气动增压器的理论分析及试验
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
气液增压器是一种气驱式往复液压增压泵,是近30年逐渐发展起来的新型动力机。在气液增压泵的活塞组件是由气缸活塞与液压泵活塞通过活塞杆直接刚性连接而成。和曲轴式发动机/液压泵的组合动力相比,它省去了曲轴式内燃机中将活塞的往复运动转换为旋转运动的曲柄连杆机构,以及液压泵中将旋转运动转换为泵活塞往复运动的旋转斜盘机构。因此该系统具零件数目少、重量轻、效率高、燃料范围广及易回收系统频繁起停中的惯性能等优点。作为特种发动机,往复式液压泵主要是为了取代目前仍广泛应用的曲轴式发动机在频繁起停大中功率行走机械中的应用。
     本论文以气动增压器为研究对象,从理论分析、数学模型的建立与仿真、方案的评审、原理样机研制与试验等方面对系统的工作机理进行了全面而系统的研究。
     首先,根据系统要求的性能指标,对系统原理、控制回路、基本结构参数、进行了初步的设计与计算。并运用热力学第一定律、连续方程、动量方程等对气动增压系统的输出压力、流量特性、执行机构的运动特性进行了数学描述。
     其次,应用MATLAB/Simulink仿真软件对系统进行仿真,讨论了气动增压系统的输出压力、流量特性,为气动增压器的研制提供了理论基础。
     再次,对气动增压器的部分组建进行了设计。
     最后,对气动增压器进行试验研究与性能测试。
This air operated pressure intensifier is a kind of Piston Engined Hydraulic Reciprocating Pump, it’s a new strengthmachine in the nearly 30 years. In the system of the pump, Piston components is componented of the rigid directly linking of the cylinder piston and hydraulic piston, this struction needn’t the crank rod which converts the reciprocating piston motion into rotational motion and the Wobble-body rotation which converts the rotary motion into the Reciprocating motion of piston pump in the internal combustion engine crankshaft. Thus, the system has Advantages of simple in structure, the small number of parts, light weight, low cost and high efficiency, wide range of fuels , can be recovered easily inertial and gravitational potential energy during the System’s frequent starting and stopping and so on. As a special engine, the Piston Engined Hydraulic Reciprocating Pump Mainly to replace the crankshaft engine which is widely applied .
     This paper has served the pneumatic hydraulic pump as research subjects, and conducted a comprehensive and systematic study through theoretical analysis, mathematical modeling and simulation, the program's accreditation, prototype development, experiments and other aspects of the system working mechanism .
     First, according to the requirements of the system performance, have carried out preliminary design on system principle, the control circuit, the basic structure parameters. mathematical descriptions of output characteristics of the pressure, flow characteristic and kinematical characteristics of the high-pressure integrated component of valve-controlled pneumatic cylinder are developed based on the First Law of Thermodynamics, Continuity Equation and Momentum Equation.
     Second, Output characteristics of the pressure, flow characteristic are emphatically analyzed through simulation study with MATLAB/SIMULINK software, which provide a theory foundation for the development of the pneumatic hydraulic pump.
     Third, mapped out of the product drawings and developed the prototype.
     Finally, some experiments are managed to test the performance of the pneumatic hydraulic pump.
引文
1赵彤.气动技术的发展及在新领域中的应用.液压气动与密封. 2004(2): 1~5
    2国外气动技术发展的新动向.气动. 2002(16):32-33
    3梁锡昌,蒋建东,李润方.一种新型舵机装置的研究.船舶工程,2004(1):30~33
    4郭放策,孙义明.高频双向气液增压泵.液压与气动.1994(4):25~26
    5吴金波.高压伺服气缸及其高压气动位置伺服系统的研究.武汉华中科技大学硕士学位论文2002:2~4
    6李家书.气动技术的应用.液压气动与密封,2006(4):6~10
    7王雄耀.气动技术的发展趋势.现代制造·现代驱动,2007(5):14~15
    8孙英达,徐文琴.气液增压夹紧装置.机械制造.2004(5):64~65
    9 Anon. Air driven compound hydraulic pump . Power International. 1987:100-103
    10李雪梅,丁峰.气液增压缸的结构原理与应用.流体传动与控制.2004(6):24~25
    11王建军.一种液压增压缸的介绍.液压与气动. 1992 (4)
    12张保松,曾韬,张合明等.气液增压器在机床夹具中的应用.液压与气动.2006(12):61~62
    13 EricJ.Barth. JianlongZhang. Michael Goldfarb.Sliding Mode Approach to PWM-Controlled Pneumatic System.Procddeings of the American Control Conference Anchorage. AK May 8-10,2005:2362-2367
    14吴振顺.气压传动与控制.哈尔滨工业大学出版社, 1995.3
    15许宏光,吴盛林,赵克定.气液联动与气液联控.机械工程学报. 2001, 37(7), 92~95
    16张静,吴宝桐.双级气—液增压器[J].机械工人. 1995, 6): 28-29Heinz
