol Gelenbe. Autonomous Search for Mines II: HierachicalSearch Using Sensory Data[C]. Proceedings of SPIE,1998,3392:952~962
    [66] Richard Burgett, Vyacheslav Aranchuk, James Sabatier, et al. Demultiplexingmultiple beam laser Doppler vibrometry for continuous scanning[C]. Proceedingsof SPIE,2009,7303:73030I-1~73030I-9
    [67]朱大勇,胡渝,叶乃群,等.一种适用于l0.6μm外差探测的激光稳频系统[J].红外与激光技木,1990,(3):9~12
    [68]何毅.相干式CO2激光成像雷达光学系统[J].光学学报,1999,19(8):1079~1083
    [69]朱大勇,叶乃群,范勤儒.10.6μm斯塔克效应稳频的误差信号分析[J].电子科技学报,1989,18(2):157~163
    [70]朱大勇.远程多普勒激光雷达[J].红外与激光工程,1996,25(2):8~15
    [71]何毅,吴健.相干式CO2激光边缘跟踪雷达光学系统[J].中国激光,1998,25(7):667~671
    [72]何毅,吴健.腔内线性调频影响激光相干性的实验研究[J].中国激光,1998,25(11):985~988
    [73]彭升阳,胡渝,朱大勇.10.6μm双路NH2D斯塔克盒稳频CO2激光拍频系统研究[J].国防科技学报,1995,17(4):111~115
    [74]朱大勇,叶乃群,余学才.稀有同位素13CO2激光器-激光雷达新光源[J].电子科技学报,1991,20(5):503~507
    [75]何毅,吴健.激光雷达扫描视场角和角分辨本领研究[J].光电工程,1999,26(5):13~17
    [76]何毅,吴健.扫描激光雷达的视场角和角分辨率研究[J].激光与光电子学进展,1998,(10):29~32
    [77]彭升阳,冯志超,胡渝.利用外差法测定NH2D斯塔克盒稳定CO2激光频率系统的鉴频曲线[J].光电工程,1990,17(1):29~34
    [78] Lili Wang, Zhaoshuo Tian, Yanchao Zhang, et al.Frequency stabilization ofpulsed CO2laser using setup-time method[J].Chinese Optics Letters,2012,10(1):011402-1~011402-3
    [79]王春晖,成向阳,王骐,等.CO2激光成像雷达距离分辨率测距精度的分析与实验研究[J].光子学报,2003,32(10):1212~1215
    [80]王春晖,成向阳,田兆硕,等.CO2激光主动成像雷达扫描成像实验[J].中国激光,2002,29(6):569~572
    [81]王春晖,王骐,尚铁梁.长波红外激光成像雷达技术的研究进展[J].激光与红外,2001,31(3):133~135
    [82]王春晖,田兆硕,王骐.电光调Q脉冲激光外差研究[J].中国激光,2001,28(2):130~132
    [83]田兆硕,王骐,王雨三.电光腔倒空与调Q射频波导CO2激光器[J].光学学报,2000,20(12):1613~1616
    [84] Hussein Badran, Zhaoshuo Tian, Qi Wang.Compact waveguide CO2laserexcited by a RF power supply[J].Chinese Optics Letters,2004,2(10):597~599
    [85]王春晖,成向阳,刘丽萍,王骐.窄脉冲CO2相干激光成像雷达目标距离测量研[J].中国激光,2003,30(6):555~558
    [86]成向阳,王骐,田兆硕,等.连续和脉冲CO2激光器频率稳定度的测量[J].激光技术,2003,27(5):484~489
    [87]田兆硕,王骐,王春晖,等.脉冲相干激光雷达测距信号研究[J].光学学报,2002,22(9):1081~1083
    [88]田兆硕,王骐,王雨三.输出可调的电光调Q射频激励波导CO2激光器的研究[J].中国激光,2001,28(6):505~508
    [89]王骐,田兆硕,王雨三.双通道电光调Q射频激励波导CO2激光器研究[J].光学学报,2001,21(4):447~449
    [90]王春晖,成向阳,田兆硕,等.窄脉冲外差体制CO2激光主动成像研究[J].光子学报,2003,32(2):155~157
    [91] Rod G. Frehlich,Michael J. Kavaya.Coherent laser radar performance forgeneral atmospheric refractive turbulence[J].Applied Optics,1991,30(36):5325~5352
    [92] Todd D.Irgang. Direct-Detection Doppler lidar employing CCD detector:design and early measurements [D]:[Degree of Doctor of Philosophy]. Michigan:Atmospheric and space sciences in the University of Michigan,2000
    [93] Dietmar Letalick,Ingmar Renhorn,Ove Steinvall.Target and atmosphericinfluence on coherent CO2laser radar performance[J].Applied Optics,1986,25(21):3939~3945
    [94] Aniceto Belmonte,Barry J. Rye.Heterodyne lidar returns in the turbulentatmosphere:performance evaluation of simulated systems[J].Applied Optics,2000,39(15):2401~2411
    [95] C. M. Sonnenschein,F. A. Horrigan.Signal-to-Noise Relationships forCoaxial Systems that Heterodyne Backscatter from the Atmosphere[J].AppliedOptics,1971,10(7):1600~1604
    [96] M. Harris, G. N. Pearson, J. M. Vaughan, et al.The role of laser coherencelength in continuous-wave coherent laser radar[J].Journal of Modern Optics,1998,45(8):1567~1581
    [97] Christer J. Karlsson, Fredrik. A. Olsson, Dietmar Letalick, et al.All-fibermultifunction continuous-wave coherent laser radar at1.55mm for range, speed,vibration, and wind measurements[J].Applied Optics,2000,39(21):3716~3726
    [98] Alain Dabas, Pierre H. Flamant, Philippe Salamitou. Characterization ofpulsed coherent Doppler LIDAR with the speckle effect[J].Applied Optics,1994,33(27):6524~6532
    [99] Russell Targ, Bruce C. Steakley, James G. Hawley,et al.Coherent lidarairborne wind sensor II:flight-test results at2and10μm[J].Applied Optics,1996,35(36):7117~7127
    [100] R. G. Frehlich.Conditions for optimal performance of monostatic coherentlaser radar[J].Optics Letters,1990,15(11):643~645
    [101] Michael J. Kavaya, Paul J. M. Suni.Continuous wave coherent laser radar:calculation of measurement location and volume[J].Applied Optics,1991,30(18):2634~2642
    [102] Steven F.Clifford,StephenWandzura.Monostatic heterodyne lidar perfor-mance:the effect of the turbulent atmosphere[J].Applied Optics,1981,20(3):514~516
    [103] Shumpei Kameyama,Toshiyuki Ando, Kimio Asaka,et al.Semianalytic pulsedcoherent laser radar equation for coaxial and apertured systems using nearestGaussian approximation[J].Applied Optics,2010,49(27):5169~5174
    [104] H.T. Yura.Signal-to-noise Ratio of Heterodyne Lidar Systems in the Presenceof Atmospheric Turbulence[J].Optica Acta: International Journal of Optics,1979,26(5):627-644
    [105] J. Y. Wang.Heterodyne laser radar SNR from a diffuse target containingmultiple glints[J].Applied Optics,1982,21(3):464~476
    [106]汤俊雄.光拍频和干涉现象[EB/OL]. http://www.cqvip.com/,1990
    [107] Brian F. Aull, Andrew H. Loomis, Douglas J. Young,et al.Geiger-ModeAvalanchePhotodiodes for Three-Dimensional Imaging[J]. Lincoln LaboratoryJournal,2002,13(2):335-350
    [108] Marius A. Albota, Brian F. Aull, Daniel G. Fouche,et al.Three-DimensionalImaging Laser Radars with Geiger-Mode Avalanche Photodiode Arrays[J].Lincoln Laboratory Journal,2002.13(2):351-370
    [109] Leaf A. Jiang, Jane X. Luu. Heterodyne detection with a weak local oscillator[J]. Applied Optics,2008,47(10):1486~1053
    [110] Jane X. Luu, Leaf A. Jiang. Saturation effects in heterodyne detection withGeiger-mode InGaAs avalanche photodiode detector arrays [J]. AppliedOptics,2006,45(16):3798~3804
    [111] Chang Lyong Kim, Gin-Chung Wang, Sergei Dolinsky. Multi-Pixel PhotonCounters for TOF PET Detector and Its Challenges [J]. IEEE Transactions onnuclear science,2009,56(5):2580~2585
    [112] Akihiro Minamino, Naoki Nagai, Daniel Orme, et al.Development of Multi-Pixel Photon Counters for T2K long baseline neutrino experiment[C]. IEEENuclear Science Symposium Conference Record,2008,(50):3111~3114
    [113] Martin Gottlich, Erika Garutti, Valentin Kozlov, et al.Application of Multi-Pixel Photon Counter to Positron Emission Tomography[C]. IEEE NuclearScience Symposium Conference Record,2008,(50):3119~3122