    17 K.Muller,Bemars S.Nau.Fluid sealing technology principles and applications [M].New York:Mercel Dekker Inc,1998.293~307
    18 Takayoshi Ichiyanagi, Eiichi Kojima. Development and optimum design method of multi degree of freedom type helmholtz resonator for hydraulic pulsateon attenuateion., 2005, 32 (1) : 13~201
    19陆鑫,盛周洪.气动自动化系统的优化设计[M].上海科学技术文献出版社,2000
    20现代使用气动技术/SMC(中国)有限公司—北京.机械工业出版社, 1998. 3
    21许福玲,陈尧明.液压与气压传动[M].北京:机械工业出版社, 2000
    22 Wong W.LNG Powerer Recover Proceedings of the Institution of Mechanical Engineers Part A.Journal of Power and Energy.1994, 208(1): 1~5
    23 Selament, Dickey. N. S. The Herschel– Quincke tube: Atheoretical, computational, and experimental investigation [J] 1J. Acoust. Soc. Am. 1994,96(5): 3177~31851
    24 Khan SA Process Imp C3 + Recovery Hydrocarbon Precessing. 1985(5): 75~76
    25陈志伟.自动换向增压器.液压与气动. 1992 (1)
    26 Baz, A. Khafagy, S.Micheal, S. Analysis of pneumatically driven double-acting reciprocating pumps. American Society of Mechanical Engineers.1978:12
    27 Karnopp, D.State Variables and Pseudo Bond Graphs for Compressible ThemofluidSystems Jourmal of Dyanmic Systems Measurement and Control, 1979
    28徐炳辉.气动技术基础知识(1).液压与气动, 1994(1): 39-41
    29马昌,高常识.新型高性能气动换向阀的设计.机械工程师1999 1
    30贾光政,王宣银,吴根茂.先导式高压气动开关阀的研制.机床与液压. 2003(2): 12~14
    31 Song G Y. Experimental research on characteristic of hydraulic shock absorber[J ] . Mechanical Science and Technology ,1998 ,17(1) :109~110
    32王虎,余祖耀,朱会学,李宝仁.阀控缸一体化元件的响应特性分析.流体传动与控制. 2005, 2: 23~25
    33 Kamopp, D.C.Margolis, D.L.and Rosenberg, R. C., System Dynamics: Modelingand Simulation of Mecharonic Systems, John Wiley. New York, 2005
    34 Somada Hisashi; Yamaguchi Hirotugu. Study on an active accumulator ( active control of high2frequency pulsation of flow rate in hydraulic systems [J]. J SME International Journal. 1996 Series B ,39(1): 685~690
    35 Jairazbhoy, Vivek, Stevenson, Randy C. Mathematical modeling of molten metal dispensing: A study of a pneumatically actuated diaphragm-driven pump. Applied Mathematical Modelling. 2008: 141~169
    36 YNarita. Optimal design support location for vibration of structure and its conents.American Society of Mechanical Engineers, Pressure and Piping Division. 1989, 179(7): 23~27 0
    37 Sheam2Chyun Lin ,Chia2Lieh Huang. An integrated experimental and numerical study of forward2curved centrifugal fan [J] . Experi2 mental Thermal and Fluid Science, 2006, 26: 421~434
    38 Seraji H, Colbaugh R.. Force Tracking in Impedance Control. Int. J. Robotics Research. 1997, 16(1): 97~117
    39 T Y Chung, D. A.131aser. Transfer function methods of measuring acoustic intensity in a duct system with flow. The journal of the acoustical society of America, 1980, 68: 1570-1577
    40高尚业.往复式压缩机管系振动的控制,炼油设计. 2000, 30(1): 32~35
    41 T Y Chung, D. A.131aser. Transfer function methods of measuring acoustic intensity in a duct system with flow. The journal of the acoustical society of America, 1980, 68: 1570-1577
    42薛定宇.反馈控制系统设计与分析——MATLAB语言应用[M].北京:清华大学出版社. 2004.6
    43黄红钟,祖旭,张旭.基于Matlab/Simulink的键合图仿真.大连理工大学学报. 2005, 43(5): 632~635
    44 HW LEE&C Q CHEN. Numerical simulation of line puff via RNG k-εmodel [J].Communication of Nonlinear Scinece and Numerical Simulation, 1996, 1(4): 6~11
    45 Tan R H ,Chen Y, Lu Y X. Simple nonlinear mathematical model of shock absorbers [J] . Chinese Journal of Mechanical Engineering. 1999, 12(3): 193~198
    46 Karnopp, D.State Variables and Pseudo Bond Graphs for Compressible Themofluid, 2004, 6(4): 8~13
    47 Systems Jourmal of Dyanmic Systems Measurement and Control. 1979
    48 Molen, G. Vander,Akers, A. Simulation of a hydrauliv pump control valve. SAE Technical Paper Series. 1987: 9

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700