    [114] F.Retiere, Y.Du, S.Foreman, et al.Characterization of Multi-Pixel PhotonCounters for T2K Near Detector [J]. Nuclear Instruments and Methods in PhysicsResearch A,2009,(610):378–380
    [115] Debora Henseler, Ronald Grazioso, Nan Zhang, et al. SiPM Performance inPET Applications: An Experimental and Theoretical Analysis[C]. IEEE NuclearScience Symposium Conference Record,2009,(28):1941~1947
    [116] S. Cova, M. Ghioni, A. Lacaita, et al.Avalanche photodiodes and quenchingcircuits for single-photon detection[J].Applied Optics,1996,35(12):1956~1976
    [117] Dmitry A. Kalashnikov, Si-Hui Tan,Leonid A. Krivitsky.Crosstalk calibrationof multi-pixel photon counters using coherent states[J].Optics Express,2012,20(5):5044~5051
    [118]刘立生,张合勇,郭劲,等.用激光外差技术高精度测量目标速度[J].光学精密工程,2011,19(10):2366~2372
    [119]张合勇,赵帅,郭劲,等.相干和多模热光场的光子统计实验[J].光学精密工程,2012,20(10):2132~2139
    [120]刘立生,张合勇,赵帅,等.激光拍频信号光子到达时间间隔特性分析[J].光学学报,2012,32(4):0403001-1~0403001-8
    [121]张合勇,郭劲,赵帅,等.基于多像素光子计数器的赝热光场Fano因子研究[J].中国激光,2011,38(10):1008010-1~1008010-7
    [122] Marco Ramilli,Alessia Allevi,Valery Chmill,et al.Photon-number statisticswith silicon photomultipliers[J].J. Opt. Soc. Am. B,2010,27(5):852~862
    [123] Hee Jung Lee, In-Ho Bae, Han Seb Moon. Continuous manipulation oftunable mixed classical light from coherent light to pseudothermal light[J].J. Opt.Soc. Am. A,2011,28(4):560~565
    [124] N.R.Isenor, A.B. Haner. Spectral Modulation of Light from a Pair ofPseudothermal Sources[J].Journal of the optical society of America,1969,59(10):1290~1293
    [125] Y. Li, G. Li, Y. C. Zhang,et al.Effects of counting rate and resolution time ona measurement of the intensity correlation function[J].Physical Review A,2007,(76),013829-1~013829-5
    [126] Jacques Buires.Degeneracy of light and the optimum accuracy of photo-electric measurements[J].Journal of the optical society of America,1974,64(12):1598~1605
    [127] G. Li, T. C. Zhang, Y. Li, et al. Photon statistics of light fields based onsingle-photon-counting modules[J].Physical Review A,2005,(71):023807-1~023807-6
    [128] Lorenzo Basano,Pasquale Ottonello.A conceptual experiment on single-beamcoincidence detection with pseudothermal light[J].Optics Express,2007,15(19):12386~12394
    [129] In-Ho Bae, Hee Jung Lee,Han Seb Moon.Electromagnetically inducedtransparency with variable fluctuation time of photon number of pseudothermalprobe light[J].J. Opt. Soc. Am. B,2011,28(6):1578~1582
    [130]沈夏,张明辉,刘红林,等.脉冲式赝热光源的实验研究[J].中国激光,2009,39(11):2893~2898
    [131]应关荣,刘红林,魏青,等.强度关联三维衍射层析的实验研究[J].光学学报,2009,29(10):2786~2790
    [132]贺拾贝,沈夏,王慧,等.热光场无分束器非局域成像研究[J].光学学报,2010,30(11):3332~3335
    [133] Itamar Vidal, Dilson P. Caetano, Eduardo J. S. Fonseca, et al. Effects ofpseudothermal light source's transverse size and coherence width inghost-interference experiments[J].Optics Letters,2009,34(9):1450~1452
    [134] P.L. Kelley,W.H. Kleiner.Theory of Electromagnetic Field Measurement andPhotoelectron Counting[J].Physical Review,1964,136(2A):A316~A334
    [135]卢川.关联成像的理论与实验研究[D]:[硕士学位论文].长沙:国防科学技术理学院,2008
    [136]李园.基于单光子探测的光场统计性质的研究[D]:[博士学位论文].太原:山西物理电子工程学院,2006

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700